
Automation in Construction 146 (2023) 104675

A
0

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Metaheuristics for the optimization of Terrestrial LiDAR set-up
Alfonso López a,∗, Carlos J. Ogayar a, Juan M. Jurado b, Francisco R. Feito a

a Department of Computer Science, University of Jaén, Spain
b Department of Software Engineering, University of Granada, Spain

A R T I C L E I N F O

Keywords:
LiDAR
Metaheuristic
Genetic algorithm
GPGPU
Planning for Scanning

A B S T R A C T

3D point clouds have a significant impact on a wide range of applications, although their acquisition is
frequently conditioned by the occlusion of the objects in the scene. To address this problem, this paper describes
an approach for optimizing LiDAR (Light Detection and Ranging) surveys using metaheuristics such as local
searches and genetic algorithms. The method generates a set of optimal scanning locations to densely cover
the real-world environment represented through 3D synthetic models. Compared to previous research, this
paper handles 3D occlusion by varying the height of the sensor. Also, previously used metrics are compressed
into three functions to avoid multi-objective optimization. Regarding performance, a LiDAR scanning solution
based on GPU (Graphics Processing Unit) hardware is used. Several tests were conducted to show that the
combination of local searches and genetic algorithms generates a reduced set of locations capable of optimizing
the scanning of buildings.
1. Introduction

3D imaging technology is widely used in the construction indus-
try for the tracking of building progress by enabling the acquisition
of the environment geometry in a precise and highly detailed way.
Instead of polygonal meshes, a discretized representation is given by
point clouds. To achieve this goal, Terrestrial Laser Scanning (TLS) is
increasingly being used to collect large sets of building data [1]. This
technology can be applied to a wide range of applications, including
building inspections [2], monitoring of natural environments (landform
dynamics [3], ecological resilience [4], etc.), autonomous driving [5]
and preservation of cultural heritage [6–8], among others. Besides
terrestrial scanners, LiDAR (Light Detection and Ranging) technology
presents multiple variants according to their capabilities (range, spatial
resolution and covering, etc.) and the platform from which they are
operated (Airborne (ALS), Backpack-mounted (BMLS), Mobile Mapping
Systems (MMS), Terrestrial (TLS), Satellite (SLS), etc.) [9,10].

Some of the main challenges of TLS in the surveying of 3D facilities
are the occlusion and range limitations [11]. Consequently, appropri-
ate planning of TLS scans is necessary in order to (1) minimize the
number of acquisition points, (2) generate a uniformly dense point
cloud, and (3) reduce the occlusion from scene objects. These three
objectives are equally influenced by the configuration and placement
of the scanner. On the other hand, periodic scanning and monitoring
of buildings are especially relevant for digitized representations, such
as the widely known Building Information Modelling (BIM) [12]. They

∗ Corresponding author.
E-mail addresses: allopezr@ujaen.es (A. López), cogayar@ujaen.es (C.J. Ogayar), jjurado@ujaen.es (J.M. Jurado), ffeito@ujaen.es (F.R. Feito).

encode characteristics of a building, including 3D design drawings,
materials, costs and safety specifications [13], and provide an interface
for the management of 4D applications. Together with TLS, it allows
the monitoring of continuously evolving buildings to preserve cultural
heritage, track its current state and maintain repair records [7,8,14,15].
However, the monitoring of buildings over time is time-consuming, es-
pecially in dynamic environments. Also, TLS surveys generate multiple
point clouds that need to be fused either by placing target marks [16]
or by estimating the rigid transformation that minimizes the distance
among overlapping point clouds. In order to speed up this acquisition
task, the development of tools for the planning of TLS surveys plays a
key role.

In the last few years, scanning on mobile platforms has arisen as an
alternative to TLS. Mobile Laser Systems (MLS) reduce the acquisition
time while still covering large areas [17]. However, the main draw-
backs are the need of determining a path to appropriately survey the
environment, the occlusion in complex environments as well as their
low spatial density [18]. Moreover, operating a LiDAR from a mobile
platform requires further optimizations to compute the optimal set-up
regarding positioning [19].

We propose a methodology that solves the NP-complete problem
of finding the best n-positions for TLS in 3D environments so that the
scene coverage and the uniformity of the point cloud are optimized.
This problem is assessed over 3D triangle meshes from BIM projects,
consisting of one or multiple floors. For each one of these, multiple
vailable online 6 December 2022
926-5805/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.autcon.2022.104675
Received 13 April 2022; Received in revised form 14 November 2022; Accepted 15
 November 2022

https://www.elsevier.com/locate/autcon
http://www.elsevier.com/locate/autcon
mailto:allopezr@ujaen.es
mailto:cogayar@ujaen.es
mailto:jjurado@ujaen.es
mailto:ffeito@ujaen.es
https://doi.org/10.1016/j.autcon.2022.104675
https://doi.org/10.1016/j.autcon.2022.104675
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2022.104675&domain=pdf

Automation in Construction 146 (2023) 104675A. López et al.

o
s
L
o
P
d
a

2

t
i
(

2

u
o
a
v
w
i
k
m
T
a
(
d
u
c
a
D
h
s
A
(
a

2

n
e
t
f
(
m
l
w
S
o
i

q
q
A
L
L
t

positions (M) are uniformly sampled and enhanced using a spatial
search according to an objective function. For that purpose, the neigh-
bourhood is discretized and explored through minor translation vectors.
Once the set M is improved (𝐾), a Genetic Algorithm is used over K in
rder to find the best combination of n points, 𝑁 ⊆ 𝐾, by evaluating
everal quality metrics. These metrics are computed from GPU-based
iDAR simulations described in previous work [20]. The latency of the
verall methodology is reduced by taking advantage of GPU (Graphics
rocessing Unit) and multi-core CPU algorithms. Furthermore, modern
ata structures allow using highly detailed scenarios from BIM projects,
nd yet solve the optimization with low latency.

. Related work

To the best of our knowledge, this is the first paper that investigates
he optimization of LiDAR surveys within 3D environments by combin-
ng spatial searches, genetic algorithms (GA) and GPGPU computing
General Purpose Computing on Graphics Processing Unit).

.1. Planning for scanning

The Planning for Scanning (P4S) has previously been addressed
sing a wide range of environments and techniques. If the number
f target locations is known, then the selection of an optimum set is
lso known as the NP-complete set-coverage problem [11,21–23]. Pre-
ious research can be categorized according to the input environment,
hether it is known (model-based) or not (non-model-based). The latter

s mainly applied to robotic applications whose environment is un-
nown [24]. Otherwise, input scenarios are either defined as 2D or 3D
odels, with 2D representations being cross-sections of buildings [25].
hese 2D-based solutions present lower computational complexity and
re frequently solved following an iterative selection of viewpoints
Next Best View; NBV) or guided by heuristic algorithms [26]. The main
rawback of these algorithms is that they do not consider the details
nderneath complex buildings. Instead, they are focused on 2D sketches
omposed of wall edges. 3D-based approaches are far more complex
nd guided by metrics that allow filtering and ordering space locations.
espite this, the exploration of 3D buildings is also approached with
euristics and NBV. However, the high latency frequently leads to
cene simplifications, such as those based on voxelizations [27], Axis-
ligned Bounding Boxes (AABB) and Object-Oriented Bounding Boxes

OOBB) [28]. 2.5D models, such as Digital Surface Models (DSM), have
lso been investigated similarly to 2D environments [29].

.2. Metaheuristics

Heuristics are the most frequent solver in P4S. Although they do
ot provide optimal solutions, they are proven good enough to cover
nvironments with minimum scanning locations. Among heuristics,
he Greedy algorithm has been extensively investigated [11,25,30,31],
ollowed by Simulated Annealing (SA) [32,33], Genetic Algorithms
GA) [32,34], Particle Swarm Optimization [34] and Integer Program-
ing [27]. Greedy algorithms are based on the iterative selection of

ocations, according to an objective function. Other Greedy variations
eight the locations using a visibility score [34], are followed by
A [32], or optimized with Divide and Conquer (D&C) [30]. Instead
f providing an automatic pipeline, Ahn and Wohn [35] proposed an
nteractive semi-automatic system.

Heuristic solvers are guided by objective functions measuring the
uality of achieved solutions. To evaluate this, four metrics are fre-
uently used in previous work [26,28]: Level of Detail (LOD), Level of
ccuracy (LOA), Level of Overlap (LOO) and Level of Coverage (LOC).
OD refers to the point cloud resolution, LOA measures the quality of
iDAR returns, as higher distances and angles deteriorate the quality of
he measurements [11,26], LOO refers to the overlapping area among
2

point clouds so that TLS scans can be joined with rigid transforma-
tion estimations, e.g., Iterative Closest Point (ICP), and LOC refers to
the number of polygons reached by scans. Thus, the optimization is
constrained to limitations concerning range and angles.

Research on heuristics concerning 3D solutions is also frequent in
the literature, though they are mostly linked to path planning [36]
and the selection of subsets [36–38]. However, the number of scans
for P4S to meet the required quality is uncertain in an infinite 3D
space. The set of possible solutions is narrowed either by selecting
random locations [33] or sampling the environment as a 2D grid [25,
29,34]. For uniform subdivisions, the level of detail of the tessellation
is a key factor with regard to response time. Coarse subdivisions
present lower latency, though they are prone to yield far from optimal
solutions. Starek et al. [29] enhances initial locations by applying
minor translations while assessing their quality through an objective
function, whereas Soudarissanane and Lindenbergh [11] improves the
sampling by increasing the grid subdivisions, at the expense of higher
response time. For 3D locations, Starek et al. [29] describes a simulat-
ing annealing procedure to transform uniformly sampled points into a
surrounding location that improves the covering metric. Kim and Park
[19] finds the optimum LiDAR position over an autonomous vehicle
through a Genetic Algorithm (GA). For that purpose, this work utilizes
the specifications of commercial LiDARs to compute the occupancy grid
of sensor locations, defined as a discretized 360◦ map represented by
several views acquiring the coverage region and dead zones. Beyond
theoretical/simulation approaches, multiple studies focus on evaluating
the set-up of several sensors, concerning height, angles and location in
autonomous driving [39–41].

