
ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297

A
0

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Nested spatial data structures for optimal indexing of LiDAR data✩

Carlos J. Ogayar-Anguita ∗, Alfonso López-Ruiz, Antonio J. Rueda-Ruiz, Rafael J. Segura-Sánchez
Department of Computer Science, University of Jaén, EPS Jaén, 23071, Spain

A R T I C L E I N F O

Keywords:
Spatial data structure
Spatial big data
Ubiquitous Point Cloud
LiDAR

A B S T R A C T

In this paper we present a flexible framework for creating spatial data structures to manage LiDAR point
clouds in the context of spatial big data. For this purpose, standard approaches typically include the use of a
single data structure to index point clouds. Some of them use a hybrid two-tier solution to optimize specific
application purposes such as storage or rendering. In this article we introduce a meta-structure that can have
unlimited depth and a custom, user-defined combination of nested structures, such as grids, quadtrees, octrees,
or kd-trees. With our approach, the out-of-core indexing of point clouds can be adapted to different types of
datasets, taking into account the spatial distribution of the data. Therefore, the most suitable spatial indexing
can be achieved for any type of dataset, from small TLS-based scenes to planetary-scale ALS-based scenes.
This approach allows us to work with overlapping datasets of different resolutions from different acquisition
technologies in the same structure.
1. Introduction

LiDAR scanning is one of the most powerful tools in fields such as
civil engineering, surveying, archaeology or environmental engineer-
ing. Due to the evolution, popularization and cheapening of LiDAR
sensors, nowadays it is very common to have large datasets, especially
in the context of the so-called Geospatial Big Data. Handling this
amount of data brings with it a number of problems, related to its
storage, transmission, organization, visualization, edition and analysis.
The situation worsens when it comes to managing data obtained from
different sources with different precision levels, such as ALS (Airborne
Laser Scanning) and TLS (Terrestrial Laser Scanning), managing data
acquired at different times, or having different layers of information.
Thus, the data structure used to index all this spatial data is paramount
in order to efficiently access the desired information for any processing
task.

Typically, LiDAR data is stored as files in a common format, such as
LAS/LAZ. The usual way to define the work area is by means of a poly-
gon or a bounding box. As data is usually distributed in tiles (Boehm,
2014), it may be necessary to process much more data than actually
affected by the operation. Furthermore, datasets eventually take up
terabytes of information scattered across diverse storage media in
hundreds of files. This makes it difficult to perform spatial and temporal
analyses and data editing. To alleviate this, it is common practice to

✩ This result is part of the research project RTI2018-099638-B-I00 funded by MCIN/AEI/10.13039/501100011033/ and ERDF funds ‘‘A way of doing Europe".
Also, the work has been funded by the Spanish Ministry of Science, Innovation and Universities via a doctoral grant to the second author (FPU19/00100), and
the University of Jaén (via ERDF funds) through the research project 1265116/2020.
∗ Corresponding author.
E-mail addresses: cogayar@ujaen.es (C.J. Ogayar-Anguita), allopezr@ujaen.es (A. López-Ruiz), ajrueda@ujaen.es (A.J. Rueda-Ruiz), rsegura@ujaen.es

(R.J. Segura-Sánchez).

have different levels of detail of the dataset, by using sub-sampling. In
contrast, some approaches use a hierarchical data structure to have a
more efficient spatial distribution of the data (Deibe et al., 2019; Huang
et al., 2020; Lu et al., 2019; Schuetz, 2016; Schütz et al., 2020), which
implies having levels of details (LODs) in an intrinsic way. However,
some problems remain, especially when combining multiple datasets
generated with different scanning precision or different attributes. This
is common in the context of Geospatial Big Data, and therefore, specific
approaches and techniques must be applied (Deng et al., 2019; Evans
et al., 2014; Lee and Kang, 2015; Pääkkönen and Pakkala, 2015).

The Open Geospatial Consortium (OGC) Testbed-14, in the Point
Cloud Data Handling Engineering Report (Boehler et al., 2018), iden-
tifies some applications and tasks that need spatially accelerated ac-
cesses, such as modeling and simulation, measurement, feature ex-
traction, change detection or bathymetric exploration among others.
Therefore, the mere data storage is not the only important issue, but
also efficient data search, retrieval and editing. The main problem
with standard spatial indexing solutions is their poor adaptation to
some datasets, due to the spatial distribution of the data. For example,
indexing large terrains scanned with ALS using an octree will produce
an excessive depth of the structure, due to its inadequate adaptation to
mostly flat geometry. On the other hand, a quadtree will perform poorly
when the dataset contains a large number of vertical structures (see
vailable online 9 December 2022
924-2716/© 2022 International Society for Photogrammetry and Remote Sensing, I

https://doi.org/10.1016/j.isprsjprs.2022.11.018
Received 8 February 2022; Received in revised form 12 September 2022; Accepted
nc. (ISPRS). Published by Elsevier B.V. All rights reserved.

21 November 2022

https://www.elsevier.com/locate/isprsjprs
http://www.elsevier.com/locate/isprsjprs
mailto:cogayar@ujaen.es
mailto:allopezr@ujaen.es
mailto:ajrueda@ujaen.es
mailto:rsegura@ujaen.es
https://doi.org/10.1016/j.isprsjprs.2022.11.018
https://doi.org/10.1016/j.isprsjprs.2022.11.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2022.11.018&domain=pdf


ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Fig. 1. The Manhattan Island LiDAR dataset used in the experiments. ©2022 City of New York, NYC Open Data.
Fig. 1), as happens with urban scenarios where data from the interior
of buildings is included through TLS. Unfortunately past experience
has shown that the appropriate spatial structure is highly dependent
on the type of dataset (Poux, 2019). The main problem appears when
working with data coming from various sources (ALS, TLS, mobile
mapping, etc.), multiple accuracy levels, and especially several types
of spatial distributions, all in the same dataset and eventually the same
applications.

The objective of this work is the definition of a flexible spatial meta-
structure for the managing of LiDAR point clouds in the context of Big
Data at a variable scale, ranging from small TLS-based scenes to planet-
scale ALS-based datasets. This structure serves as a spatial indexer, and
is used for partitioning the data in a way that speeds up spatial queries
and data accesses. It allows a user-defined combination of nested
structures with an unlimited depth, such as grids, quadtrees, octrees,
kd-trees and others. With this approach, the out-of-core indexing of
point clouds can be optimized to a given dataset, by adapting the
spatial partition to the morphology and distribution of points in space.
For example, large portions of land can be treated efficiently with 2D-
based spatial indexing, while vertical structures such as buildings can
be optimally partitioned and indexed in 3D.

A significant advantage of mixing multiple data structures is the op-
timal adaptation to levels of detail with a certain purpose, for example
reserving a type of spatial structure only to index most dense zones
(e.g. buildings). With this approach, it is easier to adjust the level of
detail of the environment, which improves all dataset processing tasks,
including editing, data analysis and visualization (Poux, 2019). This
also improves the integration of data obtained from TLS scans together
with the more dispersed data obtained with ALS.

