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Hyperspectral data are being increasingly used for the characterization and understanding of real-
world scenarios. In this field, UAV-based sensors bring the opportunity to collect multiple samples
from different viewpoints. Thus, light-material interactions of real objects may be observed in outdoor
scenarios with a significant spatial resolution (5 cm/pixel). Nevertheless, the generation of hyperspec-
tral 3D data still poses challenges in post-processing due to the high geometric deformation of images.
Most of the current solutions use both LiDAR (Light Detection and Ranging) and hyperspectral sensors,
which are integrated into the same acquisition system. However, these present several limitations
due to errors derived from inertial measurements for data fusion and the spatial resolution according
to the LiDAR capabilities. In this work, a method is proposed for the generation of hyperspectral
point clouds. Input data are formed by push-broom hyperspectral images and 3D point clouds. On
the one hand, the point clouds may be obtained by applying a typical photogrammetric workflow
or LiDAR technology. Then, hyperspectral images are geometrically corrected and aligned with the
RGB orthomosaic. Accordingly, hyperspectral data are ready to be mapped on the 3D point cloud.
This procedure is implemented on the GPU by testing which points are visible for each pixel of the
hyperspectral imagery. This work also provides a novel solution to generate, compress and render 3D
hyperspectral point clouds, enabling the study of geometry and the hyperspectral response of natural
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and artificial materials in the real world.
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1. Introduction

The realistic modeling of material appearance has been widely
studied in Computer Graphics. Accurate and reliable acquisition
of either Bidirectional Texture Function (BTF) or even Bidirec-
tional Reflectance Distribution Function (BRDF) is a challenging
task, and only a few measurement systems exist. The exploration
of hyperspectral imaging opens the possibility to study the ma-
terial’s behavior beyond the human visible range. Recent work
is presented for the acquisition of hyperspectral data through a
goniophotometer and modeling the BRDF of measured objects [1].
Another method was proposed for the efficient acquisition of
spectral BRDFs in outdoor scenarios using a UAV-based (Un-
manned Aerial Vehicle) hyperspectral camera [2]. These advances
lead us toward the generation of real-world material databases,
which are highly used for rendering photorealistic scenes, virtual
interior design in architecture, the game industry, etc. These
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applications can be enhanced by the increasing availability of
real-world scenarios, which can be efficiently reconstructed using
versatile platforms.

The use of hyperspectral sensors mounted in UAVs brings up
new opportunities to explore high-resolution spectral analysis.
The light-material interactions can be observed from
multiple viewpoints through a wide range of bands to charac-
terize the spectral behavior of surveyed entities in real-world
scenarios. The spectral imaging technology was originally used
in Earth remote sensing applications, mainly in aerial surveil-
lance. It represented a true revolution in satellite-based remote
sensing, allowing first the acquisition of multispectral images, a
group of few bands belonging to the visible and near-infrared
(VNIR) spectral region. Recent technological developments have
enabled the arrival of novel platforms capable of overcoming the
major issues associated with both manned aircraft and satellites
while simultaneously improving spectral and spatial resolutions.
UAV plays an important role in allowing a better understanding
of the earth’s system phenomena through 3D modeling and
hyperspectral spectral characterization.

In the last few years, novel solutions are proposed that rely on
the mechanical integration of LiDAR sensors and hyperspectral
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cameras for the generation of 3D spectral data. Despite the
progress made in the fusion of multi-sensor data acquired with
drones [3-5], to our knowledge, there is no software solution
capable of automatically enriching 3D point clouds with hyper-
spectral imagery. In addition to the geometric features, the study
of hyperspectral data distribution along the reconstructed sur-
faces helps us to approach non-trivial tasks such as the modeling
of complex surface reflectance characteristics, including specu-
larities, interreflections, transparencies, or subsurface scattering
under variable and general observation conditions.

In this paper, we propose a pipeline for the generation, com-
pression, and rendering of dense hyperspectral point clouds. The
proposed methodology aims to enable hyperspectral analysis in
3D space. Our method is capable to integrate hyperspectral im-
ages into 3D models acquired from the real world using LiDAR
sensors or photogrammetric techniques. The main contributions
of this paper can be summarized as:

1. Hyperspectral image mapping on a high-resolution point
cloud.

The development of a spatial data structure for hyperspec-
tral orthomosaic compression.

The hyperspectral point cloud rendering.

2.

3.

The remainder of this paper is organized as follows: related
work is summarized in Section 2, which allows understanding the
current state of development. In Section 3, the proposed pipeline
for the generation of hyperspectral point clouds on the GPU is
explained. Experimental results in terms of performance analysis
are described in Section 4. The main conclusions drawn by the
development of this work are presented in Section 5.

2. Related work

Hyperspectral data acquisition. In the last years, hyperspec-
tral data acquisition has significantly increased, benefiting from
the use of more cost-effective sensors and versatile platforms.
On the one hand, traditional systems, which are deployed in
the laboratory, are currently more efficient and capable of get-
ting accurate spectral measurements of isotropic and anisotropic
materials. These are gaining in accuracy, efficiency, and ease of
use. At the laboratory level, the most accurate and well-known
technique for collecting the optical features of any real-world
material is the use of a goniophotometer [6,7]. Different variants
of this configuration have been developed either to obtain better
results in anisotropic materials, to take into account refraction
phenomena or even to obtain normal maps, or other character-
istics that allow the sample to be modeled synthetically [8-10].
Nevertheless, these acquisition setups are usually expensive and
require to be mounted considering a list of laboratory constraints.

On the other hand, image-based acquisition techniques are
a valuable alternative in which the use of a camera together
with a suitable procedure to give validity to the results has also
extended its use over the last years [11,12]. Moreover, these
techniques are particularly suited to data acquisition in real envi-
ronments. Jurado et al. [2] proposed a novel method for acquiring
the spectral reflectance of materials using UAVs equipped with
both an RGB camera and a hyperspectral sensor. In terms of
the contribution of UAV-based hyperspectral imaging (HSI) for
material recognition, some methods have been proposed to clas-
sify agricultural materials [13,14] and different types of human
objects [15,16]. Despite its radiometric accuracy, the resulting hy-
perspectral images present a high geometric deformation, which
makes its combination with other data sources difficult. This
problem was approached by Jurado et al. [17] and proposed a
method for geometric alignment between hyperspectral images
and high-resolution RGB imagery.
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Nowadays, a multidisciplinary research field is focused on
hyperspectral data capture for developing applications related
to computer graphics, remote sensing and computer vision. In
addition, there are other applications of hyperspectral imagery
that require data at a microscopic level. Gao and Smith [18]
summarized the principles ruling the acquisition of hyperspectral
imaging, especially at a microscopic scale in biomedical applica-
tions. Pu et al. [19] reviewed hyperspectral imaging techniques
for food quality and safety detection.

