
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 3000518

A GPU-Accelerated Framework for
Simulating LiDAR Scanning

Alfonso López , Carlos J. Ogayar , Juan M. Jurado , and Francisco R. Feito

Abstract— In this work, we present an efficient graphics
processing unit (GPU)-based light detection and ranging (LiDAR)
scanner simulator. Laser-based scanning is a useful tool for
applications ranging from reverse engineering or quality control
at an object scale to large-scale environmental monitoring or
topographic mapping. Beyond that, other specific applications
require a large amount of LiDAR data during development, such
as autonomous driving. Unfortunately, it is not easy to get a
sufficient amount of ground-truth data due to time constraints
and available resources. However, LiDAR simulation can generate
classified data at a reduced cost. We propose a parameterized
LiDAR to emulate a wide range of sensor models from airborne
to terrestrial scanning. OpenGL’s compute shaders are used to
massively generate beams emitted by the virtual LiDAR sensors
and solve their collision with the surrounding environment even
with multiple returns. Our work is mainly intended for the
rapid generation of datasets for neural networks, consisting of
hundreds of millions of points. The conducted tests show that the
proposed approach outperforms a sequential LiDAR scanning.
Its capabilities for generating huge labeled datasets have also
been shown to improve previous studies.

Index Terms— General-purpose computing on graphics
processing units (GPUs), light detection and ranging (LiDAR)
simulation, point cloud.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) sensors have
evolved rapidly in the last two decades as they gained

popularity. This technology has received great attention from
industrial and academic environments over time since they
allow the acquisition of information about a surface, object,
or phenomenon without physical contact. Therefore, its
applications range from quality control or structural damage
detection to topographical surveying, bathymetry, autonomous
navigation, or archeology though new applications are con-
tinuously being explored. Improvements in LiDAR sensors
are related to data acquisition speed, maximum range, mea-
surement precision, accuracy, and so on. Furthermore, there
is a wide variety of LiDAR sensors [1], [2] whether we
consider sensor capabilities (range, aperture angle, the number
of laser beams, and so on) and the platform on which they are

Manuscript received August 4, 2021; revised December 18, 2021 and
February 9, 2022; accepted March 20, 2022. Date of publication April 7,
2022; date of current version April 25, 2022. The work of Alfonso López was
supported in part by the Spanish Ministry of Science, Innovation and Uni-
versities through a Doctoral Grant FPU19/00100 and Research Projects under
Grant TIN2017-84968-R and Grant RTI2018-099638-B-I00. (Corresponding
author: Alfonso López.)

The authors are with the Department of Computer Science, University
of Jaén, 23071 Jaén, Spain (e-mail: allopezr@ujaen.es; cogayar@ujaen.es;
jjurado@ujaen.es; ffeito@ujaen.es).

Digital Object Identifier 10.1109/TGRS.2022.3165746

mounted (static, temporarily static, or moving platforms), not
to mention manufacturers and models. Some common types
of LiDAR sensors are portable triangulation laser scanners,
terrestrial laser scanners (TLSs), mobile mapping systems
(MMS), backpack-mounted laser scanners (BMLS), aerial
laser scanners (ALSs), and unmanned aerial vehicle (UAV)-
based laser scanners.

Many processes require a large amount of LiDAR data,
from sensor calibration [3] to LiDAR data processing
algorithms [1], including applications such as autonomous
driving [4] or deep learning (DL) algorithms to classify 3-D
objects [5]. Nevertheless, the acquisition of ground-truth data
is a challenging task due to time and hardware requirements.
Thus, LiDAR simulations provide a suitable alternative to
produce these data at a lower cost. Furthermore, the resulting
data can be perfectly annotated, as it is retrieved from models
whose properties are previously defined. To obtain more real-
istic data, it is possible to simulate the errors and limitations of
LiDAR sensors, both systematic and random [6]–[8]. Conse-
quently, simulating the physical behavior of a LiDAR scanner
is a nontrivial and time-consuming task. Over the last decades,
several LiDAR simulators have been proposed although their
applications and results differ from each other [4], [8]–[12].

Our work presents a LiDAR simulator implemented on the
graphics processing unit (GPU) hardware to generate point
clouds efficiently. With this approach, a significant number of
threads work in parallel to emulate the LiDAR behavior. Fur-
thermore, the proposed approach allows generating synthetic
ground-truth data for the training of DL processes, especially
those concerning point cloud semantic segmentation [13]
(obtaining the class of each point), recognition of geometric
structures [5], or instance segmentation (identifying for each
point the instance of the object to which it belongs). Another
critical factor of this work is the procedural generation of 3-D
environments to augment the datasets. Thus, we can obtain
many different labeled scenes to feed DL processes. In addi-
tion to terrestrial LiDAR, we also simulate aerial surveys con-
sidering both sensor errors and surface properties. In contrast
to previous research, collisions are accurately resolved using
state-of-the-art ray-tracing data structures, instead of solving it
through the well-known z-buffer (depth-buffer), which presents
a limited resolution. As a result, the proposed framework can
construct high-quality point clouds with low latency.

II. RELATED WORK

Accurate representations of sensors through a simulator
allow evaluating their behavior on a computer. This alternative

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0002-8009-9033
https://orcid.org/0000-0001-8230-6529
https://orcid.org/0000-0003-1423-9496

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

presents several benefits and applications. Simulations omit the
need of using an actual scanning sensor and carry out a scan-
ning session. Accordingly, costs are reduced as no fieldwork is
needed. In addition, they simulate the behavior of a sensor over
synthetic 3-D models. In contrast to real-world environments,
virtual scenes can be augmented with metadata providing
further knowledge of each object, such as a semantic label.

There are multiple applications of LiDAR simulations,
along with their corresponding research niches. From a hard-
ware perspective, some simulators are focused on the design,
validation, and calibration of LiDAR sensors [3]. Their objec-
tive is to detect and reduce errors in the scanning, both
systematic and random. There are also simulators focused on
the optimization of scanning processes [11], [12], such as the
integration of LiDAR data into enhanced and synthetic vision
systems [14]. From a software perspective, one of the most
popular research topics is autonomous driving [15], [16] and
navigation [4]. Most of these methods, especially those based
on DL, benefit significantly from synthetic data. Simulators
avoid the capture of real-world data, whereas they also allow
using a wide range of labeled scenarios. Furthermore, there
is a lack of real-world scanned datasets available for these
purposes, especially processed and properly segmented [13].

Beyond generic research purposes, including teaching and
learning, there are systems aimed at the custom configu-
ration of the simulated sensors, including their mounting
platform and setup. These simulators typically allow the user
to fine-tune all the parameters needed for a physically based
simulation of the laser beams and the interaction with the
virtual environment, where photon mapping, Monte Carlo
simulation, and full LiDAR waveform generation are their
core foundations [8]–[10]. These frameworks can simulate
multiple scattering of the laser beams, taking into account
their propagation through wind-driven rough air–water inter-
face [10] or vegetation [9], [12]. There are also commercial
applications, such as LGSVL (LG) [17] or Simcenter (Siemens
Software) [18], applied to autonomous driving.

Current trends in LiDAR simulators are oriented toward
the generation of semantic datasets. The objective of recent
work in this field is to generate visually plausible results.
However, they are mainly based on perfect ray-casters [4], [19]
rather than physically accurate sensors. Other approaches
modify the resulting point clouds through DL, though it does
not consider surface materials [4], [19]. Virtual point clouds
are also leveraged with real-world LiDAR data [15]. Regarding
response time, most studies describe a sequential approach.
To the best of our knowledge, only Peinecke et al. [14]
assess a GPU-based simulation though they do it briefly.
Furthermore, the efficient semantic labeling and generation of
synthetic environments have been poorly addressed. Hence,
virtual scenes composed of manually tagged computer-aided
design (CAD) models are commonly applied as input for
virtual scans, thus providing an inefficient and time-consuming
approach limited to a few environments.

The proposed framework is also aimed at generating seman-
tic point clouds with a high level of detail (LOD). Previ-
ous simulators achieve 32 semantic categories at most [19],
whereas other works provide four classes as a result of a

Fig. 1. Color and depth buffer of a 3-D scene, both represented with values
in [0, 255].

low LOD [4], [15] or inaccessibility to object instances [20].
Despite the limitations of synthetic datasets, there exists a
significant gap with respect to real-world datasets in terms
of semantic labeling since they rely either on manual tag-
ging [21]–[23] or classification models fed by limited training
data [24]. The accuracy of resulting point clouds is also
relevant in this work, as previous work rapidly solves LiDAR
collisions using depth buffers [4], [15], [25] (see Fig. 1),
i.e., images depicting the depth of the scene from a point
of view. Despite its efficiency, depth buffers are represented
with a limited range of values, and thus, computed collisions
present lower precision. Furthermore, the simulation LOD is
conditioned to the depth buffer dimensions and, therefore, the
pixel size.