The rest of the paper is organized as follows. Section 2 reviews the
most relevant work related to point cloud storage and spatial indexing.
Section 3 presents the description of the proposed approach of nested
spatial data structures, which is tested and analyzed in Section 4.
Finally, Section 5 presents the conclusions and outlines future work.

2. Previous works

Point cloud models are a widely used resource in all types of
decision-making processes (Poux, 2019). With the rapid evolution of
3D data capture hardware, larger and larger datasets are becoming
available, which pose a major challenge for efficient data management
and processing (Poux, 2019). In addition to the increase in the volume
of spatial information captured, there is also a great variety in its scale,
from small objects to large areas of the territory (Bräunl, 2020). This
allows us to acquire massive digital information from the real environ-
ment, which is integrated into the Geospatial Big Data (Deng et al.,
2019; Evans et al., 2014; Lee and Kang, 2015; Pääkkönen and Pakkala,
2015). Related to this, the concept of Ubiquitous Point Clouds (Liang
288

et al., 2016; Šašak et al., 2019; Lin et al., 2020) introduces a new
perspective for point cloud management in a multidimensional way
(3D coordinates, timestamps and additional attributes). Its applications
include urban planning, archaeological sites, civil engineering, sur-
veying, forestry, BIM and Scada systems, digital twins, among others.
It highlights not only the volume of data but also the dispersion
throughout the territory and over time, the variety of capture devices
(and therefore the quality) and the purpose of the capture itself.

Point cloud processing involves a series of steps from its capture
to the extraction of the desired information, including registering,
filtering, segmentation, classification and conversion to other 2D/3D
representation schemas (Józsa et al., 2013; Ullrich and Pfennigbauer,
2019). Some advanced functionalities that benefit from improvements
in this regard are temporary information management (4D) and col-
laborative editing work, where it is essential to have efficient space
partitions that allow editing locks and the setting of access permissions.

The spatial data structure used for point cloud management has
a determining influence on all the processes that can be carried out.
Most research proposals define a data structure that is strongly tied to
a specific application, leaving aside other important uses. This is very
common in rendering-oriented systems (Deibe et al., 2019; Goswami
et al., 2013; Preiner et al., 2012; Schuetz, 2016; Richter et al., 2015;
Schutz et al., 2019; Ströter et al., 2020), which in some cases are not
suitable for other purposes such as optimal storage or data analysis. On
the other hand, there are several papers that focus on mass storage in
secondary memory, in the network or in the cloud (Baert et al., 2014;
Deibe et al., 2019; Richter et al., 2015; Scheiblauer and Wimmer, 2011;
Schütz et al., 2020).

Most authors propose solutions for the spatial indexing mainly
based on grids and quadtrees for planar data (Boehm et al., 2016;
Deibe et al., 2019; Hongchao and Wang, 2011), or octrees for vol-
umetric data (Elseberg et al., 2013; Huang et al., 2020; Lu et al.,
2019; Scheiblauer and Wimmer, 2011; Schön et al., 2013; Schütz et al.,
2020; Ströter et al., 2020; Tian et al., 2019). These spatial indexing
solutions are perhaps somewhat simple, taking into account the increas-
ing complexity of the datasets and the processes to be carried out on
them. The most widely used data structure for point cloud storage and
rendering is the octree. Other approaches are based on the k-d tree,
which optimizes space partitioning (Goswami et al., 2013), a sparse
voxel structure (Baert et al., 2014; Kämpe et al., 2013; Poux and Billen,
2019) or a 2D grid (Hongchao and Wang, 2011). There are other data
structures that work better with whole objects, such as the r-tree. They
are normally used with polygon meshes, although there are works that
successfully use some variants with point clouds (Gong et al., 2012),
as well as others that could be adapted for this purpose (Wang et al.,
2020). Fig. 2 shows examples of some basic spatial structures.

Some of the cited proposals include the use of a nested or hybrid
spatial structure, mainly oriented to rendering (Deibe et al., 2019;
Schuetz, 2016; Yang and Huang, 2014) and to the optimization of
search operations (Lu et al., 2019; Scheiblauer and Wimmer, 2011).

Most of these methods tend to keep the spatial data structure as simple



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.

a
e
i
T
s
I
a
W
p
t

i
l
m
2
2
t
i
p
s
P
L
g
s
c
A
t
w
c
L
u
H
A
d
a
t

3

n
o
t
f
s
s
a

Fig. 2. Commonly used basic spatial data structures.
t
s
s
g
a
o
f
a
t
p
d
t
l
t
i
t
c
g
s
g
t

d
w
q
a
s
s
g
s
g
b
t
a
c
a
g
I
i
o

m
l
t
e
d

s possible, while allowing to work with LODs (Level of Details) (Deibe
t al., 2019; Schuetz, 2016). The main drawback is that the spatial
ndexing does not adapt well to all possible point spatial distributions.
he most relevant case is the poor adaptation of the octree to the
patial distribution of points along large areas of scanned territory.
n these cases quadtree and grid planar structures are usually more
ppropriate (Boehm et al., 2016; Deibe et al., 2019; Hongchao and
ang, 2011). However, if a dataset has multiple point distribution

atterns, no single structure will be able to optimally fit in all zones,
hat is, with the lowest possible node count.

Some of the papers mentioned above only address point cloud
ndexing in memory, while others do it at the out-of-core storage
evel as well. Simplest approaches use direct storage in secondary
emory using local files (Scheiblauer and Wimmer, 2011; Schütz et al.,
020), while others rely on using distributed file systems (Deibe et al.,
018; Krämer and Senner, 2015), typically indexed through a spa-
ial structure, which is implemented as a master index file or stored
n a database. There are several well-known file formats for storing
oint clouds and LiDAR data. The most common options are non-
tandard ASCII formats, the LAS format of the American Society for
hotogrammetry and Remote Sensing (ASPRS), its compressed variant
AZ (Isenburg, 2013), SPD (Bunting et al., 2013), PCD, HDF5 and other
eneral 3D data file formats such as OBJ, STL or PLY. From a practical
tandpoint, the most interesting formats are those that allow data
ompression (Cao et al., 2019; Isenburg, 2013; Sugimoto et al., 2017).
ny of these options is valid for storing groups of points contained in

he nodes of a spatial structure used in secondary memory. In this work
e use the LAZ format (Isenburg, 2013), that achieves very efficient

ompression of LiDAR data and is the de facto standard based on the
AS format (Boehm, 2014). In addition to file-oriented storage, the
sual alternative is to use databases (Boehm, 2014; Deibe et al., 2018;
ongchao and Wang, 2011; Lee and Kang, 2015; Schön et al., 2013).
lthough there are several approaches to storing LiDAR points in a
atabase, one of the most efficient methods is to store point clouds as
block in the database or as files in a file system, though indexed in

he database.