3D reconstruction of real-world scenarios. The modeling
of real-world scenarios has enjoyed great interest by both the
industry and academia to improve the visualization and inter-
pretation of surveyed areas and phenomena. Over the past years,
the production of high-resolution cameras and recent advances
in LiDAR technology allow us to get a detailed 3D model of
real-world scenarios. Likewise, the use of UAV platforms makes
easier the capture of target entities from multiple viewpoints.
Accordingly, a wide variety of natural and urban scenarios can
be efficiently reconstructed for multiple purposes, from forest
monitoring [3,20,21] to urban planning [22-25]. In particular, a
wide variety of sensors has burst onto the market for captur-
ing the three-dimensional features of natural and urban envi-
ronments. Some examples of these acquisition technologies and
methods are Radio Detection and Ranging (RaDAR) [26], Light
Detection and Ranging (LiDAR) [27] and Structure-from-Motion
(SfM) [28]. The geometry can be extracted following image-based
approaches and either terrestrial or aerial LiDAR scans. Regard-
less of the method employed, a georeferenced point cloud is
obtained including additional information such as the RGB color
corresponding to the area represented by each of these points.

In general, 3D point clouds are commonly used to represent
complex surfaces of the real world. In contrast to triangle meshes,
they enable a simpler, denser and more close-to-reality represen-
tation [29]. The improvement in the acquisition and processing
techniques used in photogrammetry [30] along with the low costs
of acquiring detailed and reliable 3D information, transformed
photogrammetric-related approaches into a proper alternative to
specific sensors such as LiDAR and laser scanners [31]. Thus, as
long as the implemented configurations ensure the acquisition
of a set of overlapping images, high-density point clouds and 3D
meshes can be obtained, opening up a set of possibilities using
aerial or ground imagery.

Hyperspectral data fusion. Recent work is presented for the
integration of 3D models and multi-source data. The image-based
fusion of spectral and geometric features of natural and arti-
ficial objects is, in fact, the problem of mapping pixels from
these images to 3D points with (x, y, z) coordinates. The aim is
to generate a 3D model, which can be automatically enriched
with multi-source measured data. This model can be fed with
information from different sensors. For instance, Zia et al. [32]
developed a method that applies SfM to images from different
wavelengths and a 3D registration method to combine band-
level models into a single 3D model. Kim et al. [33] described a
prototype system composed of a laser sensor and a hyperspectral
imager to characterize solid objects. Jurado et al. [34] proposed
an out-of-core method that enables the on-site processing and
visualization of captured data by using collaborative 3D virtual
environments. Parallel and remote computing are addressed for
multispectral image mapping and occlusion on huge 3D models.
Other works were capable of merging hyperspectral data in 3D
models generated from standard RGB cameras or laser scanning,
which enabled the 3D geological modeling [35] or 3D mapping
of underwater environments [36]. Liu et al. [37] provided an in-
depth review of HSI and 3D technologies for plant phenotyping by
analyzing the literature from close-range applications to remote
sensing.
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Fig. 1. The overall approach proposed for the generation of 3D hyperspectral point clouds. The starting point cloud is firstly sorted and shuffled to enhance its
rendering. Hyperspectral swaths are then corrected and fused to build an orthomosaic. This result is projected into the RGB point cloud, previously voxelized to
obtain the visible points. The hypercube is compressed according to a stack-based representation.

As stated above, the processes to deal with such amounts of
3D data and hyperspectral images are computationally demand-
ing. One way of reducing this computational cost is GPU-based
parallelization [38,39]. Hyperspectral image processing can take
advantage of the computing capabilities of cloud computing or
current graphics cards to manage amounts of images [40], per-
form image analysis by quaternion moments [41] or 3D point
clouds. Massive data processing is a trend topic line that arouses
the interest of multidisciplinary research. However, there are still
many limitations that should be addressed. In this study, our
effort is twofold: we aim to accelerate the whole pipeline using
compute shaders for hyperspectral image mapping on the point
cloud whereas reducing the memory footprint through a spatial
data structure aimed at compressing the hypercube.

3. Our method

The proposed approach is based on the efficient generation
of hyperspectral point clouds with a low-memory footprint. To
this end, the complete procedure is developed on the GPU us-
ing OpenGL’s compute shaders, both for building and rendering
the 3D hyperspectral point cloud. Firstly, the rectification and
alignment of hyperspectral images with RGB images are briefly
explained according to previous work. Then, hyperspectral im-
ages are projected into an 3D RGB point cloud. Throughout the
projection procedure, several optimization methods are proposed
to address both compression and color aggregation challenges.
Once the point cloud is built, its rendering is also approached us-
ing GPU-based optimizations concerning visualization and frame
rate for large point clouds. Fig. 1 shows the main steps of the
proposed pipeline. The 3D reconstruction of the high-resolution
point cloud, as well as the acquisition procedure of hyperspectral
data is out of the scope of this study. Our aim is focused on data
processing and compression for the generation and rendering of
dense hyperspectral point clouds.
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3.1. Hyperspectral alignment and rectification

The main challenge of post-processing hyperspectral imagery
is their high geometrical distortion. Push-broom hyperspectral
sensors provide high spectral resolution data, but their scanning
acquisition architecture imposes more challenges to creating geo-
metrically accurate mosaics from multiple hyperspectral swaths.
This is the first step before data analysis and this task remains
a time-consuming and complex processing workflow. In order to
provide an efficient solution to correct the image deformation,
Jurado et al. [17] proposed a fully automatic method based on
an iterative approach to align hyperspectral swaths with an or-
thorectified RGB mosaic. This method is replicated in our work
for the correction of image distortion. In order to make this study
self-contained, a brief description is presented as follows.

The main steps for the generation of hyperspectral orthomo-
saics from the alignment of individual and preprocessed hyper-
spectral swaths are: (1) image subdivision, (2) feature detection,
(3) matching and homography calculation, (4) image transforma-
tion, and (5) validation. Firstly, each hyperspectral swath is sub-
divided into multiple fragments since the geometric deformation
varies along the image, being higher on borders. Second, feature
detection is developed in order to collect a set of keypoints
for each hyperspectral image fragment and the RGB orthophoto
through Oriented FAST and Rotated BRIEF (ORB) algorithm [42].
In this phase, we aim to search the best matches in both images
based on the calculation of the Hamming distance [43]. Once the
matches are obtained, the next step consists of the calculation of
the homography. This transformation is estimated in order to fit
the position of every pixel of the hyperspectral fragment allowing
to achieve a better alignment with the RGB orthophoto used as
reference. To consider a valid homography, the resulting error in
the alignment must be lower than five pixels. The accuracy of the
alignment between the RGB orthophoto mosaic and hyperspectral
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Fig. 2. Hyperspectral swaths for green wavelength and reconstructed orthomo-
saic using penalty based functions.

swaths is assessed using a validation mask for each image, where
control points are represented as unique color combinations. Each
control point is manually located in meaningful places such as
corners, and key-objects that can easily be recognized in both
hyperspectral and RGB imagery. Then, the method is capable of
registering the visible markers for each fragment. Thus, the re-
sulting image transformation from the estimated homography is
applied and the Euclidean distance is calculated from the position
of the projected marker to its corresponding pixel in the RGB or-
thophoto mosaic. If the error is above the tolerated threshold, the
process is iterated by varying the length of the target fragment.

In this study, this approach is followed in order to correct
the distortion of UAV hyperspectral swaths. The next step is to
generate the hyperspectral orthomosaic and image mapping on
the high-resolution point cloud.