Another relevant factor is to incorporate artificial errors
in the simulation process. The assessment of LiDAR sensors
shows that they tend to produce erroneous output data, such
as missing points, nonuniform density, cluttering, occlusion,
and distortions in the properties of points (color, intensity,
and so on). These problems can arise from an inappropriate
capture setup in the scene, but the most interesting problems
are systematic and random errors [6], [7]. Systematic errors
depend on the laser detector bias or other physical components,
the alteration in the path of the beams due to the shininess and
the slope of the objects, and the integration of the heteroge-
neous data processed, among others. Random errors depend
on aspects such as the signal-to-noise ratio of the received
signal, the accuracy of the electronics [including again the
inertial navigation system (INS) and the global positioning
system (GPS)], the divergence of the laser beams (jittering)
and their wavelength, and the reflectivity of the objects. Thus,
the most relevant errors ought to be simulated to correctly
mimic the LiDAR behavior.

Developing an accurate LiDAR simulator is complex and
algorithmically challenging. The main objective of this work
is to build a GPU-based framework that generates virtual
point clouds by scanning 3-D synthetic scenes. We propose a
parametrized LiDAR to emulate a wide range of sensors, either
operated from a terrestrial or aerial station. The resulting point
clouds consist of millions of points with spatial, semantic, and
intensity data although further information can be attached.
Regarding the LiDAR behavior, we simulate multiple returns
and consider material properties along with random and sys-
tematic errors to provide a realistic simulation. In addition,
this work aims to generate large synthetic datasets for training

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

Fig. 2. Overview of the LiDAR framework. The simulation is performed over 3-D virtual scenes, either procedural or static, which are previously indexed
to speed up spatial queries. The simulation core and storage are decoupled to handle any 3-D scene/point cloud.

neural networks. Due to the geometrical complexity of input
scenes and resulting point clouds, the LiDAR simulation is
massively parallelized in the GPU using OpenGL’s compute
shaders.

Accordingly, the main contribution of this work in com-
parison with previous research is the generation of large
classified LiDAR datasets using procedural scenarios, in a
reduced response time, and following a physically plausi-
ble behavior. In contrast to previous research, we model
object surfaces through their bidirectional reflectance distri-
bution function (BRDF) and simulate sensor errors. With this
approach, we carry out high-performance LIDAR simulations
in a few seconds, whereas the sequential approach needs up
to several minutes, even hours, for the most complex sensor
configurations and scenes here reported.

This article is structured as follows. The framework is first
detailed by describing the main components of the system
(see Fig. 2). Second, we present two different stages inte-
grated into the core of our proposal. This implementation
is subsequently assessed through response time and intensity
measurements in Section V. Also, our solution is compared to
previous LiDAR simulators regarding their capacity to gener-
ate dense point clouds with a significant number of semantic
classes. Finally, the outcomes of the conducted tests and the
conclusions of this work are summarized in Section VI.

III. MODELING THE VIRTUAL ENVIRONMENT

Virtual scenes ought to be similar to real-world scenarios,
as the scanning results are aimed at feeding deep-learning
algorithms. To this end, a custom tool is developed to generate
procedural environments similar to those in the real world.
Following a procedural approach, the environment architecture
is defined through an algorithm instead of a set of static 3-D
models, thus allowing to generate a large number of environ-
ments (and LiDAR scans) with different content distributions.
Although there are third-party modelers for creating virtual

natural environments [26]–[28], this tool allows us to adapt the
results to the specific application needs. Therefore, procedural
scenes are preferred over static compositions of CAD models.
However, their main drawback is that the manual task of
tagging every model should be propagated for each alternative
scene. The modeling of these objects is beyond the scope of
this work, and therefore, standard third-party CAD modelers
are used for this purpose.

Given the benefits of procedural environments, we focus
this section on forest scenes (see Fig. 3). This problem has
been extensively addressed in the last decades, even as highly
detailed plant ecosystems [26]–[28]. Nevertheless, this work
aims to generate a simple forest environment. The core is
a planar surface modeled through a Perlin noise function,
followed by a hydraulic erosion based on a discrete rep-
resentation of the terrain, also known as a pipe model or
height fields [29]. In addition, the performance of the erosion
algorithm is enhanced using the capabilities of the GPU by
modeling each eroding particle as a different thread.

The environment is enhanced by including water and vege-
tation to increase the level of realism. Water is also modeled
as a planar surface, whereas vegetation is represented through
a variable set of low-poly 3-D models. Note that low-poly
meshes enable modeling highly detailed scenes with a signifi-
cant amount of vegetation while providing a good application
performance. Regarding the instancing methodology, plants
are distributed using seeds generated by random uniform
distribution, considering both the slope and height of the
terrain. Therefore, steep slopes present a lower instancing
probability. Accordingly, the dispersion of trees follows a
similar approach. Finally, the environment is further enriched
by instancing buildings.

Models within scenes are labeled following the LASer
1.4 standard [30]. The described scene covers six of
18 encoded categories whether we omit nonassigned bits:
ground, low vegetation, high vegetation, water, building, and

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 3. Procedural modeling workflow of a forest environment composed of ground, water, low vegetation, high vegetation, and buildings. First, ground
originates from a hydraulic erosion applied over a noise function. Then, water and low-vegetation models are instanced stochastically. Finally, trees and
buildings are located avoiding collisions.

Fig. 4. Three label assignments for the same CAD environment. First, the scene is annotated using custom labels with two different levels of detail. The
right image shows a classification based on standard LAS 1.4 labels.

transmission tower. However, we can also label models with
custom classes to generate fine-grained classified datasets,
as depicted in Fig. 4. Consequently, two labels are defined
for each model: LAS and custom tags. Fig. 4 shows different
criteria for classifying the same scene. In contrast to the
manual classification of actual 3-D point clouds, annotated
environments avoid labeling errors and provide a fine-grain
segmentation of the scene. In addition to labels concerning
semantic segmentation, our framework stores the unique iden-
tifier of the object to which each resulting point belongs.
This is especially useful for applications concerning instance
segmentation. Models are also linked to material properties
utilized for calculating intensity values in Section III-B.

Regarding spatial indexing of the input scene, we aim
to compute precise LiDAR collisions through ray-casting,
instead of solving it through the image space [4], [15] or
DL-based emulators [19]. Taking into account the geomet-
rical complexity of the proposed environments and a large
number of rays to be cast during the LiDAR simulation,
we propose the use of an optimized spatial data structure
for accelerating ray-tracing. Given the nature of our problem,
a spatial data structure, such as the boundary volume hierarchy
(BVH) [31], is used for discarding significant parts of the
scene with each incremental step. It is represented as a binary
tree where each scene primitive (triangles) is bounded by an
axis-aligned bounding box (AABB). Leaves are the AABB of
scene primitives, whereas intermediate nodes are the result
of merging surrounding AABBs up to the root. To the best of
our knowledge, this is the first article solving large LiDAR

scans in the GPU hardware and, therefore, using efficient
GPU-accelerated spatial data structures.

IV. LIDAR SIMULATION

In this section, we describe the system architecture of
the proposed GPU-based LiDAR scanning. The simulation is
performed taking into account the parameters of the sensor and
a mobile mechanism that emulates the platform. In addition
to this, it is possible to carry out simulations based on various
types of sensors and platforms, such as ALS combined with
TLS at different levels of detail or TLS supplemented with
drone-based scanning for removing occlusion in some areas.
Despite the possibility of the emulation of a wide range of
LiDAR configurations, in this work, we focus mainly on TLS
and ALS in order to generate medium and large-scale datasets.

First, we introduce a comprehensible approach for generat-
ing LiDAR beams. Then, we present their overall interaction
with the environment throughout Section IV-B, where we also
propose the workflow of a simulation accelerated in the GPU.