Once locations are locally optimized, they are processed as a clas-
sic set-coverage problem [11]. Recent research has solved this prob-
lem through GA approaches with different operators and configura-
tions [22,23,42], though local searches [21] and other nature-inspired
heuristics [38] are also reviewed. Despite heuristics being allowed to
solve hard problems with optimal or nearly optimal solutions, they
pose a challenge in terms of response time. Previous studies regarding
P4S require days and hours to determine the optimal scan configu-
ration for fine-grained grid subdivisions over 3D environments. Even
2D-based approaches suffer from high latency [25] whether they are
implemented sequentially. Thus, multi-core and GPU-based algorithms
offer a huge improvement in the response time, reducing it to a few
seconds or minutes [25,37,42].

2.3. LiDAR simulation

Regarding previous work on LiDAR simulation, it covers a wide
range of applications, from the design, validation, and calibration of
LiDAR sensors [43,44] to the optimization of scanning processes [45–
47]. Other studies focus on developing physically accurate LiDAR sen-
sors by modelling multiple returns, beam scattering, surface properties
or transmission medium [20,48–55]. Although LiDAR simulations are
aimed at being realistic, they also involve stochastic features that are
not relevant for finding optimal locations. Hence, this work evaluates
the quality of a deterministic LiDAR by simplifying the simulation
of López et al. [20]. Regarding efficiency, only a few studies are
developed as high-performance solutions [20,56] capable of solving
multiple dense simulations rapidly.

In conclusion, the main drawbacks observed in previous P4S work
are (1) the widespread use of greedy algorithms to determine candidate
scans, (2) the simplification of input scenarios to speed-up solutions, (3)
objective functions based on non-smoothed thresholds (range, angle,
etc.) and (4) the lack of parallel algorithms to solve both the simulation
and the optimization. Consequently, the main contribution of this
work is the planning of TLS surveys to reduce surface occlusion and
generate dense point clouds by parallelizing the pipeline in the GPU.
Objective functions are defined with smoothed boundaries, rather than
thresholds, that score the fitness of individual scans, thus taking into

account the LOA and LOD metrics. Also, candidate solutions are locally

Automation in Construction 146 (2023) 104675A. López et al.
Fig. 1. Overview of the methodology of this work. The first stage is the pre-processing of input scenes from BIM projects. Then, a set of solutions is initialized and enhanced using
a spatial search. Finally, a genetic algorithm is applied over the previous solutions to select the best-k that maximizes the proposed metrics. Finally, the selection is enhanced to
guarantee the required overlap.
m
e
d
a
n
m

l
B
B
s
m
t
i
a
c

3

enhanced to avoid large space subdivisions. The optimal set of locations
is computed using Genetic Algorithms, while implicitly minimizing the
number of scans thanks to the objective function. The solution is further
refined to guarantee the overlapping of individual scans using a Greedy
approach. Our algorithm is evaluated with large CAD scenarios from
BIM projects authored by Autodesk Revit®. As a result, this work is
able to provide a near-optimal set of points for building monitoring
efficiently. To this end, sensor configurations given by commercial
devices are proven effective to perform the optimization, rather than
defining fixed and non-intuitive thresholds.

This paper is structured as follows. The environment modelling is
first described. Then, we present our optimization approach and imple-
mentation details. The results of the described methods are discussed
in Section 4 to present the best configuration. Finally, the conclusions
of this work are summarized in Section 5.

3. Material and methods

The details of the proposed algorithm are presented in this section,
from input scenarios to the scan planning. The simulation within this
work is based on previous work, and thus we refer the reader to López
et al. [20] for further details. An overview of the proposed pipeline is
shown in Fig. 1.

3.1. Environments

Input scenarios are triangle meshes composed of one or more floors
and extracted from publicly available BIM projects. Scenes do not fit
any standard and their geometry is initially unknown. As such, they are
composed of polygons of varying size, with the largest triangles being
part of the floor, walls and ceilings, whereas more dense geometry
is found in furniture. The optimal scan configuration ought to cover
as many polygons as possible. Hence, dealing with surfaces of similar
size would greatly benefit the planning algorithm. To this end, the
triangle mesh can be subdivided, despite perfect uniformity being not
approachable due to GPU memory limitations and highly detailed
items. Following this approach, triangles are recursively subdivided
until their area is under a tolerance threshold.

Several approaches are effective to subdivide polygons, although
some of them yield aesthetic results (see Fig. 2). Whether the edge to
be split is selected randomly, the triangle can be subdivided into large
triangles that degenerate into segments, thus causing missed collisions
for a ray-casting LiDAR. Therefore, segment-like shapes along with
precision error derived from the use of floating-point data may lead
to the loss of LiDAR returns. Instead, we split the longest edge within
each triangle, thereby generating triangles with uniform edge lengths.
3

o

Fig. 2. Two different triangle subdivisions over the same scene. (a) Triangles subdi-
vided by iterating through the edge to be split, and (b) triangles subdivided with the
proposed method.

Regarding the indexing of input scenes, we build the Boundary
Volume Hierarchy (BVH) using the GPU hardware to speed up spatial
queries. Most of the previous research in LiDAR simulators solves the
ray-casting problem in the image space through z-buffers, i.e., depth
buffers. Similarly to colour representation in OpenGL’s buffers, depth-
buffers store the distance of the nearest object visible for each pixel
using values in [0, 255]. With this approach, LiDAR simulations are

assively parallelized but also lack precision. On the other hand, an
fficient solution to the ray-casting challenge requires an optimized
ata structure, such as the BVH. It is a binary tree that is popular
mong ray-tracing applications since it allows discarding a significant
umber of polygons during the tree traversal. Thus, it copes with the
anagement of large triangle meshes and notable amounts of cast rays.

Building a BVH as well as solving spatial queries present high
atency when performed sequentially. To avoid this, we generated the
VH using the massively parallel method proposed by Meister and
ittner [57]. This work builds it on the GPU using OpenGL’s compute
haders, by sorting primitives according to their Morton codes and
erging them up to the tree root. As a result, triangle meshes of up

o several millions of triangles are organized in a BVH with a latency
n the magnitude of milliseconds. Finally, the BVH traversal is also
ccelerated by making several threads work in parallel to solve the
ollisions of LiDAR rays.

.2. Solution encoding

Candidate solutions for genetic algorithms are encoded as a buffer

f binary values indicating which minimal set of LiDAR positions

Automation in Construction 146 (2023) 104675A. López et al.

r
i
a
T
s
a
s

d
s
o
c
n
w
u
m
a

d
t

t
T
e
i

t
f
p
e
o
b
f
d
(

Fig. 3. Binary encoding of active LiDAR solutions for a genetic algorithm.

epresents an optimal set-up to cover the scene. Each binary value
s defined as an activation value for a LiDAR scan. Firstly, positions
re uniformly or randomly sampled along the selected building floor.
hen, they are optimized by measuring the effect in the metrics of
mall spatial moves. Once evaluated, the genetic algorithm is aimed
t activating the minimum number of positions while maximizing the
cenario coverage of a LiDAR point cloud.

Consequently, initial solutions are stored as x, y and z coordinates,
while the solutions of the genetic algorithm are encoded as a vector
of binary values [𝑏0, 𝑏1, 𝑏2,… , 𝑏𝑘−1], with 𝑏𝑖 ∈ {0, 1} and 𝑘 defined
as the number of solutions generated by the previous spatial search.
Despite the fact that activating 𝑘 solutions provides the most complete
scan, the genetic algorithm is expected to activate fewer locations.
Fig. 3 shows the proposed solution encoding. Although binary values
can be represented by Boolean values in the CPU, this data type is
not uniformly represented in CPU and GPU hardware concerning data
size, thus hardening data transfers. In our solution, Boolean values are
expressed through the minimal integer encoding in the GPU hardware,
given by the uint8_t data type from GLSL’s GL_NV_gpu_shader5
extension (OpenGL Shading Language). Representations with a lower
GPU memory footprint are indeed possible through bit-level encoding,
at expense of more intricate operations for index access. Moreover, the
scenarios evaluated in Section Results and discussion achieve only a
few MBs in the worst case.

3.3. Metrics

The goal of a fitness function is to evaluate the quality of candidate
solutions and allow the optimization method to improve solutions and
discern which are the best for a specific configuration.

3.3.1. Level of accuracy, coverage and resolution
Solutions to this optimization problem are given by n different

positions within a scene level. Three metrics are considered to evaluate
the fitness of a solution. First, the number of scanned polygons provides
a raw measure regarding the coverage of the scene geometry (𝐹1;
LOC). Also, polygons should be scanned with multiple points uniformly
distributed (𝐹2; LOD, LOA, LOC). Finally, TLS scans should reach a
minimum overlap factor that guarantees they can be joined during
post-processing (𝐹3; LOO). The first metric is easily solved by counting
ifferent intersected polygons. On the other hand, the uniformity mea-
urement of a point cloud requires more intricate algorithms. Instead
f providing the aimed resolution as a parameter, it is automatically
omputed as part of pre-processing. Thus, polygons are assigned a
early optimal average distance between uniform points. To this end,
e consider the parametric equation of a triangle and randomly sample
and v variables with a uniform distribution. Therefore, setups whose
ean distance is higher than the reference mean distance for a polygon
4

re evaluated with a worse fitness value. As a result, point clouds
Fig. 4. Average distance (𝜇) of every sampled point with the rest of the points.
From left to right, and from top to bottom: uniform grid distribution, uniform
random sampling of 𝑢 and 𝑣, random distribution, QMC random distribution, random
istribution only for a part of the triangle and three points uniformly scattered. Note
hat the QMC distribution is used as the reference for our 𝐹2 metric.

hat cover a polygon with a few points are heavily penalized (Fig. 4).
he QMC (Quasi-Monte Carlo) sampler approximates better what is
xpected as the output of a LiDAR scan while the average point distance
s similar to the uniform grid sampling.