3.2. Generation of the hyperspectral orthomosaic

Once hyperspectral swaths are corrected and merged with
RGB imagery, both datasets are registered in the Universal Trans-
verse Mercator (UTM) system. Instead of using individual swaths,
these can be merged into a single hyperspectral orthomosaic that
can be efficiently sampled from the point cloud. Firstly, the offset
and size of each swath is known in the UTM system. There-
fore, the resulting orthomosaic is initialized combining the 2D
axis-aligned bounding box (AABB) of every swath. Accordingly,
each hyperspectral pixel can be mapped to a pixel of the final
orthomosaic.

Reflectance may vary among hyperspectral swaths, and conse-
quently, values colliding on a pixel can differ from one another.
These radiometric differences can be explained by acquisition
conditions or errors induced by sensors (e.g., the striping phe-
nomenon) [44], among others. However, we do not intend in this
work to solve systematic errors which can be partially removed
as a post-processing task. Instead, penalty functions are used as
described by Paternain et al. [45] to obtain the most accurate
reflectance from multiple swaths.

A local penalty function P : R> — R computes the penalty
of samples x; with respect to a given aggregator function y as
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indicated in Eq. (1):
(1)
These penalty functions should satisfy the following conditions:
P(x;,y)=0
P(xi,y) >0
P(xi,y) = P(x;, y)

A discriminator function measures the error from each ag-
gregation result to the starting hyperspectral swaths. Then, a
dissimilarity function D accumulates the penalties of each set (X)
of overlapping samples in a given pixel with respect to a given
aggregation function y, as indicated in Eq. (2).

D(X,y) =Y P(xi,y)

xieX

P(xi,y) = (x — y)*

VXi=y
Vxi £y
X = y| > [x —y|

(2)

(3)

The objective of this approach is to select the aggregation
operator y that minimizes the expression in Eq. (3), min, D(X, y).
On the other hand, the aggregation functions are expressed as
n-ary functions, Y : R" — R, with the arithmetic mean being
the most straightforward aggregation operator. Other functions
which have been used in this work are the maximum and min-
imum operators, as well as the geometric and harmonic mean,
formally defined as shown in Egs. (4) to (8).

m(X) = minx; (4)
M(X) = maxx; (5)
A = =1 6)
(7)
(8)

The fusion of hyperspectral swaths is performed on the GPU
using OpenGL’s compute shaders (Fig. 3). Therefore, the build-
ing of the orthomosaic is rapidly solved, obtaining the result
depicted in Fig. 2. Note that the workflow is split into several
stages according to the definition of penalty functions, with the
complete procedure being iterated for each hyperspectral layer
and orthomosaic. Firstly, aggregations are computed per hyper-
spectral layer and stored in a Shader Storage Buffer Object (SSBO).
Some of these aggregations are solved per stage, e.g., max and
min functions, while mean operators are only partially solved as
they require a final division. Nevertheless, this calculation can be
performed in the following distance-measuring stages. Therefore,
images are iterated again to compute local penalty functions (P),
whose error is accumulated per aggregation operator, once again,
in an SSBO. The last stage is aimed at selecting the operator ob-
taining the lowest dissimilarity (Fig. 4) to build the orthomosaic
with the corresponding aggregation result.

For optimization purposes, hyperspectral images are repre-
sented as buffers composed of uint8_t values as a rendering-
based discretization of the starting reflectance interval. On the
other hand, aggregation buffers are scaled to uint, as some op-
erators require the sum and product of reflectance samples from
different swaths. Also, this procedure is performed on every hy-
perspectral layer since the selected aggregations may vary among
them. Finally, penalty functions are implemented as subroutines,
and therefore they can be easily exchanged.
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Fig. 4. Point cloud rendered according to the selected aggregation operator for
red (a) and green (b) wavelengths. Non-overlapped areas use the first operator
(maximum).

3.3. Mapping of hyperspectral orthomosaics

Once hyperspectral orthomosaics are built, they can be pro-
jected into a point cloud where both structures are positioned in

271

Computers & Graphics 106 (2022) 267-276

a common coordinate system, e.g.,, UTM. In this work, the pro-
jection is achieved using an RGB point cloud generated through
SfM. Due to the limited resolution of hyperspectral imagery,
dense RGB point clouds may obtain interpolated, though inac-
curate, hyperspectral samples. Therefore, the point cloud vox-
elization is approached in 2.5D by generating a heightfield whose
dimensionality is defined according to the hyperspectral res-
olution. The flight was planned to acquire nadir images and
accordingly, occlusion is intrinsically taken into account with
this approach, rather than using oblique directions. Otherwise,
voxelization ought to be performed in 3D. Fig. 6 depicts the
heightfield of an RGB point cloud rendered with uniform color.

Points are processed in the GPU using both their height and
indices within a point cloud batch. The selection of the highest
point is implemented as an atomic block using uint64_t values.
The first 32 bits represent their height (h), whereas the least
significant bits store their index. Although h € R, it can be
transformed into h € N with floatBitsToInt using its bit-
level representation. Hence, the atomicMax operator selects the
highest point while it also carries the index.

The result of this stage is a buffer of 3D points visible from hy-
perspectral swaths. Therefore, large RGB point clouds are down-
sampled depending on the hyperspectral resolution. With a
resolution of 0.067 m, a point cloud of 330M points was reduced
to 17,5M points. From this stage, a hyperspectral point cloud
can be straightforwardly computed once hyperspectral layers are
transferred as textures that can be sampled in the GPU. The
UTM coordinates of each 3D point, originally positioned in a local
coordinate system, are calculated according to the point cloud’s
UTM offset. Hence, the size of the RGB point cloud is significantly
reduced as some points may fall outside the hyperspectral ac-
quisition area. This scenario can be either identified by texture
coordinates out of range (u,v < 0 or u, v > 1) or invalid colors
sampled from the hyperspectral orthomosaic. Also, the computed
orthomosaic is stored as a rectangular texture, and therefore, the
background can be marked using the alpha channel.

The main drawback of this approach is the large size of hyper-
spectral point clouds in environments with low memory capacity,
such as the GPU hardware. For the case study of an RGB point
cloud of 330M points, the hyperspectral mapping can be repre-
sented using 270 layers of 17,5M voxels, i.e., visible points, stored
as uint8_t (grayscale color). Even with a reduced memory foot-
print for colors, this approach represents 4.4 GB. Therefore, the
following subsection is aimed at handling this drawback.

3.4. Hyperspectral data compression

The compression and reduction of hyperspectral datasets have
been widely studied, either for storage optimization [46,47] or
enhancing Machine Learning pipelines by reducing the number
of features (wavelengths) [48]. The hypercube is characterized
by a discrete sampling of a wide wavelength range, either with
a constant or varying sampling frequency. Although it shows
significant changes throughout the complete spectral range, lay-
ers can be significantly compressed when reflectance values are
discretized in [O, 28 [ as occurs for rendering applications.

In this work, the hyperspectral point cloud is compressed
using a stack-based representation, as proposed by Graciano
et al. [49], thus exploiting the similarity of surrounding layers in
the Y-axis, i.e., reflectance (Fig. 5). There exist other lossless data
compression algorithms for hypercubes, though their rendering
and data recovery are not as straightforward as for a stack-based
representation. Accordingly, the CSDS-123 [46,47] is a standard
algorithm to reduce the size of multispectral and hyperspectral
data used in onboard satellites and military drones. Also, it has
been previously accelerated in the GPU [50], although is not
aimed at providing a readable structure for rendering purposes.
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Fig. 5. Stack-based representation for a hypercube of depth 2. For the compact
buffer, only the first column is considered.