A. Generation of Beams

The simulation of a TLS LiDAR starts by propagating rays
within a spherical projection. Therefore, we connect the con-
cept of rays with laser beams/pulses. For the sake of simplicity,
we assume momentarily that laser pulses have no radius; thus,
we can focus on single rays characterized by their direction.
Although TLS beams are emitted in a spherical projection,
some parts of the sphere can be omitted if we consider

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

TABLE I

CONFIGURATION PARAMETERS TO PROPAGATE LASER BEAMS FROM A TERRESTRIAL LIDAR. POSITIONAL FACTORS
ARE EXPRESSED IN METERS, WHEREAS ANGULAR PARAMETERS ARE EXPRESSED IN RADIANS

sensor specifications. As several technologies affect the geom-
etry of the captured data, we define a set of configuration
parameters that allow us to emulate the generation of laser
beams for a wide range of sensor types (see Table I). First,
the virtual LiDAR is placed in a position within the selected
environment. Then, the number of propagated rays is given
by rx , ry , i.e., horizontal and vertical resolution of the sensor.
For the vertical axis, the points captured are organized in
scan lines that correspond to horizontal scans of one laser
beam. Scan lines are separated by each other depending on
the vertical field of view (FOV) and the number of channels.
Whether we set the number of channels nc to 1, the origin
of rays is provided by a static position, p. On the other hand,
horizontal and vertical FOVs are defined by their starting angle
(αstartx , αstarty) and their covered space (αfovx , αfovy). However,
our framework represents αstartx and αstarty by means of both
middle angle (αcenterx , αcentery) and FOV (αfovx , αfovy) (1)

αstartx = αcenterx −
αfovx

2

αstarty = αcentery −
αfovy

2
. (1)

Emitted rays propagate in discrete directions with equidis-
tant angles, i.e., they represent an ideal spatial distribution.
From a rendering approach, the overlapping of several scan
lines in a dense point cloud shows some unwanted visual
effects, such as the Moiré interference pattern. To solve
this, we include the concept of jittering by adding minor
noisy rotations. Accordingly, the target of rays is distorted
using a rotation matrix characterized by a random vector and
angle. The magnitude of both attributes is given by δ̂noise and
αnoise, respectively. As a result, the jittering simulates minor
imperfections on traced rays and avoids the aforementioned
rendering drawbacks (see Fig. 5). To generate better results,
random values are obtained from a random uniform distribu-
tion in [−1, 1].

Concerning the spatial resolution of a LiDAR, a significant
attribute is the number of channels. We have previously
assumed that nc ← 1 although sensors with multiple channels
are also relevant to deal with high-resolution and occlusion
requirements. With several channels, rays are traced using
nc interleaved positions (pc, c ∈ [0, nc)) as their origin,

whereas their emission direction is separated by an angle
expressed by means of dα. Through the previously mentioned
position, p, the number of channels, nc, and the distance
between them, dc, we calculate the origin of each channel.
Moreover, the vertical FOV is adjusted considering the res-
olution of each channel and the overall sensor FOV, thus
obtaining αfovyc

. To properly simulate multichannel devices,
the vertical resolution is divided by nc channels.

Equation 3 shows the scattering direction of a beam emitted
from a TLS, originated from a position linked to a channel (2).
While vertical lines (αx) allow calculating a position sd on
the surface of a sphere of unit radius with y ← 0, horizontal
lines (αy) determine the elevation of such point. Also, note
that sd and δ̂xyc are defined as orthogonal vectors from 5.
r(u) shows the ray equation expressed through its origin, ro,
and destination, rt

ro = p +
[

0,
−dc(nc − 1)

2
+ cdc, 0

]ᵀ
(2)

rt = ro + R1

⎛
⎝δ̂noise

⎡
⎣λx

λy

λz

⎤
⎦, αnoiseλα

⎞
⎠R2

(
δ̂xyc, αy

)
sd (3)

r(u) = ro + u ˆ(rt − ro) (4)

where intermediate results are calculated as follows:

sd =
⎡
⎣ cos αx

0
− sin αx

⎤
⎦, δ̂xyc =

⎡
⎣ sdz

0
−sdx

⎤
⎦ (5)

αx = αstartx + αfovx

(
x

rx
+ y

rxry
− 1

2

)
(6)

αy = αstarty + y

(
ryαfovy + αfovy

ry
2

)
(7)

provided that R represents a rotation matrix defined by a
rotation axis and a scalar angle, whereas λx , λy , λz , and
λa are random values generated through a random uniform
distribution. x , y, and c represent iterative values so that
0 ≤ x < rx , 0 ≤ y < ry , and 0 ≤ c < nc. αx and αy

are horizontal and vertical angles, respectively. Accordingly,
0 ≤ αx ≤ 2π , and (−π/2) < αy < (π/2).

Furthermore, some sensors do not present uniform resolu-
tion along the vertical axis [32]. Thus, several intervals can be

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE II

CONFIGURATION PARAMETERS FOR GENERATING RAYS FROM AN ALS. AGAIN, ANGLES ARE EXPRESSED IN RADIANS

Fig. 5. Terrestrial scan with 900×450 spatial subdivisions. Color is assigned
according to the relative height within the scene bounding box.

defined using the interface through their resolution, starting,
and end angles.

Despite the simplicity of the procedure, high-resolution
configurations represent a performance bottleneck when the
number of rays increases to several million instances. There-
fore, we propose a massively parallel approach where each
thread builds a different ray using the parameters mentioned
above. In addition, we can further optimize this parallel
methodology by transferring intermediate results to the GPU,
e.g., αstartx . Noise is modeled within the GPU by circularly
accessing a central processing unit (CPU)-generated buffer of
pseudorandom numbers. Also, rays are constructed iteratively
given the limited capacity of GPU buffers, thus allowing to
adapt the simulator to commodity hardware.

Regarding ALS rays, they propagate using multiple planar
projections throughout an aerial route. Consequently, the
main changes in the procedure of ray emission are related
to the projection domain, limited by a smaller FOV. Also,
the configuration parameters for an ALS are significantly
different from a TLS (see Table II) as they consider the
movement of a mobile platform. Due to the complexity of
airborne scanning, several patterns are included to facilitate
coverage of the surveyed environment. As described by Dong
and Chen [33], common scanning patterns describe parallel,
elliptical, or zigzag scans (see Fig. 6). However, the flight
direction of a mobile platform is not affected by scanning
patterns. Rays are then generated from an origin position
provided by a linear interpolation and a parametric value, ti .
Therefore, ro and rd are linked to a scanning pattern and a
temporal mark within the scanning session. The parameterized

ray for parallel and zigzag patterns is given by

ro = pti +
⎡
⎣ 0

λhhnoise

0

⎤
⎦+ sl psi

pl

�d (8)

rt = ro − δ̂sp sin β +
⎡
⎣ 0
− cos β

0

⎤
⎦+ δnoise

⎡
⎣λx

λy

λz

⎤
⎦ (9)

where the rotation angle β and vector δ̂sp are calculated as
follows:

β = zsα

(
psi sl

pl
− 1

2

)
(10)

δsp =
[
−�dz, 0, �dx

]ᵀ
(11)

given that psi is the index of a pulse within the i th scene
sweep, �d is the vehicle direction (nonnormalized), δ represents
random values generated by a random uniform distribu-
tion, and s is an iterative value with 0 ≤ s < nscans. Also,
zs ∈ {−1, 0, 1}, allowing us to omit workflow branching for
parallel scanning sessions with zs ← 0, whereas −1 and 1 are
used for odd and even iterations during a zigzag scanning.

The elliptical pattern modifies the procedure of ray instanc-
ing as single scans are given by an elliptical shape flattened
with a factor of e f (12). Accordingly, β now describes a
circumference flattened in the X -axis with center in pti

rt = ro +
⎡
⎣e f er sin β
−hr

er cos β

⎤
⎦+ δnoise

⎡
⎣λx

λy

λz

⎤
⎦ (12)

where rotation angle β and ellipse radius er are given
by 13 and 14

β =
2 psi π

aabbx
spsl

aabbx
sp pl

= 2 psi πpl

sl
(13)

er = hr tan
α

2
. (14)

Intuitively, er is computed through the tangent of (α/2) for any
height hr . We can simplify this whether we assume hr ← 1,
as the ray target is correctly positioned within the environment
by considering rdy ←−hr . On the other hand, i is defined as
the index of each incremental step and, therefore, is related to
the parametric value ti .

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

Fig. 6. Multiple airborne surveys launched over the same environment, depicted in the gray-scale palette to highlight the scanning patterns. Coloring of point
clouds depends on the height with respect to the bounding box of the LiDAR outcome. (a) Parallel scanning. (b) Zigzag scanning. (c) Elliptical scanning.
(d) Airborne route customized through the user input.