The described fitness metrics allow enhancing a given position,
hereby orienting it towards better locations. Despite being described
or a single scan, it can be applied to several of them. Nevertheless,
oint cloud uniformity and accuracy are preferred over coverage to
nhance a single location. On the other hand, the selection of a subset
f positions is better guided by the surface coverage. Despite this,
oth metrics are considered during optimization, with secondary fitness
unctions working as untying operators. Therefore, both metrics are
efined as follows whether we aim to evaluate a set of solutions, K
Eqs. (1) and (2)). Individual solutions present a buffer of collided

triangles, T, where each triangle is reached by a set of points (P). The
set of unique triangle indices which were collided is here denoted by
L, whereas the whole set of scene triangles is S.

𝐹1 =
|𝑆|
∑

𝑠=1
1[𝑡𝑠 ∈ {𝐿1, 𝐿2,… , 𝐿𝑘}] (1)

𝐹2 =
|𝐾|

∑

𝑘=1

⎛

⎜

⎜

⎜

⎜

|𝑆|
∑

𝑠=1
𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑠 −

|𝐿𝑘|
∑

𝑙=1
𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑙+
⎝

Automation in Construction 146 (2023) 104675A. López et al.

r
e
f
i

3

f

Fig. 5. 𝐹1 and 𝐹2 results obtained by uniformly sampling a 3D environment. The first
image depicts the results of 𝐹2 as proposed. The second image omits the second sum
term, i.e., does not remove the default distance of collided polygons.

+
|𝑇𝑘|
∑

𝑡=1

⎛

⎜

⎜

⎜

⎜

⎝

∑
|𝑃𝑡|
𝑖=1

∑
|𝑃𝑡 |
𝑗=1 𝑑

2(𝑝𝑖 ,𝑝𝑗)

𝑚𝑎𝑥(|𝑃𝑡|−1,1)
⋅ (2 − |𝑛̂𝑡𝑘 ⋅

̂(

𝑟𝑜 − 𝑝𝑖
)

|)

𝑚𝑎𝑥
(

|𝑃𝑡|, 1
) −

−𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑡

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(2)

where 𝐹1 yields the number of unique intersected polygons and 𝐹2
epresents the accuracy metric by measuring the distance from the
xpected uniformity to the obtained value. 𝑑 represents a distance
unction, naively given by the Euclidean distance, 𝑡𝑠 is a triangle
ndex on the set S, 𝑛̂ is the normal vector of a triangle, and 𝑟𝑜 is the

LiDAR location, i.e., the ray’s origin. Instead of only accounting for
the distance from intersected polygons, it also sums the distance from
non-collided polygons. However, to avoid penalizing solutions with a
higher number of collisions in a minimization problem, the distance
from intersected polygons is subtracted (Fig. 5). Hence, the number of
reached polygons is also integrated into this formula to penalize scans
that minimize the foundational accuracy terms by reaching a small
number of polygons.

Also, note that a frequently integrated criterion in the LOA metric
is the sensor’s range. Accordingly, previous work has included range
in the LOA definition by omitting returns whose distance is above a
threshold. However, these criteria can be integrated into the LiDAR
simulation rather than into the above formula. Therefore, the range of
our LiDAR simulation is considerably reduced to solely consider close
collisions, although real simulations may provide denser scans.

3.3.2. Level of overlap
𝐹2 metric is better suited for performing local enhancements,

whereas 𝐹1’s objective is to select the minimum set of locations that
provide better scene coverage. However, none of these metrics con-
5

siders the overlapping of individual scans, despite it being a required i
feature to guarantee their alignment in post-processing. To this end,
features visible in a single scan ought to appear in more than one
scan. With this objective, the 𝐹3 metric defined in Eq. (3) measures
the percentage of overlapping area between two LiDAR scans, 𝑖 and 𝑗,
depicted as circumferences with a fixed radius.

𝐴𝑖,𝑗 =
(

𝑟2𝑖 cos
−1(

𝑑𝑖
𝑟𝑖
) − 𝑑𝑖

√

𝑟2𝑖 − 𝑑2𝑖 +

+𝑟2𝑗 cos
−1(

𝑑𝑗
𝑟𝑗

) − 𝑑𝑗
√

𝑟2𝑗 − 𝑑2𝑗

)

𝐴𝑖,𝑗,𝑟𝑖=𝑟𝑗 = 2

(

𝑟2 cos−1(𝑑
2𝑟

) − 𝑑
2

√

𝑟2 −
(𝑑
2

)2
)

𝐹3𝑖,𝑗 =
𝐴𝑖,𝑗

𝜋𝑟2𝑖
| 𝑖, 𝑗 = 1, 2,… , |𝑃𝑐 | (3)

with 𝑑 = 𝑑𝑖 + 𝑑𝑗 , where 𝑑 is the distance from two sensor placements,
and 𝑟 is the LiDAR maximum range, which is previously clamped to
account for the accuracy loss from distance. Due to 𝑟 being the same
for every scan, 𝑑𝑖 = 𝑑𝑗 .

The main drawback of Eq. (3) is that it does not account for the
overlapping of previously added locations. To handle this, the area of
influence of each LiDAR scan is represented by a 2D grid to be filled
by points sampled from other scans. Hence, an approximated overlap is
given by the number of voxels filled with respect to the overall number.
Despite this, sampling can be avoided whether 𝑑 ≥ 𝑑1 + 𝑑2. Yet, Eq. (3)
is useful for establishing a ranking of candidate solutions that can
help to achieve the required overlapping. However, ranking locations
by their overlapping leads to selecting the highest overlap possible,
instead of the required one. Accordingly, Eq. (4) ranks locations by
their distance to the required overlap. However, solutions that offer a
higher overlap than the required one are preferred over those below.
To guarantee this, the most significant bit of preferred locations is set
to one. Due to the described sampling strategy, the accuracy of the
measured scan overlapping depends on the grid subdivision and the
number of sampled points belonging to another TLS scan, as depicted
in Fig. 6.

𝐹3𝑖,𝑗𝑜𝑝𝑡. = 𝑟 − |𝑜 − 𝐹3𝑖,𝑗 |

𝐹3𝑖,𝑗𝑜𝑝𝑡. = 𝐹3𝑖,𝑗𝑜𝑝𝑡. ∣ 1 ≪ 32 𝑖𝑓 𝐹3𝑖,𝑗 ≥ 𝑜 (4)

with 𝑜 being the required overlapping percentage.
With this approach, the required overlapping is guaranteed for

every solution. However, disjoint sets can be found, especially as a
result of greedy algorithms selecting the best 𝑛 solutions. To this end,
the disjoint set is built by linking overlapping LiDAR solutions. Hence,
new solutions are added until there is a single disjoint set, according to
their distance to another disjoint set and the value of 𝐹3, as proposed
in Eq. (5). The procedure to join disjoint sets is implemented as follows:

• First, the closest disjoint sets are selected, as well as the two
closest solutions of both of them.

• Then, solutions overlapped with the first one are sorted according
to a maximization problem guided by Eq. (5).

• The new LiDAR scan is linked to the first solution, which is
known to be overlapped, whereas the second solution is only liked
whether the overlapping is higher than zero.

• Newly included solutions are also checked to guarantee the re-
quired overlapping.

𝑔(𝑝𝑜, 𝑝𝑑 , 𝑝𝑖) =
(

𝑑(𝑝𝑜, 𝑝𝑑) − 𝑑(𝑝𝑖, 𝑝𝑑)
𝑑(𝑝𝑜, 𝑝𝑑)

𝐹3𝑜,𝑖𝑜𝑝𝑡.

)

(5)

.3.3. Point sampling
This procedure is a preprocessing stage, although it can be per-

ormed later to re-sample the polygons. In this stage, the polygons are

teratively processed to generate uniformly distributed points. Then, the

Automation in Construction 146 (2023) 104675A. López et al.

w

g
t
t

3

T
m

Fig. 6. Grid occupancy in two different configurations. (a) Grid with higher resolution
and three overlapping circumferences, and (b) sparser grid with only two overlapping
circumferences.

mean distance is computed as shown in Eq. (6) for a single triangle
hether we apply the Euclidean distance. Note that |𝑃 | − 1 is used

instead of |𝑃 | to omit taking into account the distance of points with
themselves.

𝑑𝑚𝑒𝑎𝑛 =

∑
|𝑃𝑡|
𝑖=1

∑
|𝑃𝑡 |
𝑗=1 𝑑

2(𝑝𝑖−𝑝𝑗)

𝑚𝑎𝑥(|𝑃 |−1,1)

𝑚𝑎𝑥 (|𝑃 |, 1)
(6)

where 𝑃𝑡 represents a set of points within a triangle 𝑡 and the inner
summation computes the Euclidean distance for xyz points.

Despite there exist built-in random uniform distributions in most
language libraries, these are mainly based on pseudo-random
sequences, such as those used for Classic Monte Carlo integration
(CMC). They provide good quality estimations, though they require a
large number of samples and thus present a higher response time [58].
In our case study, the response time is irrelevant as we solely sample
a reduced number of points that depends on the polygon area. How-
ever, it generates a point cloud far from the convergence scenario,
i.e., uniformly sampled points. Instead, the QMC method is based on
well-distributed deterministic sampling patterns that provide better re-
sults for our objective. More specifically, we apply the Halton sequence
to calculate the quasi-optimal mean distance within polygons [59,60].
Fig. 7 shows the results of sampling with both the C++ built-in random
uniform distribution and the proposed QMC sequence.