. Nested spatial data structures schema

Our proposal consists of the creation of ad-hoc combinations of
ested data structures to take full advantage of the spatial distribution
f each point cloud dataset. The nesting of data structures is a problem
hat has a certain complexity. In this section we present a framework
or achieving that goal. The particularities of each type of spatial
tructure, such as the grid, the octree or the kd-tree, are outside the
cope of this work. Here we will focus on how to adapt them to make
289

combination of nested structures. h
The key aspect is to design what we denote as the global structure,
hat is, a combination of nested structures. Each of the component
tructures is a inner structure, which can be any user-defined spatial
tructure. In this work we have implemented adapted versions of
rids, kd-trees, quadtrees and octrees, but other spatial structures can
lso be integrated into this framework. Each possible combination
f inner structures (a global structure) must be defined by the user
ollowing certain criteria that should depend on the specific dataset
nd application requirements. Throughout this section the criteria to be
aken into account will also be discussed. Fig. 3 shows all the concepts
resented here through an example. Each inner structure has its own
epth levels, which are denoted as local levels. Those same levels also
ake a place in the global scheme, where they are considered as global
evels. Spatial structure nesting implies that data is propagated down
he structure until leaf nodes are reached. Then, for each leaf node
t must be calculated whether a new lower level is needed in order
o distribute the data into smaller subsets. Each time a new level is
reated during the spatial subdivision, the inner structure that owns a
iven node creates a new level at that node, only if it is a hierarchical
tructure and the maximum depth is not reached. If it is the case, the
lobal structure schema is queried for the next inner structure in order
o instantiate and attach it to that node (see an example in Fig. 3).

In order to combine and connect all the inner structures, some
esign principles must be applied to their implementation. In this way,
e have implemented specific adaptations of the structures, so grid,
uadtrees, octrees, etc. must be adapted versions whose particularities
re explained next. Firstly, we assume that all the nodes in every
patial structure are of the same size in every dimension, that is,
quare for planar structures and cubic for volumetric structures. This
reatly simplifies the rest of decisions to be made, and almost all other
olutions in the literature follow this same convention. Secondly, the
lobal hierarchical structure schema, that is defined by the user, must
e the same throughout the complete dataset. It is also fixed throughout
he life of the dataset. That means that during its construction, when
given spatial structure reaches a leaf node, a new spatial structure is

reated and attached to it (if the maximum global depth is not reached),
nd the type of that new structure is the same, depending only on their
lobal level. Inner spatial structures are nested by using references.
n our implementation we have used C++ pointers to instances that
nherit from an abstract class that contains interfaces to common
perations.

Inner structures, and consequently their nodes, can have fixed di-
ensions, or vary when their content changes. This also depends on its

ocation in the global structure. When a hierarchical structure occupies
he first position in the global structure, its spatial limits must be
stablished explicitly, or by using the bounding box of the entire
ataset. This affects quadtrees, octrees and kd-trees. However, non-

ierarchical structures such as grids can cover an infinite amount of



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
space, and they must be created with a given size for their nodes. On
the other hand, when an inner structure is below another in the global
hierarchy, its spatial limits are defined by the bounding volume of the
parent node. For example, a 3D grid within a leaf node of a quadtree
will have fixed width and depth dimensions, the same as the size of
that same quadtree node. However, the height is not bounded, and as
a result can have infinite nodes in (−∞,∞) (an example is presented in
Fig. 4).

3.1. Insertion of point clouds

Inserting points into the nested spatial data structure is one of the
most important operations in the proposed approach, because it also
drives the creation or modification of the structure itself. This is also
the case with deleting points, although this operation is presented later.
As previously stated, a global structure scheme is composed of a series
of inner structures defined by some parameters. The configuration of
the global structure schema is fixed throughout the life of the dataset,
and determines how data is propagated through the structure and when
new inner structures instances are created at insertion time. When point
clouds are inserted into the global structure, the first inner structure is
created if it does not exist. The required inner nodes are created as
data is propagated down to the lowest level allowed. Then, for each
leaf node reached in the current inner structure, the global schema is
checked for the next inner structure type to be created and linked. If
it exists and data is to be propagated down, a new instance of that
structure is created by using the needed parameters specified in the
global schema, and then it is attached to the leaf node. This process
is repeated until no more data is left to be propagated down, or the
maximum global depth is reached (see Fig. 5).

During point cloud insertion, when the number of points that a node
contains is greater than a given value, a subset of points is selected to be
propagated down the hierarchical structure. The criteria for doing this
depend on the maximum number of points that a structure level can
have, as configured by the user. This value can be 0 only for spatial
indexing levels, which do not store any points. In this way, a part of
the point set (or the whole set) remains in the node and another part
is moved to new child nodes. The partition of space in those nodes
depends on how the inner structure works, so for a quadtree up to
four child nodes are created, while for an octree up to eight nodes
are created (empty nodes are not even created). The points are then
distributed among the new nodes, based on their position in space. All
this point distribution process is repeated until one of the following
termination conditions is reached: (a) the maximum global depth is
reached, (b) the number of points in the node does not exceed its
maximum or (c) an additional user-defined function decides it. All these
values are specified by the user in the global schema configuration for
the dataset. More details are presented in the next section.

The subset of the original point cloud stored at each node is pro-
cessed to change the global point coordinates to a local coordinate
system centered at the node. This is a common technique when using
spatial structures to organize point data. In this way, the 3D coordi-
nated of the points can be encoded using floats with lower precision.
Therefore it is possible to work with 32-bit floats without losing preci-
sion, while using 64-bit floats for the coordinates of the nodes, which
represents a significant memory saving. Furthermore, having small
numbers for the 3D coordinates of the points could also improve the
performance of many data compression algorithms. In this work we use
the LAZ format for storing the point clouds contained in each node.

3.2. Point distribution and levels of detail

There are mainly two strategies for point-in-node storage: store
unique points along the hierarchical structure, or replicate some of
them in intermediate nodes. Point replication is a strategy mainly
aimed at having LODs for rendering purposes. In this way, there are sets
290
Fig. 3. Example of a global structure composed of a 2D grid of quadtrees of 3D grids
of octrees. The 2D grid is used as the top-level structure. Octrees are used for the
smallest regions.

of representative points in intermediate nodes that can be efficiently
rendered (as a single buffer) without the need to load the structure
to the deepest level and update the buffers in the GPU. In general
this approach has very important disadvantages. First, the storage
footprint increases dramatically due to data redundancy. Second, point
cloud editing operations are greatly complicated by updating duplicate
points. Although our framework allows both approaches, we have
performed all the experiments with a non-redundant configuration,



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Table 1
Parameters and node encoding scheme of each spatial structure implemented for the tests.

Spatial structure Configuration parameters Node ID coding scheme

2D grid If top-level: nodes size (squared)
If not: resolution (w, d)

[x; y] (integers)
Example: [153, −45]

3D grid If top-level: nodes size (cubic)
If not: resolution (w, d, h)

[x; y; z] (integers)
Example: [120, 5, 78]

Kd-tree 2D or 3D mode
Maximum depth

[node local depth {0–n} (byte);
[(node side {l=0, r=1} (byte); median displacement (float)); ...] ]
Example: [3, 0, −34.56, 0, 10.27, 1,−0.79] (path of 3 nodes)
Example: [1, 1, 87.99] (path of 1 node)

Quadtree Maximum depth [1 bit marking root node; [node number {0–3}; ... ] ]
(readed from the left, high to low)
Examplebinary: 1 00 01 11 (path of 3 nodes)
Examplebinary: 1 10 01 (path of 2 nodes)

Octree Maximum depth [1 bit marking root node; [node number {0–7}; ... ] ]
(readed from the left, high to low)
Examplebinary: 1 000 010 111 001 (path of 4 nodes)
Examplebinary: 1 011 (path of 1 node)
Fig. 4. An example of nested spatial structures. A quadtree organizes the top levels of
points, mainly the landscape. A nested 3D grid allows having vertical structures without
height limitations. Inside each grid voxel an octree is created for indexing data of high
structures.

because storage footprint is a big concern when working with huge
point clouds.