Given the use of mobile platforms, their movement can
also be expressed through a custom path. This path can
be computer-generated or user-defined using a canvas in
the graphical user interface (GUI) and then wrapped as a
Catmull–Rom spline curve. Whether the path is computer-
generated, the translation of the mobile platform follows
sparse parallel lines along the X -axis. The distance between
these lines is calculated considering the dimensions of the
environment and the FOV of the sensor in order to extensively
survey the scene. We can determine the number of sweeps
within the environment, as shown in 15, whether we assume
that the platform moves parallel to the X -axis

steps =
⌈

aabbz

2(hl − aabbmaxy) tan
(

α
2

)
⌉

(15)

where aabb are the boundaries of a modeled environment.
Finally, the simulation of ray propagation is slightly mod-

ified so that a pulse is discretized through a set of rays.
More specifically, this work simulates diverging laser beams
within a pulse, instead of conventional collimated/parallel
beams, as simulated by Zohdi [8]. Given a radius r defined
at a distance d ← 1, several rays are scattered using the
result of 16. For each ray, we build an orthonormal basis
(û, v̂, r̂d) using the ray direction, rd , as well as an up vector,
ûp, expressed as

[
0, 1, 0

]ᵀ
for a TLS LiDAR. Accordingly,

û and v̂ correspond to X - and Y -axes for a ray basis; thus,
scaling both vectors by a random number δr ∈ [−r, r] and
adding them to ray target (rt) lead to a valid diverging
beam. For that purpose, the point calculated through 16, pdi ,
satisfies distance(pdi , rt) < r , provided that i is bounded by
the number of discrete rays, n p. Consequently, we simulate
more accurately the LiDAR behavior with higher values of n p

although it requires larger memory allocation. Fig. 7 shows a
single diverging pulse approximated with 100 rays and a large
footprint (r = 0.1 m)

pdi = ro + r̂d + ûδr + v̂δr = rt + ûδr + v̂δr

�u = ûp× n̂

�v = n̂ × û. (16)

B. Simulation of Ray Behavior

This section describes the interaction of rays with surfaces
within a modeled environment. In this regard, we describe

Fig. 7. Rays originated from a distant LiDAR position using a random
uniform distribution.

a single workflow for emulating both airborne and terrestrial
LiDAR (see Fig. 8). The objective of splitting the methodology
into several stages is to simplify the procedure and establish a
synchronized waiting for those rays that approximate a pulse
(find BVH collision → ray reduction). The number of rays
used during an iteration must be multiple of n p, i.e., the
number of rays per pulse. Regarding steps with some level
of randomness, they can use different random distributions.
For the sake of simplicity, we focus our explanation on
uniform distributions, although unbalanced distributions are
also possible. All the parameters used during this simulation
are listed in Table III.

1) Ray Data Reset: Initial rays update their carrying energy
and change their return number to zero, as well as their refrac-
tive index to one (air substance). Consequently, it guarantees
the continuity of rays for the first iteration. Given the energy
of a pulse per unit time measured in watts (W), Ī , each ray
obtains Īi = Ī/n p.

2) Collision Detection: Simulating a LiDAR beam requires
the data structure and the previously presented pulse modeling.
As this technology is based on the time-of-flight principle,
the distance between each part of the virtual scene and the
simulated sensor is determined by timing the travel distance
of the laser beam light, whose velocity is known. To detect the
nearest collision of propagated pulses, we use a fast method
for calculating the intersection of a ray and a triangle [34].
Triangles are previously retrieved by traversing the spatial data
structure using a stack to add nonvisited nodes. Whether a
collision is detected for a ray ri , the index of the intersected
face and the surface distance is saved in the collision buffer.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE III

GENERIC CONFIGURATION PARAMETERS USED DURING THE LIDAR SIMULATION. THUS, PARAMETERS HERE DESCRIBED
HAVE NOT BEEN PREVIOUSLY LISTED AS ALS- OR TLS-RELATED PROPERTIES

Fig. 8. Summary of the LiDAR workflow implemented both in CPU
and GPU. However, the use of the CPU is minimized during the execution
of the LiDAR core to avoid delays from data transfers.

3) Ray Reduction Stage: Although rays may find different
surfaces, pulses return a single collision at most on each
iteration. Consequently, the number of shader executions in

this stage is given by the number of pulses, p, instead of n p p.
This step is the core of the LiDAR simulation, as it determines
which collisions are valid, as well as the life span of a ray and
its new properties under some LiDAR models.

First, we check collisions within a pulse. The nearest inter-
section is compared against the group collisions. Therefore,
we may find rays with no collisions and collisions equal or
different to the nearest intersection. Note that the purpose
of defining two collisions as equivalent is to avoid detecting
several points over the same surface chunk. Therefore, two
collisions are considered to be equal if they satisfy at least
one of the following conditions.

1) They correspond to the same indexed triangle. Note that
the same reasoning cannot be applied to objects since
models represented by several not-enclosed surfaces,
such as tree canopy, may lead to omitting multiple
returns.

2) Their distance is smaller than 2dr + ε although it may
lead to omitting equal collisions when n̂ · r̂d highly
differs from 1. Consequently, the threshold distance is
corrected by using the term 2− |n̂r̂d | in order to avoid
increasing the radius for orthogonal vectors. Therefore,
this condition is formalized, as shown in 17, given that d
is the distance from the collision to the LiDAR receiver,
r is the pulse radius, and n̂ is the surface normal.

dmax = 2dr(2− |n̂r̂d |) (17)

3) Collided triangles are adjacent, i.e., they share at least
two vertices. Given the limited radius of a single pulse,
one level deep is proven to be enough for detecting equal
collisions.

Note that the number of rays that collided on the same
surface area is relevant for computing the point intensity.
Therefore, the sum is stored for subsequent stages. On the
other hand, those rays that collided on the nearest surface
are considered to terminate their path, whereas rays that
intersected distinct surfaces are relevant for generating new
returns (e.g., on vegetation). Nevertheless, collision points may

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

Fig. 9. Maximum range of a LiDAR sensor depicted as a noisy interval
bounded by two circumferences.

still suffer changes or even be discarded. Given the maximum
range of a LiDAR sensor, Rmax, and a noisy boundary,
expressed through Rδmin and Rδmax , with Rδmin ≤ 0 ≤ Rδmax ,
a point is discarded if the distance to the sensor, d , satisfies 18

d > R + δ(Rδmax − Rδmin)+ Rδmin (18)

provided that δ is a random value retrieved from a uniform
random distribution ranging from 0 to 1. Here, Rδmin and Rδmax

are expressed as values relative to R instead of absolute range
values. For instance, Rδmin ← −1 m and Rδmax ← 1 m. Fig. 9
depicts a wide boundary expressed through Rδmin and Rδmax for
a TLS sensor.

Moreover, this stage simulates several limitations of LiDAR
sensors related to the nature of materials, as it affects noise
levels. Transparent and very reflective surfaces (windows,
mirrors, shiny metal frames, and so on) can either generate
no points at all or generate points on virtual reflected sur-
faces, placed at an incorrect location in space [35], [36]. For
these surfaces, laser beams are reflected multiple times, thus
increasing the timing and generating mirror images, i.e., points
behind the shiny surface in the laser beam direction (“time-
walk” effect). According to the described error, collisions are
translated considering three variables: distance to the LiDAR
receiver and the identifiers (indices) of both object surface
and collision. Hence, index-related variables are linked to two
random values (δsurface, δcollision). However, we aim to preserve
the shape of any surface along the ray direction. Hence, δsurface

is constant for any surface, while δcollision introduces minor
translations for each point. Accordingly, the magnitude of the
error is mainly driven by the distance to the receiver (19)

eglossy · (d · r̂d kdistance + r̂d(δsurfaceksurface + δcollisionkcollision))

(19)

where kdistance, ksurface, and kcollision are constant values that
control the magnitude of the equation term, glossy is a Boolean
value that determines if such an error is applied, and d is the
distance from sensor to collision. Fig. 10 shows the resulting
translation applied to multiple objects classified as highly
reflective when the LiDAR source point is placed near the
affected surfaces.

Points are also distorted through terrain-induced errors
following two mechanisms: vertical and horizontal errors [37].
The horizontal error is known to be on the order of 1/1000 m
of the airborne flight altitude [38], while vertical distortion

Fig. 10. “Time-walk” effect simulated on glass surfaces rendered according
to their semantic labels.