Either from pseudo-random or QMC sequences, two parametric
values (𝑢, 𝑣) are generated to sample a triangle surface. Eq. (7) shows
the formula for generating a point within a triangle defined through its
three vertices (𝑝1, 𝑝2, 𝑝3) with 𝑢, 𝑣 ∈ [0, 1].

𝑝𝑠 = (1 −
√

𝑢)𝑝1 + (
√

𝑢(1 − 𝑣))𝑝2 + (𝑣
√

𝑢)𝑝3 (7)

The main drawback of this solution is that sparse scans, with points
athered in a small area, would provide a good fitness result. To avoid
his, the triangle’s vertices are included as part of the point set, |𝑃 |,
hus penalizing scans biased towards small parts of polygons.

.4. Solution initialization

The continuous 3D space must be discretized to tackle the P4S.
he selection of N initial solutions depends on polygons interactively
arked as ground, as regarded in Section Level selection. From the
6

Fig. 7. Comparison of polygons sampled with different sequences. (a) The point cloud
obtained using the Halton sequence is significantly more uniformly sparsed than (b),
sampled with a random uniform distribution.

collected ground planes, we compute the 2D axis-aligned bounding
box (AABB) to restrict the instancing area. However, this solution may
generate points out of ground-labelled polygons for non-rectangular
ground planes. Therefore, candidate locations are evaluated on the GPU
to verify the following conditions:

1. The sensor is located over a ground polygon. To verify this,
we cast a ray towards −Y using the described BVH data structure
to speed up queries. Ground polygons are transferred to the
GPU and their ID is sequentially compared to the nearest found
collision.

2. The sensor is not located over non-ground planes, e.g., ob-
jects placed between the floor and LiDAR’s y coordinate. m
points are sampled around the candidate location, using a radius
𝑟 and casting m rays with −𝑌 direction. It is discarded whether
any of the m rays collide with non-ground-labelled items. Both
𝑟 and 𝑚 can be configured.

3. The sensor is not located close to building walls and fur-
niture. It cannot be placed over items, nor next to them, thus
guaranteeing a safety distance (𝑑). Hence, four additional rays
are cast using {X, −X, Z, −Z} vectors.

Candidate solutions can be generated through random or uniform
sampling. Uniform sampling uses a 3D matrix bounded by the ground’s
2D AABB. Height is limited by LiDAR’s maximum and minimum height.
The matrix subdivision is parameterized by the voxel size. Otherwise,
we can randomly distribute solutions instead of intensively sampling
the 3D space. The objective of random sampling is to explore fewer
solutions, though scattered throughout the scene. Hence, a random
uniform distribution is used instead of a QMC sampler. This initial set of
solutions can be either enhanced (Spatial Search), subsampled (Greedy
approach) or selected through bit sets (Genetic Algorithm).

3.5. Spatial search

The following section describes how the initial solutions are im-
proved, thus providing a wider space exploration, instead of relying
on initial locations. However, metrics for improving individual scans
do not integrate any knowledge of overlapping among scans. The

following searches work according to the 𝐹2 metric defined in Eq. (2).

Automation in Construction 146 (2023) 104675A. López et al.

t
g
w
e

3

i
c
t
a

𝑝

1

3

l
t
t
R
c
m
g
s
t
t
e
p

Fig. 8. Overview of gradients for a 2D neighbour search. (a) Constant approach
that generates 8 vectors, whereas (b) sub-samples the circumference according to a
resolution parameter.

3.5.1. Solution neighbourhood
Neighbourhood exploration is here introduced to locally enhance

candidate locations. The neighbourhood is presented as 3D points close
to the currently evaluated position. It poses several challenges regard-
ing discretization, as it initially consists of an infinite set of translations.
Firstly, the neighbourhood size can be significantly downscaled by
selecting 14 unit vectors, given by the faces (6) and corners (8) of a unit
cube. Otherwise, the neighbourhood can be discretized by uniformly
subsampling a unit sphere, thus obtaining a buffer of gradients whose
length depends on the user-defined sampling resolution. Furthermore,
unit vectors can be scaled during the spatial search by defining the step
length. Note that a larger length leads to re-exploring parts of the scene,
whereas an extremely small length may not provide any enhancement
to the current solution. Fig. 8 illustrates the 2D gradient vectors to
explore the contiguous space of a point located at the sphere centre.
In 2D, 8 different gradients are generated in the first scenario, whereas
the number of gradients in the second depends on the resolution.

3.5.2. Greedy local search
The Local Search (LS) algorithm is implemented to assess if the

space can be rapidly surveyed. For that purpose, the neighbourhood of
each solution is explored, evaluated and ordered according to its fitness.
Solutions are iteratively improved by moving to the best solution in
the neighbourhood if any improves the current fitness. Otherwise, LS
falls on a local minimum and terminates the process. It also happens
whether the iteration exceeds a threshold, avoiding loops. However,
immediate loops as a result of revisiting previously explored solutions
can be efficiently discarded. To this end, we compute the 𝑑𝑜𝑡 product of
he gradient to be assessed and the last gradient (𝑓 (𝑔̂1, 𝑔̂2) = 𝑔̂1 ⋅ 𝑔̂2). A
radient is considered to be already explored whether 𝑓 (𝑔̂1, 𝑔̂2) < 𝜖 −1,
ith 𝜖 being a constant close to zero, in order to deal with floating-point
rrors.

.5.3. Simulated annealing
Simulated Annealing (SA) is evaluated as it tackles getting stuck

n local optima. To this aim, neighbours with worse fitness than the
urrent solution can be accepted following probabilistic criteria. A
emperature value (𝑇) is first initialized and reduced iteratively. The
cceptance rate of worse solutions is lower as 𝑇 decreases (cooling) [34,

61]. In this work, it is configured using the traditional exponential
formula, as defined in Eq. (8) for a minimization problem:

(𝑓 ′) =

{

exp(𝑓
′−𝑓
𝑇) 𝑓 ′ − 𝑓 ≥ 0

1 𝑓 ′ − 𝑓 < 0
(8)

given that 𝑓 ′ and 𝑓 are two fitness values from a new solution and the
current one, respectively. Consequently, a random uniform distribution
is also applied to determine whether a worse solution is accepted. The
stop criterion depends on a threshold temperature and a maximum
number of iterations.
7

3.5.4. Tabu search
The improvement of a naive local search leads to the Tabu Search

(TS) algorithm, which saves the so-called tabu moves that were already
processed and cannot be explored again. Re-initialization is performed
whether all neighbours are tabu moves, their objective value is worse
than both the current solution and overall best solution, or a maximum
number of iterations without improvement has been achieved. In 3D,
the main challenge is to handle the tabu move list in a continuous
space. Therefore, we narrowed the 3D space using a regular grid, i.e., a
3D matrix with variable resolution. A move is considered tabu when
the target point falls in a tabu voxel. Given the step size of neighbour
explorations, 𝑛𝑙, an appropriate voxel size is given by 𝑓 ⋅ 𝑛𝑙, with
< 𝑓 < 2.

.6. Genetic algorithm

Genetic Algorithms (GA) are aimed at selecting a subset of previous
ocations. For that purpose, this sort of algorithm is inspired by nature
o handle populations that evolve and improve over time. Accordingly,
his method combines both exploration and exploitation phases [62].
egarding our case study, this metaheuristic helps to reduce the setup
omplexity while still providing a dense coverage. In comparison with
emetic algorithms, the first stage aims to improve individual locations

uided by an exploration of surrounding areas, without evaluating the
cene coverage. Nevertheless, the proposed 𝐹2 metric takes into account
he weight of non-scanned polygons. Then, the final GA selection tries
o find the optimal solution regarding the scene coverage. To this
nd, a slight variation of the previously proposed 𝐹1 metric is here
roposed. The complete procedure is depicted in Fig. 9, whose stages

are following detailed:
Initialization of population. The population is first generated as

𝑝 chromosomes of size 𝑛 with a random number of activated LiDAR
locations. Hence, variety is ensured by avoiding populations with a
fixed number of activated bits.

Compute template rays. Template rays are first built to describe
how rays traverse the space from a default LiDAR location, which is
known to be (0, 0, 0). These rays are generated according to the LiDAR
configuration, which ought to follow the specifications of a standard
model. The LiDAR simulation receives as input a set of rays which
are following solved to return collisions. Hence, template rays are
replicated in the GPU for each location to be tested, thereby solving
them all at once. Otherwise, a single LiDAR simulation ought to be
performed, once for every location. However, the GPU-based LiDAR
simulation from previous work is simplified to provide only the first
collision both to favour replicability and performance of experiments.
As a result, the template rays are built once in the GPU and used
multiple times with different locations.

Parent selection. The aim of this stage is to select the 𝑠 most
promising individuals for the subsequent crossover. Two different se-
lections are here proposed. First, the 2-by-2 tournament allows se-
lecting good solutions, though they may not be within the top-most
𝑠. Therefore, this leads to introducing some minor variety into later
populations. On the other hand, the elitist approach selects the best
individuals from the current population.

Crossover. Previously selected parents are here combined to gener-
ate the next population. Parents can be mixed by selecting a crossing
point, thus generating two gen chunks for each parent, which are
combined to build offspring. Gens can also be individually processed
by retrieving uniformly distributed random values which determine the
parent (𝑝1𝑖 if 𝑟𝑖 ≤ 0.5, 𝑝2𝑖 otherwise). There is only a non-valid solution
given by a zero chromosome, which is avoided by randomly altering a
bit.

Mutation. Some minor mutations are introduced in the new gen-
eration. This process is parameterized by the number of mutable indi-
viduals and genes within each one. As there not exists a limit on the

Automation in Construction 146 (2023) 104675A. López et al.

a
A
m

s

𝐹

𝑝

a
4

4

s
S
r
t
t
l
t
u
f
t
L

d
T
T
G
w

e
c
c
F
p

Fig. 9. Overview of the genetic algorithm steps to evaluate the best combination of
spatial LiDAR setups.

number of activated bits, mutations are either performed by activating
or deactivating random bits.