Fig. 6. 2.5D voxelization of an RGB point cloud.

With the stack-based approach, the heightfield is first com-
posed of n voxels, determined by the number of visible points
from nadir acquisition points. Then, the hypercube is compacted
by linking layers storing both the spectral response (1 byte), the
number of consecutive layers with such hyperspectral value (2
bytes, as the number of layers may exceed 2%) and the index of
the following layer representation (uint). Therefore, the compact
layer buffer is approached using uint64_t values split into re-
peats (16 bits), following index (32 bits) and color (rest of bits, 16
bits).

Despite this data structure allowing the compression of the
hypercube, its value encoding presents a larger memory alloca-
tion than a voxel grid (8 bits, in comparison with layers of 64
bits). Therefore, a significant compression must be achieved to
tackle a higher element-wise memory allocation. It achieves high
compression rates both on the studied dataset and publicly avail-
able hyperspectral images [51], such as the Pavia Centre (92.13%),
Pavia University (92.19%), Kennedy Space Center (95.43%), Salinas
Valley (96.39%) or Cuprite (96.41%) datasets. However, large point
clouds cannot be stored in a single SSBO. Therefore, they must
be split into several batches, whose size depends on the data
structure representation, the maximum number of layers and
the allocatable memory. Accordingly, current and previous pro-
cesses must be performed per batch. Although the cited structure
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achieves a significant compression, the batch dimension is calcu-
lated prior to compression and therefore is defined according to
a hypercube whose contiguous layers do not overlap their values.

3.5. Point cloud rendering

The visualization of hyperspectral point clouds is relevant for
analyzing further details on the surveyed scenarios. However,
point clouds may not be appropriate for these purposes due to
their gaps when the point density is not high enough. Further-
more, large point clouds harden their traversal and visualization
due to low frame rates. Regarding OpenGL rendering, the stan-
dard method is to use GL_POINTS primitive. However, it has
been shown that compute shaders are capable of significantly
enhancing the frame rate by avoiding a fixed rendering pipeline.
Instead, the points are projected into an image buffer and rapidly
discarded when they lie outside the viewport. Additionally, the
ordering of the point buffer also has a considerable impact on
the frame rate due to load balancing. Therefore, the widespread
sorting based on Morton codes [52] can also be applied to this
problem, though it must be shuffled in small batches to ensure
that the load is uniformly distributed among the GPU threads.
Otherwise, writing operations may be unbalanced on a small set
of threads if the buffer is completely ordered, as the outcome
most likely depend on spatial ordering.

Based on the work of Schiitz et al. [53], the following pipeline
is implemented for rendering both RGB and hyperspectral point
clouds:

1. A depth buffer with the viewport dimensions is computed
using the current point cloud subdivision. Similar to previ-
ous processes, the point depth is encoded along with the
point index (64 bits). Therefore, the atomic minimum se-
lects the minimum depth. However, this approach leads to
a noisy-like rendering for sparse point clouds (Fig. 7). The
depth of a pixel is modified according to its surrounding
pixels. The minimum depth within an area can be com-
puted using modern OpenGL extensions. Data is exchanged
within thread groups whose points fall in the same pixel
using shuffleNV and ballotThreadNV operators. Then,
shuffleXorNV is used to select the minimum value for
each bit, thus computing the minimum depth within a
pixel neighborhood.

. Colors are iteratively accumulated. Note that multiple point
cloud subdivisions may aggregate data. Therefore, accumu-
lations are here implemented as atomic additions, whereas
(red, green) and (blue, alpha («)) channels are encoded as
two different buffers with values of 64 bits. Hence, the
alpha channel is also used for accounting for the number of
visible points at each pixel. The same rendering pipeline is
applied to both RGB and hyperspectral point clouds, though
the second one solely accumulates data in (blue, alpha)
buffer.

3. Accumulated colors are finally transformed by averaging

the mean value for each channel. Pixels with o < 0 obtain
the background color.

As a result of the described compression data structure, colors
are retrieved by traversing stacks, considering the target layer and
the number of repeats per stack layer. Hence, the main concern
is the frame rate for the last stacks. Despite the data structure
achieving a significant compression, the iterative traversal repre-
sents a time-consuming task in OpenGL’s shaders. To tackle this
problem, images are iteratively constructed in a few frames (see
Fig. 8), thus reducing the load of single frames, whereas the user
barely notices the iterative process. To this end, a noise buffer
(N € NKN; € [0, npoins[) is built once to determine which
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Fig. 7. Rendering of RGB (a, b) and green wavelength (c) point clouds with visualization optimizations (b, ¢) and naive compute shader approach (a).

L —h _‘.“tz

Fig. 8. Iterative rendering of a hyperspectral point cloud during several frames, using 10k points per frame.

points are rendered in every frame. The buffer can be shifted in
subsequent frames, allowing to render every visible point and
converging on the result of the normal pipeline. The number of
frames to achieve such a convergence depends on buffer length,
ie., k.

4. Results

We have evaluated the proposed method through its per-
formance in the GPU. To this end, point clouds and images of
different dimensions are used throughout this section. Initially,
hyperspectral imagery has dimensions of 640 x 2000, whereas
each pixel contains 270 bands. However, the correction process
outputs hyperspectral images resized to place swaths within the
RGB orthomosaic. The baseline point cloud is generated with two
different densities: 150M and 330M, though other subsampled
point clouds are generated for the evaluation. Due to the lack
of previous work regarding the efficient generation of 3D hyper-
spectral point clouds, we focus this section on the performance
of individual stages, from the generation of hyperspectral ortho-
mosaics to data compression and rendering. The reported results
are obtained as the average from five different executions.

Measurements were performed on a PC with Intel Core i7-
7700 3.6 GHz, 16 GB RAM, GTX 1070 GPU with 8 GB VRAM (Pascal
architecture), Windows 10 OS. The proposed methodology is im-
plemented in C++ 17 along with OpenGL (Open Graphics Library).
Massively parallel processes are developed in GLSL (OpenGL
Shading Language) using general-purpose compute shaders,
whereas CPU-based methods are accelerated using the OpenMP
(Open Multi-Processing) library for those stages that can be
parallelized.

4.1. Data acquisition

This work has been evaluated over imagery obtained from a
UAV hexacopter (DJI Matrice 600 Pro (M600)) carrying a Head-
wall’s Nano-Hyperspec sensor. The stability of such a sensor is
ensured by a Ronin-MX gimbal, in order to reduce distortions
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during the push-broom data acquisition process. The used lens
presents a focal length of 12 mm, whereas its horizontal field of
view is 21.1°. The acquired lines of pixels have a resolution of
640 x 2000 pixels with 270 spectral bands, ranging from 400 to
1000 nm. The sampling interval is 2.2 nm, though it increases
to 6 nm at half-maximum. The UAV is also equipped with five
global positioning antennas, where only two, mounted in the
arms, are aimed at positioning the hyperspectral data. An Inertial
Measurement Unit (IMU) is also used to account for yaw, roll and
pitch angles. On the other hand, RGB imagery was captured using
a DJI Phantom 4 quadcopter and a CMOS camera with a 2.8 mm
optical lens and 12.4 MP.