In addition to the above, the distribution of points in the hier-
archical structure can be adapted for different purposes. Some levels
291
Fig. 5. Diagram showing the process of inserting a point cloud into the global structure.



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.

f

can be used only for spatial indexing. For example, a two-level nested
octree that uses the top-level one only for spatial partitioning without
storing any points, and the inner one that indexes all the points. In our
framework any hierarchy level can be set for indexing points or not. The
strategy of distribution depends on the application. Usually, top-level
structures store few or no points, while bottom-level structures store all
or the majority of the points. Thus, a wise design of the global structure
schema would use sparse structures only for indexing large regions at
the upper levels, and dense structures for storing the data.

Finally, the method for keeping a set of points at each level in
the hierarchy during the spatial subdivision is defined by the user.
Typically, the deeper the level, the more points are stored in its nodes.
But it does not always have to be that way. There are different strategies
for the point sub-sampling step, in order to select a set of points for a
given intermediate level of detail (LOD). In our framework this process
is completely defined by the user. Lambda functions are the easiest way
to specify the logic to be executed when each node of the structure is
created. This way, we can use not only fixed values but also custom
methods for determining the maximum number of points to keep at
each level.

3.3. Data storage

In main memory the structure can be implemented in a fairly
standard way, that is, by using references between nodes. However,
storing data in secondary memory or transmitting it over the network
is not straightforward. The main problem is the need for a unique
identifier for the nodes, which will be used to create file names in a
file system, key values in databases or names for network transmissions.
In this regard, we have implemented two options. The first one uses a
hierarchical structure that can also be used in the storage system (such
as folders or directories), which intrinsically encodes the hierarchical
relationship between nodes. The second option encodes the required
information in the node identifier to locate it uniquely in the hierar-
chical structure. In this way we can use local IDs or global IDs, which
include information about the relative path or full path of nodes in
the structure, respectively. One or the other is used depending on the
medium where the data is stored or transmitted.

Whatever the case, paths must be encoded in each node ID. Table 1
shows the coding pattern for each spatial structure implemented for the
tests. Local IDs are much shorter and not redundant. As a disadvantage,
to create the nodes, the information from the top nodes must be
accessed with separate queries, which in database-based storage means
a significant increase in the number of queries. Moreover, this also
penalizes the storage in a file system. On the other hand, a global ID
contains the full node path, which is a concatenation of all the local
paths of the inner structures involved. Global IDs allows us to directly
rebuild all the path of the global structure in memory using a single
node ID. Nevertheless, at the beginning inner nodes will have no point
clouds in memory until they are loaded with a separate read operation.
In this case, the only real drawback is the redundancy of the paths,
since all the path of the nodes of the global structure is repeated in
sibling nodes (at the same depth). However, global IDs simplify the
storage in both file systems and databases, especially NoSQL ones, and
also support the navigation along the global structure. In addition,
when data streaming is used over the network, nodes can arrive out
of order, since their reconstruction is independent from the rest of the
ancestor nodes. This enables more efficient implementations based on
distributed, parallel, and above all, asynchronous approaches.

A binary encoding of node IDs is useful when used in memory.
However, file names or database keys must follow other formats. There
are multiple solutions for converting a buffer of binary data to plain
text. In this work we have used a base32 encoding for IDs, which is
compatible with case-insensitive file systems. IDs can also be encoded
as human readable text for debugging purposes. In addition to this, IDs
292

can also be compressed with Huffman or arithmetic coding, both in
binary and text format. This could alleviate the limitations of some file
systems regarding the maximum length of file names, or the length of
database keys, especially in the case of using global IDs.

For the storage of the dataset, both in file systems or databases, LAZ
files are used for each point cloud associated with each node of the
hierarchical structure. The structure itself is stored using special files or
their equivalent in a database table. There is a file or master record that
specifies the global parameters of the dataset, and it is the first one that
must be read in order to start working with the data. This master record
includes the global schema of the data structure, the global bounding
box of the entire dataset, the inventory of elements (total number of
points, polygons, and other elements that will be added in the future),
as well as the location of the root node file or database record. Nodes
are stored as separate files or records that contain information about
the associated LAZ files and the IDs of the child nodes.

3.4. Navigation and spatial queries

Once the dataset is stored in the global data structure, all the nec-
essary editing, visualization, analysis, etc. operations can be performed
from the application. First, the application must access the master
record that contains the global dataset information. With the global
scheme of the structure, nodes can be loaded from secondary storage.
With large datasets, progressive and partial loading is common practice,
due to typical memory capacity and performance limitations. Part
of the hierarchical structure is therefore asynchronously mapped or
replicated in memory through a dedicated thread, and the application
can request more nodes o dispose them from memory as needed.

Apart from traversing the structure for basic operations such as
visualization, it is also necessary to support additional operations such
as queries based on rectangles or volumes, 2D projections, calculation
of the nearest neighbors (KNN) or ray tracing. Region-based queries
are performed on a first pass through the structure of nodes, as their
bounding box can be calculated from the global schema definition in a
straightforward manner. In this way, the total or partial inclusion nodes
in a rectangle or cut volume can be easily calculated. In a second pass,
all point clouds from the selected nodes can be loaded. Logically, this
operation is also limited to a maximum number of points when working
with LODs.

Ray tracing operations must be adapted to the nested global struc-
ture. The main difficulty is to make compatible the different travers-
ing methods of each basic spatial structure (grid, quadtrees, octrees,
etc.). The variety of available ray-tracing algorithms applicable to each
spatial structure is beyond the scope of this paper. In general the
adaptation of any of these methods requires recomputing the origin of
the ray along its path at the intersecting point with the boundary of
each inner structure traversed. This enables the location of the correct
node in the global structure. Additionally, 3D rays must be projected
into the XY plane in order to correctly traverse planar structures such
as 2D grids or quadtrees.

3.5. Dataset editing operations

The global structure can be iterated to perform global operations,
such as a histogram or a filtering. In our system, the minimum granu-
larity to operate with points is the entire point cloud associated with
each node. Therefore, a cloud must be fully loaded into the application
to make changes to any of its points. Once the operation is finished, it
is compressed again and saved in the storage system.

One of the most interesting operations is point deletion. It can
be done in two ways: (a) by labeling the point as deleted using
an attribute of the point, such as the attribute withheld of the LAS
ormat (Isenburg, 2013) or the attribute user data, or (b) effectively

deleting the point from the cloud point. In this case, deleted points
can be discarded completely or stored in a separate file so that they
can be recovered at any time (for example, by an undo operation).



