
CEIG – Spanish Computer Graphics Conference (2021)
A. Chica and L. Ortega (Editors)

A GPU-accelerated LiDAR sensor for generating labelled datasets

Alfonso López1 , Carlos J. Ogayar1 and Francisco R. Feito1

1Department of Computer Science, University of Jaén

Abstract
This paper presents a GPU-based LiDAR simulator to generate large datasets of ground-truth point clouds. LiDAR technology
has significantly increased its impact on academic and industrial environments. However, some of its applications require
a large amount of annotated LiDAR data. Furthermore, there exist many types of LiDAR sensors. Therefore, developing a
parametric LiDAR model allows simulating a wide range of LiDAR scanning technologies and obtaining a significant number
of points clouds at no cost. Beyond their intensity data, these synthetic point clouds can be classified with any level of detail.

CCS Concepts
• Computing methodologies → Simulation environments; Massively parallel algorithms; Rendering;

1. Introduction

LiDAR (Light Detection and Ranging) provides valuable informa-
tion about surfaces, objects or phenomenon without physical con-
tact. This active remote sensing technique provides precise 3D co-
ordinates as well as reflectance data for a laser wavelength. Thus,
this technology presents a wide range of applications, from quality
control or structural damage to autonomous navigation. Further-
more, it has greatly evolved through improvements based on data
acquisition speed, maximum range, precision or accuracy. There
also exists a wide variety of LiDAR sensors whether we consider
their capabilities or the platform from where they are operated.

The use of LiDAR data has significantly increased for multi-
ple processes and applications, e.g. autonomous driving [LMZ∗20]
or Deep Learning methods [LSL∗19], where the main objective is
to identify surveyed surfaces. Nevertheless, acquiring ground-truth
data is a challenging task due to time and hardware requirements.
Therefore, simulating a LiDAR allows obtaining as many datasets
as needed at no cost. Also note that resulting points can be en-
riched with further information beyond their 3D position and inten-
sity data, such as their class. On the other hand, a naive simulator
can produce more realistic results by considering both systematic
and random errors reported for LiDAR sensors.

Our work presents a generic simulator accelerated with Graph-
ics Processing Unit (GPU) hardware to reduce the response time,
as it is capable of casting millions of beams. To achieve this, we
use the OpenGL framework for rendering the environment and the
LiDAR results, as well as for developing massively parallel meth-
ods through general-purpose compute shaders. In addition, we also
aim to generate labelled datasets that could be used as input data
for Deep Learning (DL) based methods, mainly for segmentation
and recognition of structures.

2. Related works

Over the last decades, several works have proposed LiDAR sim-
ulators, although their applications and results differ significantly
from each other. Some studies are focused on calibrating a Li-
DAR sensor [LCL20], optimizing the scanning process [WBU20]
or supporting autonomous driving [LMZ∗20]. However, most of
the works benefit from the use of synthetic environments. Beyond
research purposes, there are other systems aimed at the configu-
ration of complex simulated sensors in order to fine-tune all their
parameters. Physically-based propagation of laser beams has also
been widely studied [Zoh20].

Regarding simulation performance, few works have previously
assessed the use of GPU acceleration [PLK08]. Furthermore, we
can find commercial software applied to autonomous driving, such
as LGSVL (LG) or Simcenter (Siemens Software), with a limited
capacity of ray emission. Another relevant part of a LiDAR simula-
tor is to include artificial errors during the process. Both systematic
and random errors depend on several aspects [LM07], including
missing points, non-uniform density, cluttering, occlusion or dis-
tortion of point properties. Thus, a precise simulation of a LiDAR
sensor is a challenging task, both algorithmically and in terms of
behaviour. The goal of this work is to develop a GPU-based sim-
ulator that outputs an annotated point cloud with intensity data as
fast as possible. As our work is aimed at the training of neural net-
works, we propose a simulation that obtains discrete laser returns
instead of full-waveform profiles. Furthermore, providing results
that are not completely physically accurate tends not to be a signif-
icant problem, as only the position and colour of points are used.
Not to mention that point clouds are typically oversegmentated into
small regions due to their size and noise.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://orcid.org/0000-0003-1423-9496
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0001-8230-6529


A. López & C. J. Ogayar & F. R. Feito / A GPU-accelerated LiDAR sensor for generating labelled datasets

Figure 1: Workflow of our LiDAR application. A procedural or static environment is first loaded and classified using tags defined before
execution. Then, a non-bathymetric LiDAR simulation is launched over the previous scene.