Evaluation of new population. We compute the fitness of new
solutions for later stages based on the number of reached polygons.
Consequently, solutions that cover more polygons are more likely to
reproduce in the following iterations. However, this metric leads the
population to activate the whole set of locations. For this reason, the
previously proposed 𝐹1 metric is modified according to Eq. (9) by also
ccounting for the number of activated bits within a chromosome (𝑐𝑔).
s a result, the generic algorithm is oriented towards reaching the
aximum number of polygons with the minimum amount of LiDAR
8

cans.

1 =
∑

|𝑆|
𝑠=1 1[𝑡𝑠 ∈ {𝐿1, 𝐿2,… , 𝐿𝑘}]

∑𝑛
𝑔=1 𝑐𝑔

(9)

Replace population. New and previous populations are here mixed
following a generational or stationary method. The generational ap-
proach replaces parents with their offspring, whereas the stationary
algorithm replaces the worst individuals with the new population
whether they improve current solutions.

Update best solution. It is noteworthy that even this minor opera-
tion must be performed on the GPU, as the reading transfer would lead
to a huge delay in the GA response time.

3.7. Interactive tools

This section presents the interface tools provided to the user to
facilitate the adjustment of the scene and the algorithm set-up.

3.7.1. Level selection
The described P4S method is not restricted to single-floor environ-

ments. Instead, we have evaluated it with multiple floors. However, the
planning ought to be performed individually for each one. To easier
the selection of floor-labelled polygons, an interactive tool is provided
within the application. For that purpose, we added a ray-casting tool to
generate rays whose direction is given by the user’s viewpoint and a 3D
position. This position is computed by unprojecting the camera matrix
to a 2D point within the application canvas. The first collided model
is pushed into the ground list. The ray-casting process is accelerated
using the BVH data structure, thus solving it with unnoticeable latency.
With this regard, Eq. (10) defines how to unproject a 2D point from the
canvas to 3D.

𝑝3𝐷 = (𝑃 ⋅ 𝑉 ⋅𝑀)−1 ⋅
[𝑝2𝐷𝑥

𝑐𝑥
2 − 1,

𝑝2𝐷𝑦

𝑐𝑦
2 − 1, 0, 1

]𝑇
(10)

3𝐷 =
𝑝3𝐷
𝑝3𝐷𝑤

(11)

where (𝑝2𝐷𝑥
, 𝑝2𝐷𝑦

) is the canvas point, 𝑃 , 𝑉 are the camera projection
nd view matrices, respectively, (𝑐𝑥, 𝑐𝑦) is the canvas size, and 𝑝3𝐷 is a
-tuple describing the projection coordinates.

. Results and discussion

We have evaluated the proposed framework using three different
cenes obtained from BIM management software (Fig. 10: Basement,
chool and Office building). These models were exported as OBJ files
anging from 130k polygons to 2.7M. Therefore, traversing the BVH
akes a substantial portion of time during the optimization. Although
here exist a few studies concerning P4S in 3D, their solution is not pub-
icly published. Therefore, we compared our GPU-based solution with
he multi-core CPU-based approach. The latter version is implemented
sing OpenMP (Open Multi-Processing), a multi-threading framework
or CPU-based processes. Despite this, the LiDAR evaluation is very
ime-consuming on the CPU and therefore, both versions evaluate
iDAR scanning in the GPU.

The exploring parameters for the three local searches are set as
efined in Table 1. On the other hand, LiDAR parameters are detailed in
able 2. All measurements were performed on a PC with AMD Ryzen
hreadripper 3970X 3.6 GHz, 256 GB RAM, two Nvidia RTX A6000
PU and Windows 10 OS. The massively parallel methods in the GPU
ere implemented in GLSL using OpenGL (Open Graphics Library).

This section is organized as follows. First, the performance of differ-
nt LS algorithms is shown based on the 𝐹1 and 𝐹2 metrics. Then, the
omplete pipeline is evaluated by combining LS and GA. We also aim to
ompare GPU and CPU approaches to massively launch GA algorithms.
inally, the impact of height variability on LiDAR optimizations, i.e., 3D
lanning for scanning, is also explained.

Automation in Construction 146 (2023) 104675A. López et al.

B

4

i
i
s
i
t
a
p
i
a
s
t
z
p

Fig. 10. Three different environments from Autodesk Revit® applied to our evaluation. (a) Basement with 130k triangles (20 × 4 × 21 m), (b) school with 500K triangles
(44 × 24 × 32 m) and (c), office building with 2.7M triangles (16 × 8 × 49 m).
Fig. 11. Selection of the best 30 LiDAR locations using the greedy approach in the
asement scene.

.1. Performance of local searches

This section is focused on showing the improvement of the 𝐹2 metric
n three different LS methods: greedy, traditional LS, simulated anneal-
ng and tabu search. The evaluation of the 𝐹2 metric for each initial
olution is depicted regardless of the best solution observed until such
teration. We used the Basement scene during this evaluation. Despite
he improvement observed after using LS, the relevance of GA selection
fter this first phase is depicted in Fig. 11. It shows the narrowing
hase of a Greedy approach that selects the best 𝑘 ← 30 locations (red)
n an environment of variable geometrical complexity among different
reas, guided by the minimization of the 𝐹2 metric. Hence, most of the
elected locations are surrounded by dense geometry. Still, it manages
o cover most of the scene. Similarly, small enclosed rooms, as the
oom-in of Fig. 11, are not scanned due to their smaller number of
olygons.
9

Table 1
Overall attributes concerning the three cited local search algorithms.

Attributes Value

Starting solutions Uniform grid sampling
Final LS solutions No limit
Voxel size 0.5 m × 0.4 m

Max. iterations 60
Max. iterations without improv. 10

Neighbourhood Discrete (16)
𝛥 Neighbourhood 0.05 m

𝑇0 450 ◦C
𝑇𝑧 0.8 𝑇𝑧−1

Table 2
Specifications of LiDAR sensor during optimization, following the com-
mercial device HDL-64E. Attributes with * have been adapted either to
reduce the optimization latency or to account for accuracy metrics (e.g.,
range).

Attributes Value

Resolution 4500 × 64 beams
Max. bounces 1*
Max. range 5 m*
Coverage 360° × 26.9° (−24.9°−2°)
Height coverage [0.5, 2] m
Min. xz distance to items 0.4 m
Vertical checks r ← 0.2 m, n ← 16 rays

From this baseline, Fig. 12 depicts the improvements of initial
solutions with different LS algorithms. For that purpose, we show the
𝐹1 and 𝐹2 fitness values achieved by individual solutions during a fixed
number of iterations. However, some explorations may finish earlier if
no better solutions are found. Since we do not include GA selection yet,
optimized locations are filtered according to a regular grid that limits
the number of solutions per cell to one.

Local search. As expected from the description of LS, the explo-
ration of initial solutions using LS finishes early, especially for locations
that start with low 𝐹2 values. The algorithm does not allow moving to
worse solutions, thus favouring that the maximum number of iterations
is achieved early. Also note that moves to neighbours are controlled
by a small factor, otherwise the initial grid sampling turns into a
random sampling. Due to the behaviour of LS, most locations would
converge into positions close to walls as regarded by Soudarissanane
and Lindenbergh [11], since they maximize 𝐹1 and collide walls with
low incidence angle.

Simulated annealing. As opposed to LS, SA is able to temporarily
worsen the location fitness and allows exploring a wider area in xz and
y. Hence, most of the initial locations reach lower values of 𝐹 than
2

Automation in Construction 146 (2023) 104675A. López et al.

s

L
l
i
n
i
s
s
a
w
a

g
(
t
f
f
i
l
t
r
W
a

Fig. 12. Optimization performed by (a) naive LS, (b) SA and (c) TS, showing both 𝐹1 and 𝐹2 results through their iterative improvement and a scatter plot. The bottom images
how the final locations of solutions optimized by SA and TS. Then, these are organized according to a regular grid and filtered by selecting only one solution per subdivision.
4

w
L
o
d
p
t
u
r
e
t

a

S, as shown in the scatter plot. Implicitly, initial solutions move to
ocations that cover a larger number of polygons due to 𝐹1 being also
ntegrated into 𝐹2’s formula. Unlike LS, early-finished explorations are
ot as frequent. Despite LOC being included in 𝐹2, the line graph shows
terations that reach a lower number of collided polygons than previous
olutions. It is not necessarily correlated to SA allowing worse solutions,
ince coverage is not a primary metric in this first stage. Instead, it is
consequence of moves that improve accuracy at expense of slightly
orsening coverage. For that reason, the subsequent GA stage is aimed
t providing better coverage.
Tabu search. By avoiding previous moves and re-initializing when

etting stuck, initial solutions are slightly more optimal regarding 𝐹2
not for 𝐹1) than those obtained by previous algorithms. However,
hey are not uniformly sparsed as they (1) tend to show a preference
or areas with higher polygon density and (2) random re-initialization
avours this. Despite it being desirable, the local improvement of SA
s preferred over TS as it offers a wider range of possibilities to the
ater GA, whereas TS offers immediate results whether we need to select
he best 𝑘 locations. Also, note that the steeper profiles are due to the
e-initialization phase implemented by selecting new random points.
ithout re-initialization, TS turns into a more strict LS. Hence, the main

im of TS was to show the impact of re-initializing.
10
.2. Path performance

The main challenge of optimizing the LiDAR set-up is to cover the
hole building level, including enclosed rooms. However, the described
S approaches optimize local metrics. Thus, the sorting and narrowing
f locations by their 𝐹2 result only guarantee to select points that
ensely acquire their surrounding area. Therefore, the final selection is
erformed by genetic algorithms guided by a global metric measuring
he polygon coverage. The evaluated genetic algorithm is launched
sing the values as shown in Table 3. We also aim to evaluate the
esults of connected nodes, i.e., LS + GA, Simulated Annealing + GA,
tc. Besides coverage, the implicit reduction of LiDAR locations during
he optimization is also observed during these tests.