Regarding flight planning, the Universal Ground Control Sta-
tion (SPH Engineering, Riga, Latvia) was used for the M600 UAV.
Hyperspectral swaths were collected with 40% side overlap at
an altitude of 100 m, thus acquiring 6 different hyperspectral
strips. The second UAV was managed using The DroneDeploy
(DroneDeploy, San Francisco, CA, USA), acquiring 324 RGB images
at 3.4 cm spatial resolution, with 90% track overlap and 75%
side overlap, speed of 6 m/s and altitude of 80 m from take-off
position.

The study area is located at the University of Tras-os-Montes
e Alto Douro campus, covering 4 hectares. The altitude is 500 m,
though it varies up to 30 m in the acquired area. Ground Control
Points (GCPs) were uniformly distributed in this area to provide
high positional accuracy in contrast to the UAV’s GNSS receiver.
Therefore, imagery is geolocated using five GCPs consisting of
circular targets with a diameter of 0.5 m. Besides GCPs, control
points (CP) are also used to assess the quality of the results. Both
GCPs and CPs were measured with a GNSS receiver based on the
TMOG6/ETRS89 coordinate system.

RGB imagery is processed using Pix4DMapper Pro software
(Pix4D, Lausanne, Switzerland) to generate high-resolution point
clouds through SfM. Firstly, a bundle adjustment is performed
based on the images’ geographic coordinates acquired by the
UAV GNSS receiver and those matching points identified among
several images. Therefore, internal and external camera parame-
ters are also estimated in this stage. The process is enhanced by
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Fig. 9. Response time in milliseconds for the GPU-based approach, stacked per aggregation stage, whereas (b) compares the performance of both CPU and GPU-based
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Fig. 10. Performance of 2.5D voxelization for three different point clouds. Dotted
lines show the results of the CPU-based approach, while solid lines represent
the GPU-accelerated one.

marking the cited GCPs. Then, a dense point cloud is generated
using the highest density configuration.

4.2. Performance analysis

Individual stages of the proposed methodology are evaluated
in this section to show the performance of the overall proce-
dure. Firstly, hyperspectral images are aggregated to compute
a hyperspectral orthomosaic. Despite their low resolution, the
matching procedure outputs a larger image to fit the RGB ortho-
mosaic. Hence, we have assessed the response time for different
image resolutions by scaling it with factors below and above
one. As shown in Fig. 9, the response time is low even for
upscaled imagery (2x, 4x), though this process must be repeated
once per hyperspectral layer. Thus, the aggregation is solved in
130 ms per layer using the starting resolution, whereas the half-
size configuration achieves a significant speedup (74.69%). The
aggregation stage is the main bottleneck, as it implies multiple
operators to be calculated for each pixel. Accordingly, allocation
and reading phases also increment their response time due to
the buffer length. Regarding the CPU versus GPU comparison,
the use of massively parallel algorithms is justified yet for low-
dimensionality imagery. For the starting resolution, the speedup
of GPU version is 92.54%.

Once the hyperspectral orthomosaic is generated, the point
cloud is voxelized in 2.5D to retrieve visible points according to
their height within a voxel. Hence, Fig. 10 shows the response
time for building heightfields of point clouds with different di-
mensionality. Also, the resolution varies from 0.02 m to 2 m,
including the default hyperspectral resolution (0.067 m). Mea-
surements correspond both to the allocation stage and the pro-
cedure itself. Despite the large size of the input point clouds, the
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Fig. 11. Response time in seconds to build a hyperspectral point cloud with 270
layers.

voxelization is efficiently solved in the GPU using a single atomic
operation for points that lie in a voxel. Thus, the voxelization
is solved in 500 ms for the whole interval since the processing
task is performed for each point regardless of the resolution. In
contrast to the GPU approach, CPU version increases the response
time by up to 96.66% (330M).

Projection and compression are then performed consider-
ing the visible points and the previously stitched orthomosaic
(Fig. 11). Therefore, the response time for building a hyperspec-
tral point cloud while compressing layers is here reported. To
this end, we launched this procedure using four point clouds
of increasing size, from 15M to 330M. The heightfield is built
according to the GSD resolution, whereas the compression rate
varies from 70% (15M) to 90% (330M). Note that larger point
clouds increase the compression rate as they enhance the overall
density and increase the number of points, from where a sig-
nificant amount presents no variation throughout the hypercube
(e.g., shadowed areas). The response time ranges from 5 s for the
first point cloud (15M points) to 80 s for 330M points. Hence,
the first point cloud is compressed by iterating through a few
point cloud subdivisions, whereas the last one requires over fifty
subdivisions. Hyperspectral images were iteratively used for each
subdivision, though its transferring time is mitigated by building
a large buffer composed of the whole set of layers instead of
uploading each one multiple times. Therefore, the initial delay is
significantly higher, though it provides a speedup in comparison
with a continuous data stream to the GPU. The speedup of
GPU-based approaches in contrast to CPU is considerably higher
during this procedure, as a result of multiple iterative phases.
Accordingly, the speedup ranges from 96.59% (15M) to 99.35%
(330M).

Finally, the frame rate for rendering the hyperspectral point
cloud is shown in Fig. 12. Two point clouds of dimensional-
ity 150M and 330M are here used, whereas the target layer
is iteratively increased for each new frame. Furthermore, two
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Fig. 12. Frame rate for rendering hyperspectral point clouds with increasing
target layer, where activations refer to the number of different points rendered
per frame.

configurations are proposed concerning the number of rendered
points per frame. As depicted, the main drawback of data com-
pression is the traversal of the data structure to restore the
original data, since higher target layers also imply higher delay
while traversing the stacks. However, reducing the number of
rendered points per frame alleviates the frame load, while the
complete scenario is generated in a reduced time. On the other
hand, the number of point cloud subdivisions also worsens the
performance since it increases the number of compute shader
executions. Consequently, point clouds of higher dimensionality
present worse performance even for the first layers.

5. Conclusions

In this work, we have proposed a method for the efficient
generation of hyperspectral point clouds. To this end, multiple
hyperspectral swaths acquired by aerial surveys were firstly fused
using penalty and aggregation functions to provide accurate spec-
tral signatures. Also, the hyperspectral point cloud was built from
a dense RGB point cloud, considering the hyperspectral resolu-
tion. Throughout this process, the point cloud was compressed
according to a stack-based structure that takes advantage of the
high repeatability of reflectance represented with 8 bits. Finally,
the visualization of point clouds was enhanced using modern
OpenGL extensions to avoid gaps in sparse point clouds. The ren-
dering pipeline was fused with the compression data structure for
the visualization of individual hyperspectral layers. Besides the
generation of hyperspectral point clouds, the complete pipeline
was implemented in the GPU, thus significantly reducing its re-
sponse time. Accordingly, the speedup of every stage was shown
to be over 90%, even for point clouds with lower size (e.g., 15M
points).

In future work, we would like to enhance the rendering
pipeline using the compression data structure to reduce the
delay derived from traversing the stack in compute shaders.
Furthermore, the hypercube compression can be enhanced by
aggregating horizontal and vertical features, whereas GPU buffers
can be further compacted to reduce the number of point cloud
subdivisions and memory allocation of the data structure.