3. Synthetic environments

The proposed LiDAR sensor is applied to synthetic environments
similar to world scenes, as the resulting points aim to serve as train-
ing datasets for DL algorithms. Accordingly, we propose the use of
environments composed of CAD models. However, static scenes
harden the efficient generation of several point clouds, since mod-
els must be labelled previously in order to obtain classified points.
To solve this problem, we introduce procedural modelling of en-
vironments. More specifically, we include forest environments for
simulating the airborne LiDAR. As opposed to large-scale systems,
terrestrial LiDAR is mainly tested with indoor scenes.

The realism of our procedural scene is enhanced by applying a
hydraulic erosion algorithm to a steep terrain representation. Then,
vegetation is included as low-polygonal trees and grass models
that are randomly spread across the terrain, whereas water is mod-
elled as a planar surface. To instantiate vegetation, we calculate
a weighted sum of terrain slope and distance to water and use a
threshold factor to determine whether an instance is added to the
environment. Some additional features are introduced considering
the LAS 1.4 (LASer) standard file format, which has been exten-
sively used to represent LiDAR point clouds. This file format de-
fines 18 encoded categories. Thus, two additional classes, such as
transmission tower or building, are also instantiated to extend the
number of active labels during the airborne simulation.

Before LiDAR simulation, synthetic environments are labelled
by associating classes with models within the scene. Therefore, this
is a time-consuming task that is much more efficient for procedu-
ral environments. Scenes can be annotated by either using the LAS
standard or a custom classification with any level of detail, thus
increasing significantly the number of objects that can be distin-
guished. Figure 1 shows a forest labelled with custom semantic
tags, whereas the resulting point cloud is annotated with LAS la-
bels.

4. Data structure for spatial indexing

The described environments are represented by triangle meshes
ranging from a few thousand primitives to several million trian-
gles. Therefore, solving millions of collisions in a reduced response
time is a cumbersome task. However, the main challenge is to in-
dex a scene in an efficient spatial data structure to speed up the

search process. A conventional data structure for ray-tracing appli-
cations is the Boundary Volume Hierarchy (BVH), a binary tree
of axis-aligned bounding boxes (AABB), where its leaves repre-
sent the scene primitives. Therefore, nodes are merged up until
the root is reached (Figure 2). Given the complexity of building a
BVH, we implement the massively parallel methodology described
in [MB18]. For traversing the BVH, we start by the root node and
descend into the tree, discarding large parts of the scene while
searching for the nearest collision.

Figure 2: Boundary Volume Hierarchy for lower-polygon San
Miguel scene (5,6 million triangles and 16,8 million vertices).

5. LiDAR simulation

Once we have built several environments, we proceed to describe
a LiDAR simulation focused on terrestrial and airborne laser scan-
ning, i.e. TLS and ALS. The behaviour of both LiDAR sensors is
simulated with different parameters based on their positioning and
movement. However, here we aim to describe a generic simula-
tion by avoiding in-depth details. Despite the different behaviour
of each simulation, they can be implemented using a generic work-
flow.

5.1. Laser emission

A LiDAR simulation starts by propagating LiDAR beams/pulses in
the 3D world. Although emitted pulses are physically represented

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



A. López & C. J. Ogayar & F. R. Feito / A GPU-accelerated LiDAR sensor for generating labelled datasets

as cylinders or cones for collimated or diverging beams respec-
tively, the discretization of a pulse into several rays allows obtain-
ing faster results. Thus, the simulation is more precise and time-
consuming if the number of discrete rays increases. For a TLS,
we use a reference position from where rays are originated, acting
as both emitter and receiver of our LiDAR sensor. The number of
rays to be instantiated depends on the horizontal and vertical res-
olution, i.e. the number of subdivisions of a spherical projection.
However, the whole space is not frequently covered. Accordingly,
the surveyed space is bounded by the horizontal and vertical aper-
ture angle. We have assumed that the number of channels was one
(nc← 1), whereas high-resolution requirements are better handled
with multiple channels, represented by a set of interleaved posi-
tions. Thus, the vertical aperture angle is equally split into nc, al-
though a small overlap can be included through simulation parame-
ters. To avoid some unwanted visual effects due to the overlapping
of a large number of points with repeating patterns, the rays are
jittered with a magnitude of δ through a random uniform function.
However, note that we can exchange the distribution of randomized
buffers used along this process.

For airborne LiDAR, the scanning procedure changes mainly
due to the mobile platform and the projection domain. We imple-
ment several scanning patterns, from parallel to elliptical or zigzag
surveys, whereas custom paths obtained from the user input are
also enabled in our simulation. Regarding the projection domain,
a planar projection is enough for a single viewpoint instead of a
spherical projection. Accordingly, the field of view is limited, and
the scanning session is defined by its scanning frequency, given by
the number of scans and pulses per second as well as the movement
speed of the mobile platform.