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Fig. 6. An example of adaptive nested structure tailored for urban datasets. For the sake of clarity, only the inner structures for the tallest buildings are shown.
This option has the advantage of improving loading operations and
network transfers. It must be noted that some spatial structures will
become unbalanced when points are removed. This is the case of kd-
trees, that are even sensitive to insertion operations. In this case, a
reconfiguration of the sub-structure from the affected node must be
carried out. However, sub-structure reconfiguration is more an optional
optimization than an mandatory operation. Keeping empty nodes has
a memory cost, but it could also save processing time during editing.
This is a compromise between memory optimization and overall perfor-
mance. Logically, deleting or modifying nodes of the structure implies
the modification of the corresponding files in secondary memory. Our
system performs this step only after all modifications to the structure
have been made, or when it is forced by the user.

Related to the above, the framework also supports the use of layers
that allows separating sets of points according to criteria determined
by the user, such as data captured with different devices or in different
campaigns. This system is complementary to the attribute of point
classification that can be found in the LAS specification, and consists of
storing separated clouds for each layer in each node. So far, and for the
sake of simplicity, we described the meta-structure as having a single
point cloud per node, but actually our implementation allows more
than one cloud per node to support the layer system. In addition, as
future work, this functionality will allow saving a history of point cloud
modifications in each node, which could be useful for implementing the
undo operation or supporting collaborative work.
293
3.6. Design guidelines for nested spatial structures

Deciding the optimal combination of spatial structures for a given
dataset is a complex problem in itself. The proposed framework pro-
vides great versatility for the definition of nested structures, but the
actual choice of the specific structures to be used must be decided
by the user. In the experiments carried out we propose a specific
schema for a nested spatial structure based on our experience that is
well suited to datasets that present large extensions of territory with
areas of dense and complex data (e.g., buildings). In future work, some
pre-made schemas would be available for different types of datasets,
such as urban planning, civil engineering, surveying, forestry, BIM,
archaeological sites, etc., which have different spatial distribution of
the points and editing requirements. In this section we present some
design guidelines for optimizing the design of a global schema. It must
be noted that the framework can mimic other standard solutions, such
as nested octrees (Wimmer and Scheiblauer, 2006), with the advantage
of being able to choose the spatial indexing configuration for each
dataset separately, all with the same system.

In general, datasets exclusively derived from ALS tend to be effi-
ciently indexed with planar structures, while TLS scans benefit more
from 3D structures. When both types of data coexist in the same dataset
is when our meta-structure is most useful. In general, it is necessary to
ensure that the structures used adapt well to the spatial distribution of



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Table 2
Datasets used in the experimentation.

Datset Year WGS84 Zone center Width Height Owner Format

Madrid (Instituto Geográfico Nacional, 2021) 2016 −3.684214E, 40.473152N 6 km 3 km PNOA LAZ
New York (City of New York, 2017) 2017 −74.002447E, 40.708918N 4.42 km 2.27 km NYC OpenData LAZ
Liberty Island, for figure 4 (City of New York, 2017) 2017 −74.044761E, 40.689803N 1.07 km 1.05 km NYC OpenData LAZ
the points. For example, if the vertical structures are mostly buildings,
it will be necessary to use 3D structures that allow adapting to volumes
of the typical dimensions of buildings. In this case, a reasonable option
would be a quadtree of 3D grids of octrees (see Fig. 6). This approach is
also suitable for other structures such as bridges, dams, tunnels, caves,
underground facilities, etc.

As previously stated, kd-trees and r-trees are not the best options
when updating operations are required on point clouds because the
hierarchical structure becomes unbalanced. This does not mean that
they cannot be used, but they should be used with care with datasets
enabled for intensive editing. These structures should only be used as
inner leaf structures, that is, there should not be further inner structures
below them on the hierarchy. Each type of spatial data structure has
its strengths and weaknesses. In general, sparse structures such as grids
should only be used for indexing large regions at the upper levels, while
hierarchical structures should be used in the lower levels for storing
large amounts of dense data, such as the octree. Another use for sparse
structures is covering an infinite space. The examples in Figs. 4 and 6
show how nested 3D grids within leaf nodes of quadtrees allow the
coverage of infinite vertical space to efficiently index buildings and
their content. In addition, as a first-level structure, a grid allows the
dataset to be expanded with new data in new areas without having
to rebuild the entire structure. This is not possible with hierarchical
structures such as the quadtree and the octree, which must be created
knowing in advance the dimensions of the space that the dataset
takes, and which cannot then be varied without altering the indexing
structure.

Another important decision is the value adjustment of the properties
of each structure used in the global scheme, especially the maximum
depth and the maximum number of points for each level. The maximum
depth is directly related to the size of the smallest possible leaf nodes.
On the other hand, as described in Section 3.2, in our framework any
hierarchy level can be set for storing points or not. It is recommended
for larger datasets to use few or no points in the first levels, so that
these serve only as spatial indices to speed up queries and discard large
areas when navigating. Mid-levels should store a moderate number of
points, allowing fast rendering under conditions of low performance,
bandwidth, or memory capacity. The lower levels will therefore contain
the bulk of the dataset. In general, a linear or exponential increase in
the number of points with respect to depth is the most common choice.
However, this can be tailored for specific purposes. For example, the
meta-structure used in the example in Fig. 6 only unfolds the structure
to the lowest level (octrees) when the height of the points contained
in the leaf nodes of the quadtree of the upper level exceeds a certain
height. This is used to spatially index only tall buildings and structures.
The rest is indexed in the plane with the base quadtree. All these steps
can be further customized with optional user-defined functions that
specify the logic to be executed when each node in the structure is
created.

4. Results and discussion

In this section we present a comparison of several spatial data
structures built with our framework. Two of them, the quadtree and
the octree, are well-known basic structures (see Fig. 2), and have
been selected to highlight the differences in terms of performance and
storage footprint compared to standard solutions. The other structure
follows the same schema presented in the example of Fig. 3, a 2D grid of
quadtrees of 3D grids of octrees, which is well suited for urban scenes.
294
The 2D grid indexes tiles of points at a landscape level. Quadtrees are
used to map the content of each tile of terrain. 3D grids and their inner
octrees are nested into the leaf nodes of the quadtrees for mapping
vertical structures, mainly buildings. In any case, our system allows
any other combination of nested structures. The experimentation was
carried out on a PC with Intel Core i7-8700 3.3 GHz, 32 GB RAM, GTX
1060 GPU with 6 GB RAM. The proposed system is implemented in
C++17, and uses OpenGL for rendering.

Two urban datasets, with different point densities, have been tested
(City of New York, 2017; Instituto Geográfico Nacional, 2021). We
have used urban environments as they present a perfect situation for
the union of LiDAR data from different capture technologies, which
is a greater challenge for spatial indexing. This means working with
different point densities and spatial distributions. The datasets features
are presented in Table 2. For each one, an additional augmented dataset
has been used. These variants have several buildings populated with
random points that simulate a TLS scanning result. This simulation is
done because we have not found public real-based data suitable for
this benchmark. In any case, this serves our purpose of populating the
datasets with highly concentrated points in some areas.