Fig. 11. Illustration of terrain-induced errors for a procedural environment.
(a) Depicts an environment scanned without slope-based errors, whereas
(b) simulates such error, thus allowing to render ground points in the
foreground. Semantic labels belong to the LAS standard.

depends on the surface slope and flight altitude [39]. There-
fore, this error is applied to airborne LiDAR simulation over
forest environments, as shown in 20

eterrain ·
(
δhkheighth h

[
δx, 0, δz

]ᵀ

+ δv(kheightv h + kαα)
[
0, 1, 0

]ᵀ)
(20)

provided that h is the flight altitude, and kheightv , kheighth , and kα

weigh the flight altitude and slope angle for horizontal and ver-
tical errors. Fig. 11 shows the aforementioned terrain-induced
errors for a steep surface when using different altitudes. For
environments with dense vegetation, as the one depicted, this
error is visible for higher elevations since ground points are
visible instead of being occluded by foreground vegetation
points. Despite the above, the described errors can be omitted
by defining the magnitude of the above errors as zero.

Ray properties are also updated during this step. The rays
that collided with a surface, though not the nearest one, are
considered in subsequent iterations. On the other hand, rays
that did not collide are omitted in the following iterations.
Consequently, for each laser beam, we can find several returns

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

depending on the intersected surface. In this work, this feature
is mainly relevant when working with vegetation. For that
purpose, each collision saves a return number that is further
completed with the number of collisions returned per pulse.
However, the bathymetric LiDAR ignores the described con-
tinuity condition on water surfaces, as new returns can be
generated after colliding terrain underwater. Hence, the origin
of rays is set to the collision point for bathymetric LiDAR
(ro = p + ε), while they keep carrying out the same energy.
Their direction is computed as the refraction for the incident
vector r̂d , the surface normal, n̂, and the ratio of refractive
indices, ri . In addition, ri is given by the refractive index of the
substance where the ray propagates, η1, as well as the index of
refraction from the substance of collided surface material, η2.
Moreover, η2 depends on the wavelength of the LiDAR sensor.
Given the description of materials in Intensity evaluation,
η2 is evaluated using a Catmull–Rom curve that passes through
some material samples of refractive indices in a wavelength
interval. Hence, η2 is computed in the CPU and stored as
metadata of materials.

Beyond the “time-walk” effect, we represent the return loss
over glossy surfaces through an exponential function g(ks)
parameterized with a, b, c, p, and a threshold t, as shown
in 21. Hence, returns from glossy surfaces with a specular
factor (ks) above t may be discarded if the value retrieved
from a random distribution is smaller than g(ks). Accordingly,
surfaces with lower specular values are less likely to deviate
LiDAR impacts. Thus, we can define a function to partially
or entirely discard water returns

g(ks) =
{

c + a(ks + b)p, ks > t

c, ks ≤ t
(21)

where c allows introducing some randomness even for diffuse
materials. However, c is defined as zero by default.

4) Intensity Evaluation: This stage evaluates radiometric
information acquired by the virtual LiDAR (see Fig. 12).
Unitless intensity values are influenced by several factors
described in [40]. However, we focus on those quantitative
parameters that influence the returned intensity. The received
optical power can be expressed by means of the LiDAR equa-
tion using the transmitted power, the reflectance of the surface,
and other acquisition parameters. The LiDAR equation is
present in the literature through multiple analogous forms [33],
[41] although most of them lead to a similar expression [40].
However, it also varies for bathymetric LiDAR [42].

A relevant factor in both LiDAR equations is the surface
reflectance observed in the returned points (fr (�w)). Hence, the
intensity of the resulting points depends on the surface phys-
ical properties, as it represents the amount of light received
back to the scanner relative to the amount of emitted light.
To correctly simulate the spreading of a laser beam striking a
surface in the scene, a BRDF is used for each type of surface
or, so to speak, for each material [43], [44]. This function
gives the ratio between the incoming and outcoming radiance,
and it allows us to better take into account the incidence angle
of the laser beams at each point of the virtual environment.

Before LiDAR simulation, ρd and ρs are retrieved for each
vertex using the material properties of the 3-D model. In order

Fig. 12. Intensity returned by a TLS simulation over the conference scene.
Unitless intensity values are transformed for a better visualization.

to better simulate the behavior of a real sensor, a random
distribution is used to artificially alter the color and the
intensity of each generated point. The saturation of a material
has a high impact on angles of incidence, especially close to
the perpendicular vector. Therefore, higher angles of incidence
and longer distances of objects cause higher noise levels.

5) Outlier Addition: It is known that there are additional
sources of noise in the LiDAR scanning process, espe-
cially environmental conditions, such as temperature and
atmospheric pressure variations, dust, steam, or interfering
radiation [45]. However, most of them have little impact on
the result, especially on TLS. The rest of the altering elements,
from an error management perspective, are simulated naturally.
These issues are present both in reality and the simulation,
and have to be dealt with in the same way. Some of these
issues are misadjusted density of the resulting point cloud
due to surface irregularities, orientation and distance, object
cluttering, occlusion, and scanning shadows [1]. The solution
is to improve the scanning process itself, mainly with more
scans and better lenses. However, some of the issues cannot
be solved, such as the limitations previously described in ray
reduction phase.

The main objective of this stage is to consider new random-
ized error sources. More specifically, we focus on generating
unlabeled noise/outlier points by altering some previous colli-
sions (see Fig. 13). A user-defined threshold (toutlier) establishes
the noise boundary, whereas the number of candidate points
is equal to the number of collisions registered in the current
iteration. Accordingly, outliers are placed within a ray origin
and its collision, whereas their distance to the LiDAR sensor is
expressed through a random value and a parametric boundary
(tmin, tmax) defined by the user (22). Random values (δ) are
retrieved from a user-defined distribution although a uniform
distribution in [0, 1] is assigned by default to avoid unusual
clustering of points [35]

po = ro + rdir(δ(tmax − tmin)+ tmin). (22)

6) Update of Returns: Once pulses are eliminated or exceed
the maximum number of returns, the collided points are
updated to store the overall number of originated collisions per
pulse. The return number provides helpful information within
a point cloud though it can be further enriched by computing

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

Fig. 13. Outliers generated during a TLS simulation using toutlier ← 0.95.

Fig. 14. ALS simulation for a procedural environment. First, the complete
point cloud is rendered (kr ≥ 0), whereas the second image renders only the
last return of each pulse.

the factor kr , defined as (r/nr), i.e., the return number divided
by the overall number of returns. Therefore, higher return
numbers more likely belong to ground points although filtering
by the return number also omits ground points. However, the
last collision of each pulse is returned whether we filter by
kr > 1 − ε, allowing us to discard vegetation and visualize
points near the ground surface. For example, archeological
surveying based on LiDAR sensors typically retrieves ground
points for generating high-resolution Digital Terrain Models
(DTMs). Therefore, canopy points should be omitted when
working on areas covered by dense vegetation.

Fig. 14 depicts two different point clouds filtered by means
of kr to visualize the last return of each pulse. The For-
est canopy is significantly dense, thus provoking that many
pulses end their path on the vegetation, whereas low vegeta-
tion is easily avoidable. Accordingly, it shows a much less
dense point cloud at the ground level when kr ≥ 1 since
ground points are occluded and low-vegetation collisions are
filtered out.

V. RESULTS AND DISCUSSION

We have evaluated the proposed LiDAR simulator with
four scenes modeled by professional 3-D generalists, ranging
from 330k to 6M triangles. Also, procedural environments
have been used to evaluate the simulator with scenes of differ-
ent geometrical complexity. Given the high-performance focus
of this solution, this section is mainly driven by response time
measurements in large environments. Since previous simula-
tors focus on the behavior of the simulation itself rather than

Fig. 15. Performance comparison of sequential and massively parallel
approaches of LiDAR kernel for (a) TLS and (b) ALS sensors.

its speedup, we compare our GPU method with a sequential
version of the workflow shown in Fig. 8. Then, the intensity
returned by multiple materials is analyzed through frequency
diagrams. Finally, the described LiDAR is compared against
several state-of-the-art LiDAR solutions by addressing both
quantitative factors (capacity of generating dense semantic
datasets) and qualitative measures, such as the fidelity of the
simulation with respect to real LiDAR scans.

Measurements were performed on two different hardware
configurations. Tests are carried out in a computer with Intel
Core i9-9900 3.1 GHz, 48-GB RAM, and RTX 2080 Ti
GPU with 11-GB RAM (Turing architecture), whereas GPU
speedup was also reported in a PC with GTX 1070 GPU
and 8-GB RAM. Thus, from now on, we will refer to
both hardware configurations as G1070 and G2080. The pro-
posed methodology is implemented in C++ along with an
open graphics library (OpenGL) for rendering. Accordingly,
massively parallel algorithms are developed in the OpenGL
Shading Language (GLSL) through general-purpose compute
shaders.