CRediT authorship contribution statement

Alfonso Lopez: Conception and design of study, Analysis
and/or interpretation of data, Writing - original draft, Writing
- review & editing. Juan M. Jurado: Conception and design
of study, Acquisition of data, Analysis and/or interpretation
of data, Writing - original draft, Writing - review & editing.
J- Roberto Jiménez-Pérez: Conception and design of study,
Analysis and/or interpretation of data, Writing - original draft,
Writing - review & editing. Francisco R. Feito: Conception
and design of study, Acquisition of data, Analysis and/or
interpretation of data, Writing - review & editing.

275

Computers & Graphics 106 (2022) 267-276

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This result has been partially funded through the research
project 1381202-GEU, PYC20-RE-005-UJA, IEG-2021, which are
co-financed with the Junta de Andalucia, Spain, Instituto de Es-
tudios Gienneses and the European Union FEDER funds, as well
as by the Spanish Ministry of Science, Innovation and Universities
via a doctoral grant to the first author (FPU19/00100). All authors
approved the version of the manuscript to be published.

References

[1] Dupuy ], Jakob W. An adaptive parameterization for efficient material
acquisition and rendering. ACM Trans Graph 2018;37(6):274:1-274:14.
http://dx.doi.org/10.1145/3272127.3275059.

Jurado JM, Jiménez-Pérez JR, Padua L, Feito FR, Sousa JJ. An efficient method
for acquisition of spectral BRDFs in real-world scenarios. Comput Graph
2022;102:154-63. http://dx.doi.org/10.1016/j.cag.2021.08.021.

Jurado JM, Ortega L, Cubillas JJ, Feito FR. Multispectral mapping on 3D
models and multi-temporal monitoring for individual characterization
of olive trees. Remote Sens 2020;12(7):1106. http://dx.doi.org/10.3390/
rs12071106.

Lopez A, Jurado JM, Ogayar CJ, Feito FR. An optimized approach for gener-
ating dense thermal point clouds from UAV-imagery. ISPRS ] Photogramm
Remote Sens 2021;182:78-95. http://dx.doi.org/10.1016/j.isprsjprs.2021.09.
022.

Addo T, Hruska ], Padua L, Bessa ], Peres E, Morais R, Sousa JJa. Hyperspec-
tral imaging: A review on UAV-based sensors, data processing and appli-
cations for agriculture and forestry. Remote Sens 2017;9(11):1110. http:
//dx.doi.org/10.3390/rs9111110, Number: 11 Publisher: Multidisciplinary
Digital Publishing Institute.

Foo S. A gonioreflectometer for measuring the bidirectional reflectance
of material for use in illumination computation. (Ph.D. thesis), Cornell
University Graduate School; 2001.

Riviere N, Ceolato R, Hespel L. Multispectral polarized BRDF: Design of a
highly resolved reflectometer and development of a data inversion method.
Optica Appl 2012;42. http://dx.doi.org/10.5277/0a120101.
Tunwattanapong B, Fyffe G, Graham P, Busch ], Yu X, Ghosh A, Debevec P.
Acquiring reflectance and shape from continuous spherical harmonic il-
lumination. ACM Trans Graph 2013;32(4):109:1-109:12. http://dx.doi.org/
10.1145/2461912.2461944.

Chen G, Dong Y, Peers P, Zhang J, Tong X. Reflectance scanning: estimating
shading frame and BRDF with generalized linear light sources. ACM Trans
Graph 2014;33(4):1-11. http://dx.doi.org/10.1145/2601097.2601180.
Ghosh A, Chen T, Peers P, Wilson CA, Debevec P. Estimating specular
roughness and anisotropy from second order spherical gradient illumina-
tion. Comput Graph Forum 2009;28(4):1161-70. http://dx.doi.org/10.1111/
j.1467-8659.2009.01493 .

Guarnera D, Guarnera G, Ghosh A, Denk C, Glencross M. BRDF repre-
sentation and acquisition. Comput Graph Forum 2016;35(2):625-50. http:
//dx.doi.org/10.1111/cgf.12867.

Marschner SR, Westin SH, Lafortune EPF, Torrance KE, Greenberg DP.
Image-based BRDF measurement including human skin. In: Lischinski D,
Larson GW, editors. Rendering techniques’ 99. Vienna: Springer; 1999, p.
131-44. http://dx.doi.org/10.1007/978-3-7091-6809-7_13.

Guarnera GC, Bianco S, Schettini R. Turning a digital camera into an
absolute 2D tele-colorimeter. Comput Graph Forum 2019;38(1):73-86.
http://dx.doi.org/10.1111/cgf.13393.

Mahesh S, Jayas DS, Paliwal ], White NDG. Hyperspectral imaging to
classify and monitor quality of agricultural materials. ] Stored Prod Res
2015;61:17-26. http://dx.doi.org/10.1016/j.jspr.2015.01.006.

Martin JA, Gross KC. Enhanced material identification using polarimetric
hyperspectral imaging. In: 2014 IEEE applied imagery pattern recogni-
tion workshop (AIPR). 2014, p. 1-6. http://dx.doi.org/10.1109/AIPR.2014.
7041920.

Chen B, Shi S, Shi S, Sun ], Gong W, Gong W, Yang ], Du L, Guo K,
Wang B, Chen B. Hyperspectral lidar point cloud segmentation based
on geometric and spectral information. Opt Express 2019;27(17):24043-
59. http://dx.doi.org/10.1364/0OE.27.024043, Publisher: Optica Publishing
Group.

2

3

14

[5

(6

[7

8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]


http://dx.doi.org/10.1145/3272127.3275059
http://dx.doi.org/10.1016/j.cag.2021.08.021
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.1016/j.isprsjprs.2021.09.022
http://dx.doi.org/10.1016/j.isprsjprs.2021.09.022
http://dx.doi.org/10.1016/j.isprsjprs.2021.09.022
http://dx.doi.org/10.3390/rs9111110
http://dx.doi.org/10.3390/rs9111110
http://dx.doi.org/10.3390/rs9111110
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb6
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb6
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb6
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb6
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb6
http://dx.doi.org/10.5277/oa120101
http://dx.doi.org/10.1145/2461912.2461944
http://dx.doi.org/10.1145/2461912.2461944
http://dx.doi.org/10.1145/2461912.2461944
http://dx.doi.org/10.1145/2601097.2601180
http://dx.doi.org/10.1111/j.1467-8659.2009.01493.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01493.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01493.x
http://dx.doi.org/10.1111/cgf.12867
http://dx.doi.org/10.1111/cgf.12867
http://dx.doi.org/10.1111/cgf.12867
http://dx.doi.org/10.1007/978-3-7091-6809-7_13
http://dx.doi.org/10.1111/cgf.13393
http://dx.doi.org/10.1016/j.jspr.2015.01.006
http://dx.doi.org/10.1109/AIPR.2014.7041920
http://dx.doi.org/10.1109/AIPR.2014.7041920
http://dx.doi.org/10.1109/AIPR.2014.7041920
http://dx.doi.org/10.1364/OE.27.024043

A. Lépez, J.M. Jurado, J.R. Jiménez-Pérez et al.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Jurado JM, Padua L, Hru$ka J, Feito FR, Sousa JJ. An efficient method for
generating UAV-based hyperspectral mosaics using push-broom sensors.
IEEE ] Sel Top Appl Earth Obs Remote Sens 2021;14:6515-31. http://dx.
doi.org/10.1109/JSTARS.2021.3088945, Conference Name: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing.