Despite the simplicity of the methodology, generating the buffer
of rays in the CPU is a time-consuming task. Note that the number
of rays significantly increases when a pulse is discretized as mul-
tiple rays. Therefore, we generate the emitted rays in GPU so that
each thread handles a different pulse. Randomness is introduced by
using a large buffer of noise for a random distribution, which rep-
resents a circular buffer for the significant number of threads. On
the other hand, we cope with the limited memory in GPU by split-
ting the generation methodology into several batches, and the same
applies to the behaviour described in the next section.

5.2. LiDAR behaviour

This section aims to describe a generic interaction with object sur-
faces, both for TLS and ALS sensors. For the sake of simplicity, the
methodology here proposed is represented by different stages (i.e.
shaders) to induce synchronous memory accesses. Also, note that
several batches are needed to dispatch the same routine whether the
number of rays exceeds a threshold. The following list enumerates
the steps used for each iteration:

1. Find collisions. Given the aforementioned BVH traversal, each
ray is handled by a different thread. Thus, the goal is to find the
collision with the scene.

2. Reduce rays. Although pulses are discretized, they generate a
single return at most per iteration. Hence, the nearest collision is
identified, whereas adjacent intersections are checked to deter-
mine if they collided with the same chunk of surface. Whether

Figure 3: Returns generated after the first collision over a proce-
dural scene. The same configuration is applied to a single tree (up-
per right image) to show how pulses advance through the canopy.

they do not, rays continue their path during multiple iterations
as long as they do not overcome LiDAR capabilities. Multiple
returns are especially relevant for our procedural environment,
as they allow penetrating the forest canopy to reach the ground
(Figure 3). Furthermore, multiple errors are simulated in this
stage by distorting the position. First, mirror-like surfaces sim-
ulate the ’time-walk’ effect, which makes objects appear more
distant than they are. For the procedural environment, terrain-
induced translations may also appear due to its slope.

3. Intensity evaluation. Beyond their 3D position, collisions are
further completed with their intensity data using the LiDAR
equation. Note that surface materials are a key factor in this
equation. For that reason, objects are associated with a mate-
rial and its corresponding BRDF, thus defining its backscatter-
ing behaviour as well as its diffuse and specular colours.

4. Generation of outlier points. Whether we consider the point
cloud is not virtually noise-free, it is relevant to substitute some
intersections with noise whose source is the scanning technique
or environmental conditions. With the aforementioned buffer of
random values, a threshold and the set of colliding rays in the
last iteration, outliers are defined using the ray equation. There-
fore, outliers are visible along the pulse path.

5. Update of returns. Once the pulses have stopped their propa-
gation, collisions are updated with the total number of returns
generated by a pulse. Thus, the canopy can be filtered out by
retrieving points that are the last collision of each pulse. How-
ever, that does not guarantee retrieving only ground points due
to dense forest canopies.

6. Evaluation

We have evaluated our solution with two scenes of different com-
plexity, ranging from 330 thousand points (Conference scene) to
nearly 10 million points (procedural forest). Both environments are
tested against several LiDAR configurations, represented by their
number of pulses (np) and discrete rays (nr). Results are reported
both for CPU and GPU implementations, as the main objective of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



A. López & C. J. Ogayar & F. R. Feito / A GPU-accelerated LiDAR sensor for generating labelled datasets

Table 1: Response time of a TLS scanning session for multiple spa-
tial resolutions. The massively parallel method (GPU) is compared
to a sequential implementation (referred to as CPU method).

Stage

np Method Ray Instancing LiDAR Behaviour

1M
GPU 0,068s 0,177s
CPU 3,345s 8,663s

5M
GPU 0,208s 0,675s
CPU 15,396s 39,152s

10M
GPU 0,412s 1,39s
CPU 32,349s 83,223s

20M
GPU 0,835s 3,034s
CPU 64,607s 165,775s

this work is to show the GPU speedup. Furthermore, the response
time is split into Ray generation and LiDAR behaviour. Measure-
ments were performed on a PC with Intel Core i9-9900 3.1 GHz,
48 GB RAM, RTX 2080 Ti GPU with 11 GB RAM. The proposed
methodology is implemented in C++ along with OpenGL (Open
Graphics Library) both for rendering and developing massively par-
allel algorithms through general-purpose compute shaders.

Table 1 shows the reported response time of a terrestrial LiDAR
for a scene of 330k triangles, using only one ray and covering
360◦x150◦. The resolution varies depending on the aimed num-
ber of pulses. On the other hand, Table 2 shows the evaluation of
an ALS sensor for an environment of 10M triangles. The number
of ALS beams increases significantly, as each pulse is composed
of 5 or 15 rays, and so does the algorithmic complexity since we
simulate up to 5 returns to reach the forest ground.