A. LiDAR Response Time
A sequential approach was developed by following the

same algorithmic steps described for the GPU implementation.
Regarding the robustness of the results, the reported numbers
represent the minimum value of five executions. Throughout
this section, we evaluate the response time for two different
stages: 1) ray instancing and 2) LiDAR scanning. To eval-
uate the LiDAR efficiency, we launched several simulations
concerning different LiDAR sensors and input scenes.

1) Terrestrial LiDAR: Table IV shows the results of TLS
conducted tests, while Fig. 15 summarizes the response time
results both for CPU and GPU approaches. The execution time
is evaluated on two different GPUs although the results from
Table IV are measured in G2080.

a) Single return: LiDAR tests with nr ← 1 represent the
most efficient configuration since rays within a pulse are not
handled by different threads in some stages. As a reference,

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE IV

PERFORMANCE COMPARISON FOR MULTIPLE TLS SCANNING CONFIGURATIONS AND ENVIRONMENTS. THE REPORTED NUMBERS ARE THE MINIMUM
RESPONSE TIME OVER FIVE EXECUTIONS. THE ROWS OF THIS TABLE SHOWS THE RESULTS OF THE SAME CONFIGURATION WHEN APPLIED

TO ENVIRONMENTS OF DIFFERENT COMPLEXITIES. THUS, THE EXECUTION TIME OF RAY INSTANCING IS SHARED WITHIN A ROW

the response time of ray instancing is reduced by 98.7% with
respect to the sequential approach, while LiDAR scanning
presents 97.76% less time for n p = 10 M and nr = 1.
From the results, we can observe that a significant increase
in the response time is reported when the number of polygons
increases, similar to the worsening of the BVH quality.

b) Multiple returns: According to previous observations,
the GPU version reports 90.39% less response time when n p

= 10 M and nr = 10, while data transfers reduce the enhance-
ment to 86.76% using n p = 1 M and nr = 10. On the other
hand, the LiDAR scanning stage also presents a significant
time bottleneck as the number of triangles increases. However,
our GPU simulation solves the TLS scanning with n p = 10 M
and nr = 10 in ∼3.21 min, whereas the sequential approach
needs ∼2.09 h.

2) Aerial LiDAR: We carry out similar tests for evaluating
an aerial LiDAR (see Table V). However, the efficiency of
this variant is significantly better, as the vast majority of rays
propagate toward the ground instead of parallel to it, thus
accelerating the BVH traversal and avoiding the aforemen-
tioned time bottleneck. In this case, pulses were discretized
with nr = 15.

a) Single return: The overall response time of ray
instancing is reduced both for CPU and GPU approaches since
the path is precalculated. Consequently, the enhancement of
the GPU method is 82.45% and 90.93% for n p = 1 M and
n p = 10 M, respectively. Moreover, the performance of
the ALS with a significantly complex scene (10M triangles)
achieves similar results to a single return TLS. Thus, the
speedup of LiDAR scanning is 99.08% for 10M triangles and
n p = 10 M.

b) Multiple returns: In this case, the proposed GPU
solution improves up to 99.44% for the procedural scene with
the highest number of polygons.

B. Intensity Measurement

Intensity values are relevant for a wide range of LiDAR
applications, and therefore, generating accurate intensity data
is a key factor whether we aim to replace real-world scenes
with synthetic datasets. The objective of this section is to
show the LiDAR intensity response for different BRDFs using
aerial scans. Fig. 16 shows the histogram of intensity values
from a procedural scenario with 10M triangles. First, each
model is represented as a Lambertian surface. Then, surfaces

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

TABLE V

PERFORMANCE COMPARISON FOR AN ALS SENSOR WITH PARALLEL SCANNING PATTERN, APPLIED TO PROCEDURAL ENVIRONMENTS

are linked to the BRDF model that better represents their
real behavior. With it, the BRDF of every class is following
listed: Water ← Lambertian, Low vegetation ←
Oren Nayar, Trunk ← Ward anisotropic, Canopy
← Oren-Nayar, Building ← Cook-Torrance, and
Terrain ← Minnaert.

For the first BRDF distribution, intensity values are dis-
persed over the interval [0, 1], as some specular BRDFs
can generate larger values. Note that the building class con-
sists of both metallic surfaces and roof models. However,
ALS scans are more likely to collide with foreground roof
surfaces, whereas the metallic basement is barely reached.
Therefore, intensity values from buildings are concentrated
near zero. On the other hand, steep profiles represent a
lower number of collisions (e.g., trunk label). For the Lam-
bertian scenario, intensity profiles are represented as Gaussian
density functions, which are mainly altered by nonuniformly
instanced/observable objects. As a consequence, surfaces pre-
viously presented as diffuse significantly increase their inten-
sity signature since the Lambertian BRDF is slightly brighter.
However, this also depends on surface orientation. For exam-
ple, points annotated as trunk define a Gaussian function with
almost zero values since LiDAR rays and trunk normal vectors
form angles close to 90◦.

C. Generation of Synthetic Datasets

While the main objective of this work is to describe an
efficient and physically based LiDAR simulator, this solution
is also intended to provide a framework for generating large

semantic datasets. Thus, we have conducted several tests
to evaluate both the dimensions and the number of labels
identified in the resulting point clouds. Comparisons are
established with previously cited work [19]–[22], [48], either
based on real or synthetic datasets, by taking into account the
number of scans, the overall number of points, and the number
of semantic annotations. To provide a fair evaluation, the
conducted tests are based on the parameters of the Velodyne
HDL-64E [25], as proposed in the most complete urban
datasets currently described in the literature [19], [21], [48].
However, our simulator integrates aerial surveys, and there-
fore, the conducted tests also evaluate the relevance of
ALS sensors for capturing the scene surfaces. Consequently,
we have also simulated the behavior of LiDARs mounted
on drones by using the parameters of the DJI Zenmuse
L1 device [46]. Note that some parameters are not provided
by the manufacturers, and therefore, we have adjusted them
to produce dense points clouds (see Table VI). Also, due to
the heterogeneous height of urban environments, aerial scans
are generated through multiple frames following manual paths
with different heights for acquiring building roofs.

Our results are collected by surveying two virtual urban
scenes. The first scene presents 32 different classes, whereas
the second environment consists of 45 semantic annotations.
Furthermore, the environments are populated with procedural
pedestrians and vehicles. Although the most fine-grained seg-
mentation relies on identifying name patterns both in mod-
els and materials, our solution also allows the specification
of coarse-grained semantic classification to specific needs.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE VI

SPECIFICATIONS OF SENSORS SIMULATED DURING THE SCANNING OF URBAN ENVIRONMENTS. PARAMETERS
CORRESPONDING SOLELY TO VIRTUAL SCANNING ARE HIGHLIGHTED IN CURSIVE

Fig. 16. Intensity comparison of two procedural environments with different
BRDF distributions. (a) Surfaces are assigned a BRDF with a realistic optical
behavior, whereas (b) uses a Lambertian model for every surface.

By scanning both environments, we report an average frame
size of nearly 623k points from 488 scans, either from TLS
and ALS, which greatly improves the current average size
of synthetic generators of semantic LiDAR data. Despite
real-world datasets acquiring more dense point clouds, e.g.,
Semantic3D [47], the main contribution of virtual scans is their
low response time and efficiency both in acquiring data and
annotating each point. Furthermore, we solely conducted our
tests on procedural environments instanced with a single seed.

Otherwise, a large number of environments can be modeled
to enrich the LiDAR dataset.

Fig. 17 illustrates semantic labels linked to 3-D models and
the result from TLS and ALS scans, colored using their height.
The number of points annotated with each category is depicted
through bar charts, by reporting points returned from TLS and
the fusion of both TLS and ALS (see Table VII). Despite the
contribution of ALS scanning being relevant for augmenting
the dataset labels, its contribution on the bar chart is reduced
due to the relatively low number of rays in comparison with
TLS scans (see Fig. 18).

D. Visual Results

Besides quantitative tests, we can also compare the results
of the proposed solution and previous work by visual inspec-
tion, using a real LiDAR point cloud as the baseline result.
Furthermore, we aim to simulate LiDAR sensors over CAD
models, rather than on surfaces reconstructed from LiDAR
point clouds, as it may present errors. We oriented this
comparison toward vehicles visible on public LiDAR point
clouds from autonomous driving using CAD models from such
vehicles. Thus, we used a dataset obtained from Pandar64
sensor [32], which also provided red, green, blue (RGB)
images and individual TLS scans.