Gao L, Smith RT. Optical hyperspectral imaging in microscopy and spec-
troscopy - a review of data acquisition. ] Biophotonics 2015;8(6):441-56.
http://dx.doi.org/10.1002/jbio.201400051.

Pu H, Lin L, Sun D-W. Principles of hyperspectral microscope imaging
techniques and their applications in food quality and safety detection: A
review. Compr Rev Food Sci Food Saf 2019;18(4):853-66. http://dx.doi.org/
10.1111/1541-4337.12432.

Nevalainen O, Honkavaara E, Tuominen S, Viljanen N, Hakala T, Yu X,
Hyyppd ], Saari H, Polonen I, Imai NN, Tommaselli AMG. Individual
tree detection and classification with UAV-based photogrammetric point
clouds and hyperspectral imaging. Remote Sens 2017;9(3):185. http://dx.
doi.org/10.3390/rs9030185, Number: 3 Publisher: Multidisciplinary Digital
Publishing Institute.

Pidua L, Vanko J, Hruska ], Addo T, Sousa JJ, Peres E, Morais R. UAS,
sensors, and data processing in agroforestry: a review towards practical
applications. Int ] Remote Sens 2017;38(8-10):2349-91. http://dx.doi.org/
10.1080/01431161.2017.1297548, Publisher: Taylor & Francis.

Can G, Mantegazza D, Abbate G, Chappuis S, Giusti A. Semantic segmenta-
tion on Swiss3DCities: A benchmark study on aerial photogrammetric 3D
pointcloud dataset. Pattern Recognit Lett 2021;150:108-14. http://dx.doi.
org/10.1016/j.patrec.2021.06.004.

Hu Q, Yang B, Khalid S, Xiao W, Trigoni N, Markham A. Towards semantic
segmentation of urban-scale 3D point clouds: A dataset, benchmarks
and challenges. In: 2021 IEEE/CVF conference on computer vision and
pattern recognition (CVPR). 2021, p. 4975-85. http://dx.doi.org/10.1109/
CVPR46437.2021.00494.

Wang R, Peethambaran J, Chen D. Lidar point clouds to 3-D urban models:
a review. IEEE ] Sel Top Appl Earth Obs Remote Sens 2018;11(2):606-27.
http://dx.doi.org/10.1109/JSTARS.2017.2781132.

Gobeawan L, Wise D], Wong ST, Yee ATK, Lim CW, Su Y. Tree species
modelling for digital twin cities. In: Gavrilova ML, Tan CK, editors.
transactions on computational science XXXVIIIL. Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer; 2021, p. 17-35. http://dx.doi.org/10.
1007/978-3-662-63170-6_2.

Feng Z, Chen Y, Hakala T, Hyyppa J. Range calibration of airborne profiling
radar used in forest inventory. In: 2016 IEEE international geoscience and
remote sensing symposium (IGARSS). 2016, p. 6672-5. http://dx.doi.org/
10.1109/IGARSS.2016.7730742.

Su Y, Guo Q, Xue B, Hu T, Alvarez O, Tao S, Fang ]. Spatial distribution of
forest aboveground biomass in China: Estimation through combination of
spaceborne lidar, optical imagery, and forest inventory data. Remote Sens
Environ 2016;173:187-99. http://dx.doi.org/10.1016/j.rse.2015.12.002.
Rahlf ], Breidenbach ], Solberg S, Nsset E, Astrup R. Digital aerial
photogrammetry can efficiently support large-area forest inventories
in Norway. Int. J. For. Res. 2017;90(5):710-8. http://dx.doi.org/10.1093/
forestry/cpx027.

Cao C, Preda M, Zaharia T. 3D point cloud compression: A survey. In:
The 24th international conference on 3D web technology. Web3D '19,
New York, NY, USA: Association for Computing Machinery; 2019, p. 1-9.
http://dx.doi.org/10.1145/3329714.3338130.

James MR, Chandler JH, Eltner A, Fraser C, Miller PE, Mills JP, Noble T,
Robson S, Lane SN. Guidelines on the use of structure-from-motion
photogrammetry in geomorphic research. Earth Surf Process Landf
2019;44(10):2081-4. http://dx.doi.org/10.1002/esp.4637.

Guimardes N, Padua L, Marques P, Silva N, Peres E, Sousa ]J. Forestry
remote sensing from unmanned aerial vehicles: A review focusing on the
data, processing and potentialities. Remote Sens 2020;12(6):1046. http:
//dx.doi.org/10.3390/rs12061046, Number: 6 Publisher: Multidisciplinary
Digital Publishing Institute.

Zia A, Liang ], Zhou ], Gao Y. 3D reconstruction from hyperspectral images.
In: 2015 IEEE winter conference on applications of computer vision. 2015,
p. 318-25. http://dx.doi.org/10.1109/WACV.2015.49.

Kim MH, Harvey TA, Kittle DS, Rushmeier H, Dorsey ], Prum RO, Brady D]J.
3D imaging spectroscopy for measuring hyperspectral patterns on solid
objects. ACM Trans Graph 2012;31(4). http://dx.doi.org/10.1145/2185520.
2185534.

Jurado JM, Padrén EJ, Jiménez JR, Ortega L. An out-of-core method for
GPU image mapping on large 3D scenarios of the real world. Future Gener
Comput Syst 2022. http://dx.doi.org/10.1016/j.future.2022.03.022.

276

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Computers & Graphics 106 (2022) 267-276

Nieto JI, Monteiro ST, Viejo D. 3D geological modelling using laser and
hyperspectral data. In: 2010 IEEE international geoscience and remote
sensing symposium. 2010, p. 4568-71. http://dx.doi.org/10.1109/IGARSS.
2010.5651553.

Ferrera M, Arnaubec A, Istenic K, Gracias N, Bajjouk T. Hyperspectral 3D
mapping of underwater environments. 2021, arXiv:2110.06571 [cs].

Liu H, Bruning B, Garnett T, Berger B. Hyperspectral imaging and 3D
technologies for plant phenotyping: From satellite to close-range sens-
ing. Comput Electron Agric 2020;175:105621. http://dx.doi.org/10.1016/j.
compag.2020.105621.

Li QS, Wong FKK, Fung T. Assessing the utility of UAV-borne hyperspectral
image and photogrammetry derived 3D data for wetland species distri-
bution quick mapping. In: The international archives of photogrammetry,
remote sensing and spatial information sciences, vol. 42. 2017, p. 209,
Publisher: Copernicus GmbH.

Zhao B, Liu M, Wu J, Liu X, Liu M, Wu L. Parallel computing for obtaining
regional scale rice growth conditions based on WOFOST and satellite
images. IEEE Access 2020;8:223675-85. http://dx.doi.org/10.1109/ACCESS.
2020.3043003, Conference Name: IEEE Access.

Casella A, De Falco I, Della Cioppa A, Scafuri U, Tarantino E. Exploiting
multi-core and GPU hardware to speed up the registration of range
images by means of differential evolution. ] Parallel Distrib Comput
2019;133:307-18. http://dx.doi.org/10.1016/j.jpdc.2018.07.002.