Table 3 shows the benchmarks results for the creation of each
structure, including reading the LAS/LAZ source files, building the
structure and storing all data in secondary memory (a file system on
an SSD drive). The depth of the data structures used has been adjusted
so that the dimensions of leaf nodes in the corresponding leaf inner
structure are in the range of a few meters. The dimensions of the leaf
nodes are the same for all the structures in order to see how they
behave in terms of the number of necessary nodes and the number of
points that can be organized in a single node. The goal is to get as few
nodes as possible while distributing the points as evenly as possible.
As can be seen in Table 3, the quadtree is better suited to datasets
without augmentation, since the information is mostly planimetric. In
this case, the octree is not much of a benefit. However, when there is
simulated TLS data, the quadtree is very inefficient, as there is a large
amount of vertical data converging on the same leaf nodes, increasing
the maximum number of points to several millions in the augmented
Manhattan dataset. This results in a poor performance in all display
and management operations on those leaf nodes. Octree performs much
better in these cases due to its volumetric nature, and is better suited
to the morphology of the buildings. However, the meta-structure is
the one that best adapts to these datasets, managing to minimize the
number of nodes and at the same time keeping the number of average
points within good limits for the editing algorithms (neither too low
nor too high).

The total net storage footprint of all tested variants is similar. This
value refers to secondary memory usage, and does not include the
actual space used by the data in the database or file system due to
the occupancy of minimum allocation units. This means that the meta-
structure, despite being conceptually more complicated, does not result
in an increase in storage, which we could consider as a positive point.
Furthermore, since the number of nodes is smaller, the effective storage
footprint will be also smaller than the rest of the proposals, especially in
file systems where the predefined block size penalizes a high number of
small files. The performance of the creation step is also very similar in
all the tests carried out, although the meta-structure is somewhat faster
in all cases. This is due to the smaller number of nodes to be created.
Regarding the amount of main memory needed to perform operations
with points (create, read, write and delete), it greatly depends on the

configuration of the top-level application using the framework. The



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Table 3
Test results. Maximum points per node are calculated with an exponential function based on depth.

Madrid Madrid (auga) Manhattan Manhattan (augb)
Points 48,255,227 443,055,227 325,434,652 1,141,434,652
Average density (per square meter) 2.68 24.61 32.58 114.28

Quadtree

Maximum depth 10 10 10 10
Net storage footprint (compressed) 352 MB 2.13 GB 2.15 GB 6.04 GB
Total nodes 38,877 40,326 154,019 154,719
Leaf nodes 29,094 30,136 115,340 115,826
Points in leaf nodes (max; avg) 4358; 986 589,467; 13,989 8088; 1495 3,370,942; 8526
Building time 114.76 s 693.61 s 632.49 s 1927.05 s
Building throughput (points/s) 420,488 638,767 514,529 592,322

Octree

Maximum depth 10 10 10 10
Net storage footprint (compressed) 352 MB 1.95 GB 2.11 GB 5.55 GB
Total nodes 48,363 131,704 197,864 228,241
Leaf nodes 39,347 110,897 161,528 187,232
Points in leaf nodes (max; avg) 3676; 787 11,701; 3346 8088; 1352 110,164; 5411
Building time 122.1 s 793.02 s 668.79 s 2207.34 s
Building throughput (points/s) 395,210 558,693 486,602 517,108

Multic

Maximum depth 10 (1+5+1+3) 10 (1+5+1+3) 10 (1+5+1+3) 10 (1+5+1+3)
Net storage footprint (compressed) 338 MB 1.99 GB 2.15 GB 5.6 GB
Total nodes 3904 16,493 89,443 120,450
Leaf nodes 2876 13,127 69,270 94,817
Points in leaf nodes (max; avg) 47,794; 16,670 96,144; 33,015 97,592; 4323 108,485; 11,529
Building time 76.12 s 655.09 s 505.64 s 1826.09 s
Building throughput (points/s) 633,936 676,327 643,609 625,070

aDataset augmented using 5 simulated TLS buildings.
bDataset augmented using 10 simulated TLS buildings.
cMulti-structure: 2D grid + quadtree + 3D grid + octree.
Fig. 7. Reading test results: average number of nodes loaded for the same query
volumes (3D).

framework itself only keeps in memory the data that is needed at any
given time. The memory policy is highly adaptable, so a limit can be
specified. Least used nodes will be switched to secondary memory if
needed, no matter the global scheme used. We have not included a
comparison of this because this matter does not suppose a remarkable
difference between datasets or schemas.

Figs. 7 and 8 show the performance of spatial query operations
based on 100 random volumes defined by boxes with sizes between
20% and 40% of the dataset in each dimension (x, y, z). Both the
quadtree and the octree require more nodes to be read to complete
the queries than the meta-structure (Fig. 7). This is due to the fact
that the meta-structure better adapts to the distribution of the data, as
mentioned before, which means that fewer nodes are generated during
creation (Table 3). The number of nodes required in spatial queries is
especially relevant with network communications, where the overhead
of multiple accesses and requests can be a significant performance
295
Fig. 8. Reading test results: throughput in millions of points per second for the same
query volumes.

issue. Fig. 7 also presents differences between datasets. This is due to
the difference in the number of nodes, which increases in relation to the
extension of the dataset and the maximum depth of the structure (in the
experiments this has remained fixed). For this reason there is almost
no difference in the number of nodes, and therefore in the number of
nodes accessed in read operations, between the normal datasets and



ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
their augmented versions. The only discordant value in this sense is the
one corresponding to the quadtree in the case of Madrid (augmented),
which should be higher, as happens to the other structures. This is
because augmenting this dataset using vertical structures hardly affects
a 2D spatial structure. In the case of Manhattan, this difference is much
less appreciable, because the starting dataset already had enough com-
plexity in the spatial distribution of the points, and therefore adding
virtual buildings only increases the concentration of points in certain
areas.

Fig. 8 shows the performance results in millions of points per sec-
ond. This throughput includes the entire process of opening the dataset,
loading the nodes into memory, accessing the indexed point clouds,
decompressing them, loading them into memory and selecting the set
of points that falls strictly within the query volume. Point clouds are
compressed in LAZ format. Both average and maximum (peak) values
are included. As can be seen, there are differences in performance, both
between data structures and between datasets, although they are not
very significant. There are several factors that affect performance. One
already explained above is the adjustment of the structure to the spatial
distribution of the data, which affects the number of nodes accessed.
For the majority of situations, the multi-structure performs better than
the other structures in this aspect. Another factor is the relative sim-
plicity of the spatial structure, which causes nodes to index large areas.
This is the case of the quadtree, which stores a large number of points
in each node, which increases the peak throughput value with some
queries. When datasets are complex, particularly with highly dense
areas such as buildings, simpler schemas tend to be less efficient. Every
structure usually has a very good peak throughput, which is much
higher than the average value. However the peak value is only reached
on very few occasions, when the query area coincides with very few
nodes that contains a large number of points. In general, the average
throughput is the measure that better reflects the performance of the
spatial structure under real conditions.