The results from three different combinations of LS and genetic
lgorithms are depicted in Fig. 13, using a single level of the School en-

vironment. This scenario includes multiple enclosed rooms that cannot
be scanned from central areas, as well as gaps in the central area that
allows scanning lower building levels. In this regard, the tabu search (c)
obtained a lower number of points, though most of them are gathered
in the main room, as happened with locally improved solutions being
translated to areas with higher geometrical complexity. In contrast to
the tabu search, LS and SA provide a higher variety of locations, thereby
favouring the selection of a higher number of locations and providing

Automation in Construction 146 (2023) 104675A. López et al.

i

s
s

4

𝐹
a
T
a
p
t
v

Fig. 13. Results of combining local searches and genetic algorithms. The left images depict the final LiDAR distribution, whereas the right images show the improvement of
ntermediate results with regard to the proposed metric (𝑌 ← Minimization, 𝑋 ← Maximization). a), b) and c) refer to LS + GA, SA + GA and TS + GA combinations.
better coverage of enclosed rooms. Also, note that the LiDAR range was
limited to 𝑟 ← 5 m to account for accuracy loss due to the distance.
Therefore, higher values of 𝑟 derive into a less dense selection. Despite
LS and SA providing similar results, the GA selection using SA managed
to scan the small rooms on the left and right sides due to its wider
exploration. Nevertheless, the GA performance in terms of 𝐹1 and 𝐹2
is similar for the three algorithms, as regarded in the scatter plots of
Fig. 13. It can be concluded that, despite the importance of selecting
cans with GA, it is significantly conditioned by the previous local
earch step.

.3. Level of overlap

Previous LiDAR locations are selected according to the 𝐹1 and
2 metrics to fit LOC, LOD and LOA requirements, since solving GA
nd LS algorithms with a single objective function is straightforward.
hus, LOO is considered once the optimal set of solutions is selected,
s subsequently added locations are aimed at improving rather than
roviding an optimal solution. In this subsection, we evaluate how
he proposed overlap method affects the final result. To facilitate the
isualization of LOO, a greedy approach is used to (1) sample the
11
Table 3
Parameters of the genetic algorithm launched in this stage.

Attributes Value

Max. evaluations 50K
Population size 500
Number of parents 250
P(Chromosome mutation) 0.02
P(Gen mutation) 0.1
Stagnant population (re-init.) 80%
Stuck at local minima (re-init.) 30 it. without improving
Crossover operator Two points
Selection operator 2-tuple tournament
Replacement Stationary

scenario and (2) narrow it to a few solutions scattered by controlling
the density of solutions. Accordingly, Fig. 14 shows the initial level
of overlapping as well as the improvement after requiring an overlap
of 20%, 40% and 60%. Below, the LiDAR distribution is obtained by
limiting the sensor range to 1.5 m and 1 m, respectively. Also, the last
test was further stressed by scattering the solutions with a minimum
distance of (6 - 𝜖) m. Consequently, the minimum number of solutions

to reach each other is 2, though it varies according to their distance.

Automation in Construction 146 (2023) 104675A. López et al.

v
i

Fig. 14. (a) Initial overlap and the results obtained after requiring an overlap of 20%,
40% and 60%. (b) Rendering of LiDAR scans selected by a Greedy approach as well
as those selected by the proposed method to enhance the overlap.

Initial solutions were not improved by means of local searches, thus
displaying a grid-like pattern.

4.4. Response time

The main drawback of local searches is the sequential evaluation of
LiDAR scans. Our proposal is conditioned by GPU LiDAR evaluations, as
they cannot be solved in parallel. The performance of the GA algorithm
was improved by solving the whole simulation of a chromosome at
once since it is composed of several locations. However, changes in
locations must be evaluated individually during a local search. On the
other hand, improvements based on pre-calculations are more feasible
at expense of higher CPU-memory usage. Therefore, some optimizations
and implementation details are here discussed to provide an efficient
solution.

The current LS approach checks the validity and computes the
metric values of every new solution, regardless of the possibility that
it may have been previously checked. It seldom occurs with random
initialization, though it is known to occur frequently with uniformly
sampled locations due to the constant step length. Therefore, it is
possible to reduce the latency by pre-calculating both the validity and
metric values of grid voxels whose length depends on the neighbour
step length. Still, the latency remains the same for a greedy approach.

Fig. 15 shows the average and global response time for the three LS
approaches. The Building scene was used to conduct this evaluation,
using the configuration in Table 1. The first chart shows the average
response time per LiDAR location. Hence, latency varies depending on
12

the number of iterations. The global latency sums the search as well
Fig. 15. (a) Average response time per solution for every LS algorithm with two
versions: initial and optimized, and (b) summation of response time from previous
configurations.

Fig. 16. Response time of genetic algorithms implemented as CPU (multi-core) and
GPU solutions. First, the response time is shown per GA population, and finally, the
response time is summed for each sort of optimization.

as the pre-calculation latency. Accordingly, we can conclude that this
approach significantly speed-ups the search, except in those algorithms
that get easily stuck in local optima or cannot reinitialize.

During the selection stage, different chromosomes are evaluated
synchronously. Parallelism is present in other stages: initialization,
parent selection, crossover, etc. Hence, we evaluated whether it was
effective to implement the genetic algorithm pipeline on the GPU.
Initially, it is implemented as a multi-thread solution on the CPU. From
Fig. 15 we can observe that the GPU-based solution is significantly
faster. It mainly occurs due to data being processed in the GPU for the
whole GA pipeline, instead of transferring it before and after evaluating
the solution’s fitness (see Fig. 16).

4.5. Variable height LiDAR

Besides occlusion-aware 3D P4S, another contribution of our work
is the estimation of the most appropriate height when scanning. Fig. 17
shows the results of 𝐹1 and 𝐹2 metrics by using (1) fixed height or (2)
ariable height within the range [1, 2] m. In both cases, the scenario
s uniformly subsampled every 0.1 m. Accordingly, the first search is

performed over a 2D grid, regardless of being applied over a 3D scene,
whereas the second one is 3D. The results are obtained using a test

Automation in Construction 146 (2023) 104675A. López et al.

e
o
T
a
u
u
n
s
a
m
r

5

𝑛
G
m
o
s
r
b
s
t
g
a
r
u
d

o

Fig. 17. (a) An environment designed for testing the benefits of variable height, and (b), (c) locations selected by a Greedy algorithm using an HDL-64E and Pandar64 LiDAR
sensors. The scatter plots show the values of 𝐹1 and 𝐹2 for each initial solution. The first one shows the results of a LiDAR with a fixed height.
e
c
l
T
c
a
s

D

c
i

D

A

p
M
i
a

R

nvironment composed of four outer walls and four inner walls with
ne hole per wall, each one at different height, as depicted in Fig. 17.
he LiDAR was first configured as a Velodyne HDL-64E, and then,
s a Pandar64 with a wider vertical Field of View (FOV) and non-
niform resolution. Instead of applying an LS, a Greedy approach is
sed to evaluate a fine subdivision of the space that is subsequently
arrowed to ten placements. As observed in Fig. 17, all the locations
elected by the Greedy approach are placed next to wall holes, thereby
llowing to reach more polygons. Despite being guided by the 𝐹2
etric, these locations are mainly selected according to the number of

eached polygons, thus showing the inclusion of 𝐹1 in 𝐹2.

. Conclusions and future work

In this work, a P4S methodology was described to select the best
scanning locations in complex 3D environments, taking advantage of
PU-based spatial queries and LiDAR scans. Instead of applying a single
etaheuristic algorithm, as in most of the revised work in the literature,

ur pipeline is split into two different phases: local optimizations and
election. Regarding objective functions, the described metrics do not
ely on manually set values. Instead, they are shaped with smoothed
oundaries and some of them, such as LOA, are improved by con-
idering several criteria that enhance multiple metrics at once. Also,
he optimal value of 𝑛 is implicitly explored during the optimization
uided by the modified LOC metric. Finally, algorithms were optimized
s multi-core CPU and GPU in the case of genetic algorithms. The
esults show that our method is capable of constructing a LiDAR set-
p distribution to scan environments with significant occlusion by
iscovering the optimal sensor height.

Despite being accelerated in CPU and GPU, the proposed method-
13

logy is still time-consuming due to the dimensionality of both 3D
nvironments and LiDAR scans guided by specifications of commer-
ial sensors. Hence, pre-calculating the fitness of uniformly scattered
ocations ought to be further explored, at expense of storage volume.
herefore, compression may be a key factor due to the similarity of
lose scans. Finally, continuous paths should also be considered in
ddition to discrete locations to cover other kinds of LiDAR sensors,
uch as mobile or aerial scanning.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgements

This result has been partially supported through the research
rojects TIN2017-84968-R and RTI2018-099638-B-I00 funded by
CIN/AEI/10.13039/501100011033/ and ERDF funds ‘‘A way of do-

ng Europe", as well as by the Spanish Ministry of Science, Innovation
nd Universities via a doctoral grant to the first author (FPU19/00100).

eferences

[1] J. Pandžić, M. Pejić, B. Božić, V. Erić, Error model of direct georeferencing
procedure of terrestrial laser scanning, Autom. Constr. 78 (2017) 13–23, http:

//dx.doi.org/10.1016/j.autcon.2017.01.003.

http://dx.doi.org/10.1016/j.autcon.2017.01.003
http://dx.doi.org/10.1016/j.autcon.2017.01.003
http://dx.doi.org/10.1016/j.autcon.2017.01.003

Automation in Construction 146 (2023) 104675A. López et al.
[2] M.H. Shariq, B.R. Hughes, Revolutionising building inspection techniques to meet
large-scale energy demands: A review of the state-of-the-art, Renew. Sustain.
Energy Rev. 130 (2020) 109979, http://dx.doi.org/10.1016/j.rser.2020.109979.