From the results, we can observe that our GPU methodology sig-
nificantly improves the sequential implementation. Note that the
response time in the CPU is considerably higher for LiDAR be-
haviour, since solving the BVH-ray collision is a well-known time-
bottleneck. To avoid this, our GPU method solves the collision of
each ray in a different thread. Hence, the response time increases
linearly as a function of the number of rays. Accordingly, the delay
induced by threads managing multiple rays (related to pulse con-
cept) is irrelevant in the reported response time.

7. Conclusions and future work

We have explored a generic LiDAR simulator that is massively ac-
celerated through GPU hardware, thus allowing us to obtain la-
belled datasets in a reduced response time. The benefits of using
procedural scenes for generating annotated datasets were proved
throughout this work. Furthermore, we also developed a sequen-
tial method to evaluate the performance enhancement of the paral-
lel methodology. Accordingly, scanning sessions solved in several
minutes by the sequential method were simulated in a few seconds
by our GPU methodology. Nevertheless, in future work, we would

Table 2: Response time of an airborne LiDAR with parallel scan-
ning pattern using several configurations with a different number
of pulses and rays within a pulse.

Stage

np Method nr Ray Instancing LiDAR Behaviour

1M

GPU 5 0,355s 1,155s
CPU 5 1,533s 160,530s

GPU 15 0,984s 2,226s
CPU 15 4,258s 354,640s

5M

GPU 5 1,724s 4,44s
CPU 5 10,739s 797,615s

GPU 15 4,159s 9,711s
CPU 15 27,004s 1.783,889s

like to further optimize the procedure and reduce the use of mem-
ory to simulate more pulses per batch.

Acknowledgements

This work has been partially supported by the Spanish Ministry of
Science, Innovation and Universities and the European Union (via
ERDF funds), through the research projects TIN2017-84968-R and
RTI2018-099638-B-I00.

References
[LCL20] LEE G., CHEON J., LEE I.: Validation of LIDAR cali-

bration using a LIDAR simulator. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLIII-B1-2020 (Aug. 2020), 39–44. doi:10.5194/
isprs-archives-xliii-b1-2020-39-2020. 1

[LM07] LOHANI B., MISHRA R.: Generating lidar data in laboratory:
Lidar simulator. Int. Arch. Photogramm. Remote Sens. 52 (01 2007). 1

[LMZ∗20] LI Y., MA L., ZHONG Z., LIU F., CHAPMAN M. A., CAO
D., LI J.: Deep Learning for LiDAR Point Clouds in Autonomous Driv-
ing: A Review. IEEE Transactions on Neural Networks and Learning
Systems (2020), 1–21. doi:10.1109/TNNLS.2020.3015992. 1

[LSL∗19] LIU W., SUN J., LI W., HU T., WANG P.: Deep learning on
point clouds and its application: A survey. Sensors 19, 19 (Sept. 2019),
4188. doi:10.3390/s19194188. 1

[MB18] MEISTER D., BITTNER J.: Parallel locally-ordered clustering
for bounding volume hierarchy construction. IEEE Transactions on
Visualization and Computer Graphics 24, 3 (Mar. 2018), 1345–1353.
doi:10.1109/tvcg.2017.2669983. 2

[PLK08] PEINECKE N., LUEKEN T., KORN B. R.: Lidar simulation
using graphics hardware acceleration. In 2008 IEEE/AIAA 27th Digi-
tal Avionics Systems Conference (Oct. 2008), IEEE. doi:10.1109/
dasc.2008.4702838. 1

[WBU20] WESTLING F., BRYSON M., UNDERWOOD J.: SimTreeLS:
Simulating aerial and terrestrial laser scans of trees. arXiv:2011.11954
[cs, eess] (Nov. 2020). arXiv: 2011.11954. 1

[Zoh20] ZOHDI T.: Rapid simulation-based uncertainty quantification of
flash-type time-of-flight and lidar-based body-scanning processes. Com-
puter Methods in Applied Mechanics and Engineering 359 (Feb. 2020),
112386. doi:10.1016/j.cma.2019.03.056. 1

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://doi.org/10.5194/isprs-archives-xliii-b1-2020-39-2020
https://doi.org/10.5194/isprs-archives-xliii-b1-2020-39-2020
https://doi.org/10.1109/TNNLS.2020.3015992
https://doi.org/10.3390/s19194188
https://doi.org/10.1109/tvcg.2017.2669983
https://doi.org/10.1109/dasc.2008.4702838
https://doi.org/10.1109/dasc.2008.4702838
https://doi.org/10.1016/j.cma.2019.03.056