The augmented version of the Madrid dataset shows different per-
formance compared to the basic dataset. It seems that, having a shallow
spatial structure, the queries return few nodes but have a large number
of points, so the throughput increases remarkably. The exception to this
argument is the octree, which has a larger number of nodes (see Fig. 7).
However, those nodes tend to be nearly empty in most cases due to
their poor spatial fit to the dataset topology, and thus do not affect the
same throughput gain that the other structures have.

In general, the multi-structure proposed in the experiments per-
forms better than the other basic structures, especially with more
complex data sets. This should be considered as a positive result, a
priori lower performance could be expected due to the use of a more
complicated indexing structure. It seems that, in general, the highest
impact on performance falls on the loading and decompression of the
point clouds. We can conclude that the proposed framework can opti-
mally solve the spatial indexing of LiDAR datasets, maintaining or even
improving performance, while offering complete freedom for defining
the spatial structure. Furthermore, it can also implement standard non-
nested schemes for spatial organization such as quadtree, octrees etc.,
without incurring a performance penalty.

5. Conclusions and future work

In this paper we have presented a new approach for defining an ad-
hoc nested spatial data structure for indexing LiDAR data. Several basic
spatial data structures can be combined and nested in order to adapt
the indexing of the data to its spatial distribution, ranging from full
ALS datasets to high-precision small-scale TLS datasets, or the mixing of
both. We have also presented some guidelines for choosing the correct
combination of data structures, depending on the nature of the data
and the operation to be performed.

As future work, there are some improvements that can be made
to our approach. Maybe the most relevant is the possibility of having
296
different structure schemas at different zones of a dataset instead of a
global one, that is, a dynamic meta-structure. This could be interesting
for working with datasets corresponding to continental or planet-size
areas, where there could be different usage goals between areas. How-
ever, the potential benefits of this variant should be weighed against
the current method.

It would be also desirable to have a heuristic for automatically
setting the optimal configuration of the global structure schema for a
given dataset. The automatic algorithm should provide a solution in a
reasonable time that maximizes the use of the space occupied by the
nodes of the indexing structures, and taking into account a series of
objectives to optimize, such as memory used globally, the maximum
number of points per node, the maximum global depth, etc.

Finally, this framework can be used with other geometric entities,
such as polygonal meshes. This would have significant benefits for tasks
such as data analysis or visualization. Also, it would be interesting to
explore new options for automatically obtaining triangulations from
the point clouds stored, at different levels of details. There are several
proposals in previous work for the triangulation of massive point clouds
that could be adapted to our system. Of course, the most interesting
option would be the coexistence of point clouds and triangle meshes in
the same structure.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

Baert, J., Lagae, A., Dutré, P., 2014. Out-of-core construction of sparse voxel octrees:
Out-of-core construction of sparse voxel octrees. Comput. Graph. Forum 33 (6),
220–227.

Boehler, W., M., B.V., Marbs, A., 2018. OGC Testbed-14: Point Cloud Data Handling
Engineering Report. Technical Report, i3mainz, Institute for Spatial Information
and Surveying Technology, FH Mainz, Holzstrasse 36, 55116 Mainz, Germany, URL
http://www.opengis.net/doc/PER/t14-D013.

Boehm, J., 2014. File-centric organization of large LiDAR point clouds in a big data
context. In: Workshop on Processing Large Geospatial Data. Cardiff, UK.

Boehm, J., Liu, K., Alis, C., 2016. Sideloading ingestion of large point clouds into the
Apache spark bid data engine. ISPRS - Int. Arch. Photogram. Remote Sens. Spatial
Inform. Sci. XLI-B2, 343–348.

Bräunl, T., 2020. Lidar sensors. In: Robot Adventures in Python and C. Springer
International Publishing, Cham, pp. 47–51.

Bunting, P., Armston, J., Lucas, R.M., Clewley, D., 2013. Sorted pulse data (SPD) library.
part I: A generic file format for LiDAR data from pulsed laser systems in terrestrial
environments. Comput. Geosci. 56, 197–206.

Cao, C., Preda, M., Zaharia, T., 2019. 3D point cloud compression: A survey. In: The
24th International Conference on 3D Web Technology. ACM, LA CA USA, pp. 1–9.

City of New York, 2017. Topobathymetric LiDAR data. URL https://data.cityofnewyork.
us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz.

Deibe, D., Amor, M., Doallo, R., 2018. Big data storage technologies: a case study for
web-based LiDAR visualization. In: 2018 IEEE International Conference on Big Data
(Big Data). IEEE, Seattle, WA, USA, pp. 3831–3840.

Deibe, D., Amor, M., Doallo, R., 2019. Supporting multi-resolution out-of-core rendering
of massive LiDAR point clouds through non-redundant data structures. Int. J. Geogr.
Inf. Sci. 33 (3), 593–617.

Deng, X., Liu, P., Liu, X., Wang, R., Zhang, Y., He, J., Yao, Y., 2019. Geospatial big
data: New paradigm of remote sensing applications. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 12 (10), 3841–3851.

Elseberg, J., Borrmann, D., Nüchter, A., 2013. One billion points in the cloud – an
octree for efficient processing of 3D laser scans. ISPRS J. Photogramm. Remote
Sens. 76, 76–88.

Evans, M.R., Oliver, D., Zhou, X., Shekhar, S., 2014. Spatial big data. case studies
on volume, velocity, and varitety. In: Big Data: Techniques and Technologies in
Geoinformatics. CRC Press.

Gong, J., Zhu, Q., Zhong, R., Zhang, Y., Xie, X., 2012. An efficient point cloud
management method based on a 3D R-tree. Photogramm. Eng. Remote Sens. 78,
373–381.

Goswami, P., Erol, F., Mukhi, R., Pajarola, R., Gobbetti, E., 2013. An efficient multi-
resolution framework for high quality interactive rendering of massive point clouds

using multi-way kd-trees. Vis. Comput. 29 (1), 69–83.

http://refhub.elsevier.com/S0924-2716(22)00311-2/sb1
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb1
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb1
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb1
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb1
http://www.opengis.net/doc/PER/t14-D013
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb3
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb3
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb3
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb4
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb4
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb4
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb4
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb4
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb5
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb5
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb5
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb6
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb6
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb6
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb6
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb6
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb7
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb7
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb7
https://data.cityofnewyork.us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz
https://data.cityofnewyork.us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz
https://data.cityofnewyork.us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb9
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb9
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb9
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb9
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb9
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb10
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb10
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb10
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb10
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb10
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb11
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb11
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb11
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb11
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb11
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb12
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb12
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb12
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb12
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb12
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb13
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb13
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb13
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb13
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb13
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb14
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb14
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb14
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb14
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb14
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb15
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb15
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb15
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb15
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb15


ISPRS Journal of Photogrammetry and Remote Sensing 195 (2023) 287–297C.J. Ogayar-Anguita et al.
Hongchao, M., Wang, Z., 2011. Distributed data organization and parallel data retrieval
methods for huge laser scanner point clouds. Comput. Geosci. 37 (2), 193–201.