[3] E. Guisado-Pintado, D.W.T. Jackson, D. Rogers, 3D mapping efficacy of a drone
and terrestrial laser scanner over a temperate beach-dune zone, Geomorphology
328 (2019) 157–172, http://dx.doi.org/10.1016/j.geomorph.2018.12.013.

[4] H. Mitasova, E. Hardin, M.F. Overton, M.O. Kurum, Geospatial analysis of
vulnerable beach-foredune systems from decadal time series of lidar data, J.
Coast. Conserv. 14 (3) (2010) 161–172, http://dx.doi.org/10.1007/s11852-010-
0088-1.

[5] S. Kuutti, R. Bowden, Y. Jin, P. Barber, S. Fallah, A survey of deep learning
applications to autonomous vehicle control, IEEE Trans. Intell. Transp. Syst. 22
(2) (2021) 712–733, http://dx.doi.org/10.1109/TITS.2019.2962338.

[6] F. Banfi, The integration of a scan-to-HBIM process in BIM application: the
development of an add-in to guide users in autodesk revit, ISPRS - Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W11 (2019) 141–148, http:
//dx.doi.org/10.5194/isprs-archives-XLII-2-W11-141-2019.

[7] N. Ham, B.I. Bae, O.K. Yuh, Phased reverse engineering framework for sus-
tainable cultural heritage archives using laser scanning and BIM: the case of
the hwanggungwoo (seoul, korea), Sustainability 12 (19) (2020) 8108, http:
//dx.doi.org/10.3390/su12198108.

[8] M. Andriasyan, J. Moyano, J.E. Nieto-Julián, D. Antón, From point cloud data to
building information modelling: an automatic parametric workflow for heritage,
Remote Sens. 12 (7) (2020) 1094, http://dx.doi.org/10.3390/rs12071094.

[9] F. Poux, R. Billen, A Smart Point Cloud Infrastructure for intelligent environ-
ments, in: Laser Scanning: An Emerging Technology in Structural Engineering,
CRC Press, 2019, pp. 127–149.

[10] A. Warchoł, the concept of LIDAR data quality assessment in the context of
BIM modeling, ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
XLII-1/W2 (2019) 61–66, http://dx.doi.org/10.5194/isprs-archives-XLII-1-W2-
61-2019.

[11] S. Soudarissanane, R. Lindenbergh, Optimizing terrestrial laser scanning mea-
surement set-up, ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci. XXXVIII-5/W12 (2012) 127–132, http://dx.doi.org/10.5194/isprsarchives-
XXXVIII-5-W12-127-2011.

[12] H. Macher, T. Landes, P. Grussenmeyer, From point clouds to building informa-
tion models: 3D semi-automatic reconstruction of indoors of existing buildings,
Appl. Sci. 7 (10) (2017) 1030, http://dx.doi.org/10.3390/app7101030.

[13] V. Pătrăucean, I. Armeni, M. Nahangi, J. Yeung, I. Brilakis, C. Haas, State
of research in automatic as-built modelling, Adv. Eng. Inform. 29 (2) (2015)
162–171, http://dx.doi.org/10.1016/j.aei.2015.01.001.

[14] Rocha, Mateus, Fernández, Ferreira, A scan-to-BIM methodology applied to
heritage buildings, Heritage 3 (1) (2020) 47–67, http://dx.doi.org/10.3390/
heritage3010004.

[15] J. Moyano, C.P. Odriozola, J.E. Nieto-Julián, J.M. Vargas, J.A. Barrera, J. León,
Bringing BIM to archaeological heritage: Interdisciplinary method/strategy and
accuracy applied to a megalithic monument of the Copper Age, J. Cult. Herit.
45 (2020) 303–314, http://dx.doi.org/10.1016/j.culher.2020.03.010.

[16] C. Gollob, T. Ritter, A. Nothdurft, Comparison of 3D point clouds obtained by
terrestrial laser scanning and personal laser scanning on forest inventory sample
plots, Data 5 (4) (2020) 103, http://dx.doi.org/10.3390/data5040103.

[17] P. Rodríguez-Gonzálvez, B. Jiménez Fernández-Palacios, A.L. Muñoz-Nieto, P.
Arias-Sanchez, D. Gonzalez-Aguilera, Mobile LiDAR system: new possibilities for
the documentation and dissemination of large cultural heritage sites, Remote
Sens. 9 (3) (2017) 189, http://dx.doi.org/10.3390/rs9030189.

[18] A. Bienert, L. Georgi, M. Kunz, H.G. Maas, G. Von Oheimb, Comparison
and combination of mobile and terrestrial laser scanning for natural forest
inventories, Forests 9 (7) (2018) 395, http://dx.doi.org/10.3390/f9070395.

[19] T.H. Kim, T.H. Park, Placement optimization of multiple lidar sensors for
autonomous vehicles, IEEE Trans. Intell. Transp. Syst. 21 (5) (2020) 2139–2145,
http://dx.doi.org/10.1109/TITS.2019.2915087.

[20] A. López, C.J.O. Anguita, F.R.F. Higueruela, A GPU-Accelerated LiDAR Sensor
for Generating Labelled Datasets, The Eurographics Association, 2021, http:
//dx.doi.org/10.2312/ceig.20211360.

[21] L. Li, Z. Wei, J.K. Hao, K. He, Probability learning based tabu search for the
budgeted maximum coverage problem, Expert Syst. Appl. 183 (2021) 115310,
http://dx.doi.org/10.1016/j.eswa.2021.115310.

[22] H.E. Mohamadi, N. Kara, M. Lagha, Efficient algorithms for decision making
and coverage deployment of connected multi-low-altitude platforms, Expert Syst.
Appl. 184 (2021) 115529, http://dx.doi.org/10.1016/j.eswa.2021.115529.

[23] V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, Pareto optimization for
subset selection with dynamic cost constraints, Artificial Intelligence 302 (2022)
103597, http://dx.doi.org/10.1016/j.artint.2021.103597.

[24] C. Potthast, G.S. Sukhatme, A probabilistic framework for next best view
estimation in a cluttered environment, J. Vis. Commun. Image Represent. 25
(1) (2014) 148–164, http://dx.doi.org/10.1016/j.jvcir.2013.07.006.

[25] M. Giorgini, S. Marini, R. Monica, J. Aleotti, Sensor-based optimization of
terrestrial laser scanning measurement setup on GPU, IEEE Geosci. Remote Sens.
Lett. 16 (9) (2019) 1452–1456, http://dx.doi.org/10.1109/LGRS.2019.2899681.
14
[26] A. Aryan, F. Bosché, P. Tang, Planning for terrestrial laser scanning in construc-
tion: A review, Autom. Constr. 125 (2021) 103551, http://dx.doi.org/10.1016/
j.autcon.2021.103551.

[27] E. Wakisaka, S. Kanai, H. Date, Optimal laser scan planning for as-built modeling
of plant renovations using mathematical programming, ISARC Proc. (2019)
91–98.

[28] D. Li, J. Liu, Y. Zeng, G. Cheng, B. Dong, Y.F. Chen, 3D model-based scan
planning for space frame structures considering site conditions, Autom. Constr.
140 (2022) 104363, http://dx.doi.org/10.1016/j.autcon.2022.104363.

[29] M.J. Starek, T. Chu, H. Mitasova, R.S. Harmon, Viewshed simulation and
optimization for digital terrain modelling with terrestrial laser scanning, Int. J.
Remote Sens. 41 (16) (2020) 6409–6426, http://dx.doi.org/10.1080/01431161.
2020.1752952.

[30] C. Zhang, V.S. Kalasapudi, P. Tang, Rapid data quality oriented laser scan
planning for dynamic construction environments, Adv. Eng. Inform. 30 (2) (2016)
218–232, http://dx.doi.org/10.1016/j.aei.2016.03.004.

[31] M. Heidari Mozaffar, M. Varshosaz, Optimal placement of a terrestrial laser
scanner with an emphasis on reducing occlusions, Photogramm. Rec. 31 (156)
(2016) 374–393, http://dx.doi.org/10.1111/phor.12162.

[32] E. Latimer, D. Latimer, R. Saxena, C. Lyons, L. Michaux-Smith, S. Thayer,
Sensor space planning with applications to construction environments, in: IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA
’04. 2004, Vol. 5, 2004, pp. 4454–4460, http://dx.doi.org/10.1109/ROBOT.
2004.1302419.

[33] H. Chen, W. Guan, S. Li, Y. Wu, Indoor high precision three-dimensional
positioning system based on visible light communication using modified genetic
algorithm, Opt. Commun. 413 (2018) 103–120, http://dx.doi.org/10.1016/j.
optcom.2017.12.045.

[34] F. Jia, D. Lichti, A comparison of simulated annealing, genetic algorithm and
particle swarm optimization in optimal first-order design of indoor TLS networks,
in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. IV-2-W4, Copernicus GmbH, 2017, pp. 75–82, http://dx.doi.org/
10.5194/isprs-annals-IV-2-W4-75-2017.

[35] J. Ahn, K. Wohn, Interactive scan planning for heritage recording, Multimedia
Tools Appl. 75 (7) (2016) 3655–3675, http://dx.doi.org/10.1007/s11042-015-
2473-0.

[36] Y. Pehlivanoglu, P. Pehlivanoglu, An enhanced genetic algorithm for path
planning of autonomous UAV in target coverage problems, Appl. Soft Comput.
112 (2021) http://dx.doi.org/10.1016/j.asoc.2021.107796.

[37] V. Roberge, M. Tarbouchi, Parallel algorithm on GPU for wireless sensor data
acquisition using a team of unmanned aerial vehicles, Sensors 21 (20) (2021)
6851, http://dx.doi.org/10.3390/s21206851.