Salah A, Li K, Hosny KM, Darwish MM, Tian Q. Accelerated CPU-GPUs
implementations for quaternion polar harmonic transform of color images.
Future Gener Comput Syst 2020;107:368-82. http://dx.doi.org/10.1016/j.
future.2020.01.051.

Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to
SIFT or SURF. In: 2011 International conference on computer vision. 2011,
p. 2564-71. http://dx.doi.org/10.1109/ICCV.2011.6126544.

Norouzi M, Fleet D], Salakhutdinov RR. Hamming distance metric learning.
In: Advances in neural information processing systems, vol. 25. Curran
Associates, Inc; 2012, p. 1-9.

Pu R. Hyperspectral remote sensing: fundamentals and practices. Boca
Raton: CRC Press; 2017, http://dx.doi.org/10.1201/9781315120607.
Paternain D, Fernandez ], Bustince H, Mesiar R, Beliakov G. Construction
of image reduction operators using averaging aggregation functions. In:
Theme: Aggregation operators, Fuzzy Sets and Systems In: Theme: Ag-
gregation operators, 2015;261:87-111.http://dx.doi.org/10.1016/j.fss.2014.
03.008,

Barrios Y, Sanchez AJ], Santos L, Sarmiento R. SHyLoC 2.0: A versatile
hardware solution for on-board data and hyperspectral image compression
on future space missions. IEEE Access 2020;8:54269-87. http://dx.doi.org/
10.1109/ACCESS.2020.2980767, Conference Name: IEEE Access.

Barrios Y, Guerra R, Lopez S, Sarmiento R. Performance assessment of
the CCSDS-123 standard for panchromatic video compression on space
missions. IEEE Geosci Remote Sens Lett 2022;19:1-5. http://dx.doi.org/10.
1109/LGRS.2021.3099032, Conference Name: IEEE Geoscience and Remote
Sensing Letters.

Xuan G, Li Q, Shao Y, Shi Y. Early diagnosis and pathogenesis monitoring of
wheat powdery mildew caused by blumeria graminis using hyperspectral
imaging. Comput Electron Agric 2022;197:106921. http://dx.doi.org/10.
1016/j.compag.2022.106921.

Graciano A, Rueda A], PospiSil A, Bittner J, Benes B. QuadStack: An
efficient representation and direct rendering of layered datasets. I[EEE Trans
Vis Comput Graphics 2021;27(9):3733-44. http://dx.doi.org/10.1109/TVCG.
2020.2981565, Conference Name: IEEE Transactions on Visualization and
Computer Graphics.

Ferraz O, Silva V, Falcao G. Hyperspectral parallel image compression
on edge GPUs. Remote Sens 2021;13(6):1077. http://dx.doi.org/10.3390/
rs13061077, Number: 6 Publisher: Multidisciplinary Digital Publishing
Institute.

Hyperspectral remote sensing scenes - grupo de inteligencia computacional
(GIC). 2021, URL http://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes#Pavia_Centre_and_University.

Lauterbach C, Garland M, Sengupta S, Luebke D, Manocha D. Fast BVH
construction on GPUs. Comput Graph Forum 2009;28(2):375-84. http:
//dx.doi.org/10.1111/j.1467-8659.2009.01377 x.

Schitutz M, Kerbl B, Wimmer M. Rendering point clouds with compute
shaders and vertex order optimization. 2021, arXiv:2104.07526 [cs].


http://dx.doi.org/10.1109/JSTARS.2021.3088945
http://dx.doi.org/10.1109/JSTARS.2021.3088945
http://dx.doi.org/10.1109/JSTARS.2021.3088945
http://dx.doi.org/10.1002/jbio.201400051
http://dx.doi.org/10.1111/1541-4337.12432
http://dx.doi.org/10.1111/1541-4337.12432
http://dx.doi.org/10.1111/1541-4337.12432
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1016/j.patrec.2021.06.004
http://dx.doi.org/10.1016/j.patrec.2021.06.004
http://dx.doi.org/10.1016/j.patrec.2021.06.004
http://dx.doi.org/10.1109/CVPR46437.2021.00494
http://dx.doi.org/10.1109/CVPR46437.2021.00494
http://dx.doi.org/10.1109/CVPR46437.2021.00494
http://dx.doi.org/10.1109/JSTARS.2017.2781132
http://dx.doi.org/10.1007/978-3-662-63170-6_2
http://dx.doi.org/10.1007/978-3-662-63170-6_2
http://dx.doi.org/10.1007/978-3-662-63170-6_2
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1016/j.rse.2015.12.002
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1145/3329714.3338130
http://dx.doi.org/10.1002/esp.4637
http://dx.doi.org/10.3390/rs12061046
http://dx.doi.org/10.3390/rs12061046
http://dx.doi.org/10.3390/rs12061046
http://dx.doi.org/10.1109/WACV.2015.49
http://dx.doi.org/10.1145/2185520.2185534
http://dx.doi.org/10.1145/2185520.2185534
http://dx.doi.org/10.1145/2185520.2185534
http://dx.doi.org/10.1016/j.future.2022.03.022
http://dx.doi.org/10.1109/IGARSS.2010.5651553
http://dx.doi.org/10.1109/IGARSS.2010.5651553
http://dx.doi.org/10.1109/IGARSS.2010.5651553
http://arxiv.org/abs/2110.06571
http://dx.doi.org/10.1016/j.compag.2020.105621
http://dx.doi.org/10.1016/j.compag.2020.105621
http://dx.doi.org/10.1016/j.compag.2020.105621
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb38
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1016/j.jpdc.2018.07.002
http://dx.doi.org/10.1016/j.future.2020.01.051
http://dx.doi.org/10.1016/j.future.2020.01.051
http://dx.doi.org/10.1016/j.future.2020.01.051
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb43
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb43
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb43
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb43
http://refhub.elsevier.com/S0097-8493(22)00114-5/sb43
http://dx.doi.org/10.1201/9781315120607
http://dx.doi.org/10.1016/j.fss.2014.03.008
http://dx.doi.org/10.1016/j.fss.2014.03.008
http://dx.doi.org/10.1016/j.fss.2014.03.008
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/LGRS.2021.3099032
http://dx.doi.org/10.1109/LGRS.2021.3099032
http://dx.doi.org/10.1109/LGRS.2021.3099032
http://dx.doi.org/10.1016/j.compag.2022.106921
http://dx.doi.org/10.1016/j.compag.2022.106921
http://dx.doi.org/10.1016/j.compag.2022.106921
http://dx.doi.org/10.1109/TVCG.2020.2981565
http://dx.doi.org/10.1109/TVCG.2020.2981565
http://dx.doi.org/10.1109/TVCG.2020.2981565
http://dx.doi.org/10.3390/rs13061077
http://dx.doi.org/10.3390/rs13061077
http://dx.doi.org/10.3390/rs13061077
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://dx.doi.org/10.1111/j.1467-8659.2009.01377.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01377.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01377.x
http://arxiv.org/abs/2104.07526

	Generation of hyperspectral point clouds: Mapping, compression and rendering
	Introduction
	Related work
	Our method
	Hyperspectral alignment and rectification
	Generation of the hyperspectral orthomosaic
	Mapping of hyperspectral orthomosaics
	Hyperspectral data compression
	Point cloud rendering

	Results
	Data acquisition
	Performance analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