Regarding other virtual simulators, most of the cited studies
provide datasets instead of the simulator itself, work only in
predefined environments [17], or do not describe solutions
considering surface materials [4], [15], [19], [20], [25]. Other
open-source simulators allow further configuration though
some of them lack nonuniform scanning [49] or noise/loss
behavior [50]. Consequently, we have compared our algorithm
with the widespread blender plugin simulating TLS scans,
Blensor [51], an open-source project that also provides a naive
simulation of noise and errors derived from reflective surfaces.

To provide a comparison, car surfaces were marked with
different reflectivity factors, whereas LiDAR positions were
located on both simulators according to the real LiDAR
placement. For our application, glass materials were linked to

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

Fig. 17. Point clouds generated by the LiDAR simulator over urban environments. First, triangle meshes are depicted, whereas the following columns
represent the outcome of TLS and ALS scans, respectively. Both scenes are populated with vehicles and pedestrians to enrich the scenario.

Fig. 18. Number of LiDAR points per semantic label in two different urban environments. The first bar reports the results of TLS scans, whereas the second
bar shows the results combining both ALS and TLS. (a) Distribution of 139 M points and 145 M points for TLS and TLS + ALS scans, respectively, whereas
(b) shows the profile generated by 165 M and 170 M points.

predefined mirror-like surface behavior. Concerning scanning
resolution, the Pandar64 sensor presents different spatial reso-
lutions along the vertical axis. In contrast to other simulators,
our work also provides nonuniform vertical resolution. Finally,

a loss function was defined for glossy surfaces, whereas
reflection errors were also emulated. Nevertheless, the impact
of the “time-walk” effect is limited to the reduced distance
between sensor and glass surfaces.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE VII

OVERVIEW OF OUTDOOR LIDAR DATASETS WITH SEMANTIC ANNOTATIONS, REGARDING
THEIR AVERAGE SIZE (POINTS/SCANS) AND NUMBER OF CLASSES (LABELS)

Fig. 19. Comparison of real and synthetic point clouds. The first two images depict the input CAD model and its corresponding LiDAR point cloud, captured
from Pandar64 [32]. The third image illustrates a synthetic point cloud from our simulator, and finally, the fourth image shows the result from the Blensor
plugin though it uses uniform vertical resolution.

From Fig. 19, we can observe that glossy surfaces are
omitted by Blensor, whereas our point clouds present some
gaps as a result of the loss function. Nevertheless, Blensor can
also distort the resulting point cloud through a noise function
by defining its amplitude and distribution. Consequently, both
virtual LiDAR sensors generate results following patterns
similar to real LiDAR, including noisy point clouds, although
automatic reflection errors are better handled by the proposed
solution, besides the improved response time.

VI. CONCLUSION AND FUTURE WORK

In this work, we described a massively parallel and para-
meterized LiDAR for generating dense semantic point clouds,
aimed at producing large datasets to feed DL applications.
The proposed methodology can work over any environment
defined as a triangle mesh. However, procedural scenes are
more time-efficient, as they can be labeled once and generate a
huge amount of points, whereas static environments contribute
to a single point cloud. For that purpose, we briefly described
the generation of a procedural forest with multiple semantic
labels. In order to solve spatial queries efficiently, we wrapped
our scenes on a bounding volume hierarchy (BVH) built using
a state-of-art GPU-based algorithm.

The described solution was evaluated through its response
time by assessing high-performance scans. Therefore, the GPU
implementation was compared against its analogous sequen-
tial approach, obtaining speedups above 99%. In addition,
intensity values were reported for distinct material distrib-
utions, thus showing the relevance of surface behavior for
backscattering results. Therefore, our solution is appropriate
for generating large datasets of semantic LiDAR point clouds
with low latency due to the described procedural generation
and the capacity to handle scans with high resolution. We also
compared the capabilities of our framework with state-of-
the-art LiDAR datasets, either real or synthetic, observing a
significant enhancement both in average scan size and the
number of semantic labels. Finally, the resulting point clouds
of the virtual LiDAR were visually compared with an open-
source project, Blensor. Accordingly, reflection errors were
proved to be better simulated, despite both simulators can
emulate noisy data.

In future work, we would like to enhance the proposed
methodology through modern GPUs. Furthermore, the frame-
work can be further completed with more complex path
planning. In addition, we would like to extend our discrete
return LiDAR with a full-waveform system since this feature

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ et al.: GPU-ACCELERATED FRAMEWORK FOR SIMULATING LiDAR SCANNING 3000518

could be especially relevant to analyze the density profile of
our procedural environment. Finally, we would like to conduct
a deeper study in order to show the utility of synthetic datasets
applied to DL algorithms, thus achieving its purpose.

REFERENCES

[1] F. Poux, “The smart point cloud: Structuring 3D intelligent
point data,” Ph.D. dissertation, Dept. Researchgate, Univer-
sité de Liège, Liège, Belgique, 2019. [Online]. Available:
https://www.researchgate.net/publication/333756015_The_Smart_
Point_Cloud_Structuring_3D_intelligent_point_data?channel=doi&
linkId=5d026dcea6fdccd1309856f7&showFulltext=true

[2] H. Chen and J. Shen, “Denoising of point cloud data for computer-aided
design, engineering, and manufacturing,” Eng. with Comput., vol. 34,
no. 3, pp. 523–541, Dec. 2017.

[3] G. Lee, J. Cheon, and I. Lee, “Validation of LIDAR calibration using
a LIDAR simulator,” Int. Arch. Photogramm., Remote Sens. Spatial Inf.
Sci., vol. XLIII-B1-2020, pp. 39–44, Aug. 2020.

[4] S. Manivasagam et al., “LiDARsim: Realistic LiDAR simulation by
leveraging the real world,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 11164–11173.

[5] W. Liu, J. Sun, W. Li, T. Hu, and P. Wang, “Deep learning on point
clouds and its application: A survey,” Sensors, vol. 19, no. 19, p. 4188,
Sep. 2019.

[6] L. Fan, J. A. Smethurst, P. M. Atkinson, and W. Powrie, “Error in
target-based georeferencing and registration in terrestrial laser scanning,”
Comput. Geosci., vol. 83, pp. 54–64, Oct. 2015.

[7] J. Pandžić, M. Pejić, B. Božić, and V. Erić, “Error model of direct geo-
referencing procedure of terrestrial laser scanning,” Autom. Construct.,
vol. 78, pp. 13–23, Jun. 2017.

[8] T. Zohdi, “Rapid simulation-based uncertainty quantification of flash-
type time-of-flight and LIDAR-based body-scanning processes,” Com-
put. Methods Appl. Mech. Eng., vol. 359, pp. 112–386, Feb. 2020.

[9] T. Yun et al., “Simulation of multi-platform LiDAR for assessing total
leaf area in tree crowns,” Agricult. Forest Meteorol., vols. 276–277,
Oct. 2019, Art. no. 107610.

[10] P. Chen, C. Jamet, Z. Mao, and D. Pan, “OLE: A novel oceanic
LiDAR emulator,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 11,
pp. 9730–9744, Nov. 2021.

[11] J. Iqbal, R. Xu, S. Sun, and C. Li, “Simulation of an autonomous mobile
robot for LiDAR-based in-field phenotyping and navigation,” Robotics,
vol. 9, no. 2, p. 46, Jun. 2020.

[12] F. Westling, M. Bryson, and J. Underwood, “SimTreeLS: Simulating
aerial and terrestrial laser scans of trees,” 2020, arXiv:2011.11954.

[13] Y. Xie, J. Tian, and X. X. Zhu, “Linking points with labels in 3D: A
review of point cloud semantic segmentation,” IEEE Geosci. Remote
Sens. Mag., vol. 8, no. 4, pp. 38–59, Dec. 2020.

[14] N. Peinecke, T. Lueken, and B. R. Korn, “Lidar simulation using graph-
ics hardware acceleration,” in Proc. IEEE/AIAA 27th Digit. Avionics
Syst. Conf., Oct. 2008, pp. 4.D.4-1–4.D.4-8.

[15] J. Fang et al., “Augmented LiDAR simulator for autonomous driving,”
IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1931–1938, Oct. 2020.

[16] Y. Li et al., “Deep learning for LiDAR point clouds in autonomous
driving: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 8, pp. 3412–3432, Aug. 2021.

[17] LG Electronics R&D Lab. (2021). LGSVL Simulator. [Online]. Avail-
able: https://www.svlsimulator.com/

[18] Siemens. (2021). Simcenter. [Online]. Available: https://www.plm.
automation.siemens.com/global/es/products/simcente%r/

[19] A. Xiao, J. Huang, D. Guan, F. Zhan, and S. Lu, “Transfer learning
from synthetic to real LiDAR point cloud for semantic segmentation,”
2021, arXiv:2107.05399.