Huang, L., Wang, S., Wong, K., Liu, J., Urtasun, R., 2020. OctSqueeze: Octree-structured
entropy model for LiDAR compression. ArXiv:2005.07178 [Cs, Eess].

Instituto Geográfico Nacional, 2021. PNOA-LiDAR. URL https://pnoa.ign.es/el-
proyecto-pnoa-lidar.

Isenburg, M., 2013. LASzip. Photogramm. Eng. Remote Sens. 79 (2), 209–217.
Józsa, O., Börcs, A., Benedek, C., 2013. Towards 4D virtual city reconstruction from

lidar point cloud sequences. ISPRS Ann. Photogram. Remote Sens. Spatial Inform.
Sci. II-3/W1, 15–20.

Kämpe, V., Sintorn, E., Assarsson, U., 2013. High resolution sparse voxel DAGs. ACM
Trans. Graph. 32 (4), 1–13.

Krämer, M., Senner, I., 2015. A modular software architecture for processing of big
geospatial data in the cloud. Comput. Graph. 49, 69–81.

Lee, J.-G., Kang, M., 2015. Geospatial big data: Challenges and opportunities. Big Data
Res. 2 (2), 74–81.

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X.,
Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., 2016.
Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens.
115, 63–77, Theme issue ’State-of-the-art in photogrammetry, remote sensing and
spatial information science’.

Lin, A., Wu, H., Liang, G., Cardenas-Tristan, A., Wu, X., Zhao, C., Li, D., 2020. A big
data-driven dynamic estimation model of relief supplies demand in urban flood
disaster. Int. J. Disas. Risk Reduct. 49, 101682.

Lu, B., Wang, Q., Li, A., 2019. Massive point cloud space management method based
on octree-like encoding. Arab. J. Sci. Eng. 44 (11), 9397–9411.

Pääkkönen, P., Pakkala, D., 2015. Reference architecture and classification of tech-
nologies, products and services for big data systems. Big Data Res. 2 (4),
166–186.

Poux, F., 2019. The Smart Point Cloud: Structuring 3D intelligent point data. (Ph.D.
thesis). Université de Liège, Liège, Belgique.

Poux, F., Billen, R., 2019. Voxel-based 3D point cloud semantic segmentation: Unsu-
pervised geometric and relationship featuring vs deep learning methods. ISPRS Int.
J. Geo-Inf. 8 (5), 213.

Preiner, R., Jeschke, S., Wimmer, M., 2012. Auto splats: Dynamic point cloud vi-
sualization on the GPU. In: Eurographics Symposium on Parallel Graphics and
Visualization. p. 10.
297
Richter, R., Discher, S., Döllner, J., 2015. Out-of-core visualization of classified
3D point clouds. In: Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P.V.,
Benner, J., Haefele, K.H. (Eds.), 3D Geoinformation Science. In: Lecture Notes in
Geoinformation and Cartography, Springer, Cham, pp. 227–242.

Šašak, J., Gallay, M., Kaňuk, J., Hofierka, J., Minár, J., 2019. Combined use of
terrestrial laser scanning and UAV photogrammetry in mapping alpine Terrain.
Remote Sens. 11 (18).

Scheiblauer, C., Wimmer, M., 2011. Out-of-core selection and editing of huge point
clouds. Comput. Graph. 35 (2), 342–351.

Schön, B., Mosa, A.S.M., Laefer, D.F., Bertolotto, M., 2013. Octree-based indexing for
3D pointclouds within an oracle spatial DBMS. Comput. Geosci. 51, 430–438.

Schuetz, M., 2016. Potree: Rendering Large Point Clouds in Web Browsers. Ph.D. thesis.
Vienna.

Schutz, M., Krosl, K., Wimmer, M., 2019. Real-time continuous level of detail rendering
of point clouds. In: IEEE VR 2019. IEEE, Osaka, Japan, pp. 103–110.

Schütz, M., Ohrhallinger, S., Wimmer, M., 2020. Fast out-of-core octree generation for
massive point clouds. Comput. Graph. Forum 39 (7), 155–167.

Ströter, D., Mueller-Roemer, J.S., Stork, A., Fellner, D.W., 2020. OLBVH: octree linear
bounding volume hierarchy for volumetric meshes. Vis. Comput. 36 (10–12),
2327–2340.

Sugimoto, K., Cohen, R.A., Tian, D., Vetro, A., 2017. Trends in efficient representation
of 3D point clouds. In: 2017 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC). IEEE, Kuala Lumpur,
pp. 364–369.

Tian, S., Li, X., Zeng, J., Wei, Z., 2019. The organization of point cloud data based
on the compact octree model. J. Phys. Conf. Ser. 1302, 022047, Publisher: IOP
Publishing.

Ullrich, A., Pfennigbauer, M., 2019. Advances in lidar point cloud processing. In:
Turner, M.D., Kamerman, G.W. (Eds.), Laser Radar Technology and Applications
XXIV. SPIE, Baltimore (USA), p. 19.

Wang, Y., Lv, H., Ma, Y., 2020. Geological tetrahedral model-oriented hybrid spatial
indexing structure based on octree and 3D R*-tree. Arab. J. Geosci. 13 (15), 728.

Wimmer, M., Scheiblauer, C., 2006. Instant points: Fast rendering of unprocessed point
clouds. In: Symp. on Point-Based Graphics.

Yang, J., Huang, X., 2014. A hybrid spatial index for massive point cloud data
management and visualization: Massive point cloud management and visualization.
Trans. GIS 18, 97–108.

http://refhub.elsevier.com/S0924-2716(22)00311-2/sb16
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb16
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb16
http://arxiv.org/abs/2005.07178
https://pnoa.ign.es/el-proyecto-pnoa-lidar
https://pnoa.ign.es/el-proyecto-pnoa-lidar
https://pnoa.ign.es/el-proyecto-pnoa-lidar
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb19
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb20
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb20
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb20
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb20
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb20
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb21
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb21
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb21
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb22
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb22
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb22
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb23
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb23
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb23
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb24
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb25
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb25
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb25
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb25
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb25
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb26
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb26
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb26
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb27
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb27
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb27
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb27
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb27
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb28
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb28
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb28
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb29
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb29
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb29
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb29
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb29
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb30
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb30
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb30
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb30
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb30
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb31
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb32
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb32
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb32
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb32
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb32
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb33
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb33
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb33
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb34
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb34
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb34
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb35
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb35
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb35
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb36
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb36
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb36
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb37
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb37
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb37
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb38
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb38
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb38
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb38
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb38
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb39
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb40
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb40
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb40
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb40
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb40
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb41
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb41
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb41
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb41
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb41
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb42
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb42
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb42
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb43
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb43
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb43
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb44
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb44
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb44
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb44
http://refhub.elsevier.com/S0924-2716(22)00311-2/sb44

	Nested spatial data structures for optimal indexing of LiDAR data
	Introduction
	Previous works
	Nested Spatial Data Structures Schema
	Insertion of point clouds
	Point distribution and levels of detail
	Data storage
	Navigation and spatial queries
	Dataset editing operations
	Design guidelines for nested spatial structures

	Results and discussion
	Conclusions and future work
	Declaration of Competing Interest
	References