[20] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-
Vincentelli, “A LiDAR point cloud generator: From a virtual world
to autonomous driving,” in Proc. ACM Int. Conf. Multimedia Retr.,
Jun. 2018, pp. 458–464.

[21] J. Behley et al., “Towards 3D LiDAR-based semantic scene understand-
ing of 3D point cloud sequences: The SemanticKITTI dataset,” Int. J.
Robot. Res., vol. 40, nos. 8–9, pp. 959–967, Aug. 2021.

[22] Y. Pan, B. Gao, J. Mei, S. Geng, C. Li, and H. Zhao, “SemanticPOSS: A
point cloud dataset with large quantity of dynamic instances,” in Proc.
IEEE Intell. Vehicles Symp. (IV), Oct. 2020, pp. 687–693.

[23] W. Tan et al., “Toronto-3D: A large-scale mobile LiDAR dataset
for semantic segmentation of urban roadways,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 202–203.

[24] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2:
Improved model structure and unsupervised domain adaptation for road-
object segmentation from a LiDAR point cloud,” in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 4376–4382.

[25] H. Su, R. Wang, K. Chen, and Y. Chen, “A simulation method for
LIDAR of autonomous cars,” IOP Conf. Ser., Earth Environ. Sci.,
vol. 234, Mar. 2019, Art. no. 012055.

[26] M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and
W. Pałubicki, “Synthetic silviculture,” ACM Trans. Graph., vol. 38,
no. 4, pp. 1–14, Jul. 2019.

[27] R. Fischer, P. Dittmann, R. Weller, and G. Zachmann, “AutoBiomes:
Procedural generation of multi-biome landscapes,” Vis. Comput., vol. 36,
nos. 10–12, pp. 2263–2272, Jul. 2020.

[28] G. Cordonnier et al., “Authoring landscapes by combining ecosystem
and terrain erosion simulation,” ACM Trans. Graph., vol. 36, no. 4,
pp. 1–12, Jul. 2017.

[29] O. Št’ava, B. Beneš, M. Brisbin, and J. Křivánek, “Interac-
tive terrain modeling using hydraulic erosion,” in Proc. ACM
SIGGRAPH/Eurographics Symp. Comput. Animation (SCA), 2008,
pp. 201–210.

[30] LAS Specification, Version 1.4, The American Society for Photogram-
metry Remote Sensing, Bethesda, MD, USA, 2013.

[31] D. Meister and J. Bittner, “Parallel locally-ordered clustering for bound-
ing volume hierarchy construction,” IEEE Trans. Vis. Comput. Graphics,
vol. 24, no. 3, pp. 1345–1353, Mar. 2018.

[32] Hesai. (2021). PandaSet. [Online]. Available: https://pandaset.org/
[33] P. Dong and Q. Chen, LiDAR Remote Sensing and Applications. Boca

Raton, FL, USA: CRC Press, Jan. 2018.
[34] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle inter-

section,” J. Graph. Tools, vol. 2, no. 1, pp. 21–28, 1997.
[35] A. Ullrich and M. Pfennigbauer, “Advances in LiDAR point cloud

processing,” in Laser Radar Technology and Applications XXIV, M. D.
Turner and G. W. Kamerman, Eds. Bellingham, WA, USA: SPIE,
May 2019, pp. 157–166.

[36] A. Dimitrov and M. Golparvar-Fard, “Segmentation of building point
cloud models including detailed architectural/structural features and
MEP systems,” Autom. Construct., vol. 51, pp. 32–45, Mar. 2015.

[37] J. S. Deems, T. H. Painter, and D. C. Finnegan, “Lidar measurement of
snow depth: A review,” J. Glaciology, vol. 59, no. 215, pp. 467–479,
2013.

[38] M. E. Hodgson and P. Bresnahan, “Accuracy of airborne LiDAR-derived
elevation,” Photogramm. Engr. Remote Sens., vol. 70, pp. 331–339,
Mar. 2004.

[39] E. P. Baltsavias, “A comparison between photogrammetry and laser
scanning,” ISPRS J. Photogramm. Remote Sens., vol. 54, nos. 2–3,
pp. 83–94, Jul. 1999.

[40] A. Kashani, M. Olsen, C. Parrish, and N. Wilson, “A review of LiDAR
radiometric processing: From ad hoc intensity correction to rigorous
radiometric calibration,” Sensors, vol. 15, no. 11, pp. 28099–28128,
Nov. 2015.

[41] D. Bolkas and A. Martinez, “Effect of target color and scanning
geometry on terrestrial LiDAR point-cloud noise and plane fitting,”
J. Appl. Geodesy, vol. 12, no. 1, pp. 109–127, Jan. 2018.

[42] R. Narayanan, H. B. Kim, and G. Sohn, “Classification of SHOALS
3000 bathymetric LiDAR signals using decision tree and ensemble
techniques,” in Proc. IEEE Toronto Int. Conf. Sci. Technol. Humanity
(TIC-STH), Sep. 2009, pp. 462–467.

[43] R. M. Soldado and C. U. Almagro, “An overview
of BRDF models,” Univ. Granada, Granada Spain,
Tech. Rep. LSI-2012-001, Mar. 2012. [Online]. Available:
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-
001TR.pdf

[44] D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross,
“BRDF representation and acquisition,” in Proc. 37th Annu. Conf. Eur.
Assoc. Comput. Graphics: State Art Rep., 2016, pp. 625–650.

[45] W. Boehler, M. B. Vicent, and A. Marbs, “Investigating
LASER scanner accuracy,” XIXth Int. Symp., Antalya, Turkey,
i3mainz, Inst. Spatial Inf. Surveying Technol., FH Mainz,
Holzstrasse, Mainz, Germany, Tech. Rep., 2003. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485.5642&
rep=rep1&type=pdf

[46] DJI. (2020). Zenmuse L1 Specs. [Online]. Available: https://www.dji.
com/zenmuse-l1/specs

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

3000518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[47] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys, “SEMANTIC3D: A new large-scale point cloud classifi-
cation benchmark,” in ISPRS Ann. Photogramm., Remote Sens. Spatial
Inf. Sci., vol. IV-1-W1, pp. 91–98, Apr. 2017.

[48] H. Caesar et al., “NuScenes: A multimodal dataset for autonomous
driving,” 2019, arXiv:1903.11027.

[49] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” 2017, arXiv:1711.03938.

[50] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” 2017,
arXiv:1705.05065.

[51] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “Blensor: Blender
sensor simulation toolbox,” in Advances in Visual Computing, G. Bebis
et al., Eds. Berlin, Germany: Springer, 2011, pp. 199–208.

Alfonso López received the B.Sc. degree in com-
puter science and the M.Sc. degree in computer
science from the University of Jaén, Jaén, Spain, in
2019 and 2020, respectively.

He is a Pre-Doctoral Fellow and an Assistant
Professor with the University of Jaén. His research
interests include fields in computer graphics, such
as GPU computing, rendering techniques, geometric
algorithms, and image processing, as well as the
fusion and applications of remote sensing data from
real-world environments.

Carlos J. Ogayar received the M.Sc. degree in
computer science and the Ph.D. degree in computer
science from the University of Granada, Granada,
Spain, in 2001 and 2006, respectively.

He is an Associate Professor of computer sci-
ence with the University of Jaén, Jaén, Spain. His
research is focused on GPU computing, geometric
algorithms, virtual reality, and 3-D scanned data
processing.

Juan M. Jurado received the M.Sc. degree in
computer science from the University of Jaén,
Jaén, Spain, in 2017, the M.Sc. degree in high-
performance computing (HPC) from the University
of A Coruña, A Coruña, Spain, in 2020, and the
Ph.D. degree in computer science from the Univer-
sity of Jaén, in 2020.

He is an Assistant Professor with the Depart-
ment of Computer Science, University of Jaén. His
research interests are mainly computer graphics and
remote sensing.

Francisco R. Feito received the B.Sc. degree in
mathematics from the Complutense University of
Madrid, Madrid, Spain, in 1977, and the Ph.D.
degree in computer science from the University of
Granada, Granada, Spain, in 1995.

He is a Full Professor with the Department of
Computer Science, University of Jaén, Jaén, Spain.
He has also been the Head of the Computer Sci-
ence Department, Graphics and Geomatics Research
Group. His research interests include formal meth-
ods for computer graphics, geometric modeling,

computational geometry, geographical information sciences, virtual archeol-
ogy, and precision agriculture.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on April 21,2023 at 15:40:22 UTC from IEEE Xplore. Restrictions apply.