[38] R. Islambouli, S. Sharafeddine, Optimized 3D deployment of UAV-mounted
cloudlets to support latency-sensitive services in IoT networks, IEEE Access 7
(2019) 172860–172870, http://dx.doi.org/10.1109/ACCESS.2019.2956150.

[39] M. Pereira, D. Silva, V. Santos, P. Dias, Self calibration of multiple LIDARs
and cameras on autonomous vehicles, Robot. Auton. Syst. 83 (2016) 326–337,
http://dx.doi.org/10.1016/j.robot.2016.05.010.

[40] K. Na, J. Byun, M. Roh, B. Seo, Fusion of multiple 2D LiDAR and RADAR for
object detection and tracking in all directions, in: 2014 International Conference
on Connected Vehicles and Expo, ICCVE, 2014, pp. 1058–1059, http://dx.doi.
org/10.1109/ICCVE.2014.7297512.

[41] L.d.P. Veronese, A. Ismail, V. Narayan, M. Schulze, An accurate and computa-
tional efficient system for detecting and classifying ego and sides lanes using
LiDAR, in: 2018 IEEE Intelligent Vehicles Symposium, IV, 2018, pp. 1476–1483,
http://dx.doi.org/10.1109/IVS.2018.8500434.

[42] Z.J. Wang, Z.H. Zhan, J. Zhang, Solving the energy efficient coverage problem
in wireless sensor networks: a distributed genetic algorithm approach with
hierarchical fitness evaluation, Energies 11 (12) (2018) 3526, http://dx.doi.org/
10.3390/en11123526.

[43] T. Voegtle, I. Schwab, T. Landes, Influences of different materials on the
measurement of a Terrestrial Laser Scanner (TLS), in: Proc. of the XXI Congress,
the International Society for Photogrammetry and Remote Sensing, ISPRS2008,
Vol. 37, 2008.

[44] G. Lee, J. Cheon, I. Lee, Validation of LIDAR calibration using a LIDAR simulator,
ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B1-2020
(2020) 39–44, http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-39-2020.

[45] V. Méndez, H. Catalán, J.R. Rosell-Polo, J. Arnó, R. Sanz, LiDAR simulation in
modelled orchards to optimise the use of terrestrial laser scanners and derived
vegetative measures, Biosyst. Eng. 115 (1) (2013) 7–19, http://dx.doi.org/10.
1016/j.biosystemseng.2013.02.003.

[46] J. Iqbal, R. Xu, S. Sun, C. Li, Simulation of an autonomous mobile robot for
LiDAR-based in-field phenotyping and navigation, Robotics 9 (2) (2020) 46,
http://dx.doi.org/10.3390/robotics9020046.

[47] F. Westling, M. Bryson, J. Underwood, SimTreeLS: Simulating aerial and
terrestrial laser scans of trees, 2020, arXiv:2011.11954 [cs, eess].

[48] S.D. Brown, D.D. Blevins, J.R. Schott, Time-gated topographic LIDAR scene
simulation, in: G.W. Kamerman (Ed.), Laser Radar Technology and Applications
X, SPIE, 2005, pp. 342–353, http://dx.doi.org/10.1117/12.604326.

http://dx.doi.org/10.1016/j.rser.2020.109979
http://dx.doi.org/10.1016/j.geomorph.2018.12.013
http://dx.doi.org/10.1007/s11852-010-0088-1
http://dx.doi.org/10.1007/s11852-010-0088-1
http://dx.doi.org/10.1007/s11852-010-0088-1
http://dx.doi.org/10.1109/TITS.2019.2962338
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W11-141-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W11-141-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W11-141-2019
http://dx.doi.org/10.3390/su12198108
http://dx.doi.org/10.3390/su12198108
http://dx.doi.org/10.3390/su12198108
http://dx.doi.org/10.3390/rs12071094
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb9
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb9
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb9
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb9
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb9
http://dx.doi.org/10.5194/isprs-archives-XLII-1-W2-61-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-1-W2-61-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-1-W2-61-2019
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-5-W12-127-2011
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-5-W12-127-2011
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-5-W12-127-2011
http://dx.doi.org/10.3390/app7101030
http://dx.doi.org/10.1016/j.aei.2015.01.001
http://dx.doi.org/10.3390/heritage3010004
http://dx.doi.org/10.3390/heritage3010004
http://dx.doi.org/10.3390/heritage3010004
http://dx.doi.org/10.1016/j.culher.2020.03.010
http://dx.doi.org/10.3390/data5040103
http://dx.doi.org/10.3390/rs9030189
http://dx.doi.org/10.3390/f9070395
http://dx.doi.org/10.1109/TITS.2019.2915087
http://dx.doi.org/10.2312/ceig.20211360
http://dx.doi.org/10.2312/ceig.20211360
http://dx.doi.org/10.2312/ceig.20211360
http://dx.doi.org/10.1016/j.eswa.2021.115310
http://dx.doi.org/10.1016/j.eswa.2021.115529
http://dx.doi.org/10.1016/j.artint.2021.103597
http://dx.doi.org/10.1016/j.jvcir.2013.07.006
http://dx.doi.org/10.1109/LGRS.2019.2899681
http://dx.doi.org/10.1016/j.autcon.2021.103551
http://dx.doi.org/10.1016/j.autcon.2021.103551
http://dx.doi.org/10.1016/j.autcon.2021.103551
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb27
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb27
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb27
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb27
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb27
http://dx.doi.org/10.1016/j.autcon.2022.104363
http://dx.doi.org/10.1080/01431161.2020.1752952
http://dx.doi.org/10.1080/01431161.2020.1752952
http://dx.doi.org/10.1080/01431161.2020.1752952
http://dx.doi.org/10.1016/j.aei.2016.03.004
http://dx.doi.org/10.1111/phor.12162
http://dx.doi.org/10.1109/ROBOT.2004.1302419
http://dx.doi.org/10.1109/ROBOT.2004.1302419
http://dx.doi.org/10.1109/ROBOT.2004.1302419
http://dx.doi.org/10.1016/j.optcom.2017.12.045
http://dx.doi.org/10.1016/j.optcom.2017.12.045
http://dx.doi.org/10.1016/j.optcom.2017.12.045
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-75-2017
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-75-2017
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-75-2017
http://dx.doi.org/10.1007/s11042-015-2473-0
http://dx.doi.org/10.1007/s11042-015-2473-0
http://dx.doi.org/10.1007/s11042-015-2473-0
http://dx.doi.org/10.1016/j.asoc.2021.107796
http://dx.doi.org/10.3390/s21206851
http://dx.doi.org/10.1109/ACCESS.2019.2956150
http://dx.doi.org/10.1016/j.robot.2016.05.010
http://dx.doi.org/10.1109/ICCVE.2014.7297512
http://dx.doi.org/10.1109/ICCVE.2014.7297512
http://dx.doi.org/10.1109/ICCVE.2014.7297512
http://dx.doi.org/10.1109/IVS.2018.8500434
http://dx.doi.org/10.3390/en11123526
http://dx.doi.org/10.3390/en11123526
http://dx.doi.org/10.3390/en11123526
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb43
http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-39-2020
http://dx.doi.org/10.1016/j.biosystemseng.2013.02.003
http://dx.doi.org/10.1016/j.biosystemseng.2013.02.003
http://dx.doi.org/10.1016/j.biosystemseng.2013.02.003
http://dx.doi.org/10.3390/robotics9020046
http://arxiv.org/abs/2011.11954
http://dx.doi.org/10.1117/12.604326

Automation in Construction 146 (2023) 104675A. López et al.
[49] B. Lohani, R. Mishra, Generating LiDAR data in laboratory: LiDAR simulator, Int.
Arch. Photogramm. Remote Sens. 52 (2007).

[50] A. Hovi, I. Korpela, Real and simulated waveform-recording LiDAR data in
juvenile boreal forest vegetation, Remote Sens. Environ. 140 (2014) 665–678,
http://dx.doi.org/10.1016/j.rse.2013.10.003.

[51] J.-P. Gastellu-Etchegorry, T. Yin, N. Lauret, E. Grau, J. Rubio, B.D. Cook, D.C.
Morton, G. Sun, Simulation of satellite, airborne and terrestrial LiDAR with DART
(I): Waveform simulation with quasi-Monte Carlo ray tracing, Remote Sens.
Environ. 184 (2016) 418–435, http://dx.doi.org/10.1016/j.rse.2016.07.010.

[52] T. Yin, N. Lauret, J.P. Gastellu-Etchegorry, Simulation of satellite, airborne
and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions,
photon counting, and solar noise, Remote Sens. Environ. 184 (2016) 454–468,
http://dx.doi.org/10.1016/j.rse.2016.07.009.

[53] T. Yun, L. Cao, F. An, B. Chen, L. Xue, W. Li, S. Pincebourde, M.J. Smith, M.P.
Eichhorn, Simulation of multi-platform LiDAR for assessing total leaf area in
tree crowns, Agricult. Forest Meteorol. 276–277 (2019) 107610, http://dx.doi.
org/10.1016/j.agrformet.2019.06.009.

[54] P. Chen, C. Jamet, Z. Mao, D. Pan, OLE: a novel oceanic lidar emulator, IEEE
Trans. Geosci. Remote Sens. (2020) 1–15, http://dx.doi.org/10.1109/tgrs.2020.
3035381.

[55] T. Zohdi, Rapid simulation-based uncertainty quantification of flash-type time-
of-flight and lidar-based body-scanning processes, Comput. Methods Appl. Mech.
Engrg. 359 (2020) 112386, http://dx.doi.org/10.1016/j.cma.2019.03.056.
15
[56] N. Peinecke, T. Lueken, B.R. Korn, Lidar simulation using graphics hardware
acceleration, in: 2008 IEEE/AIAA 27th Digital Avionics Systems Conference,
IEEE, 2008, pp. 4.D.4–1–4.D.4–8, http://dx.doi.org/10.1109/dasc.2008.4702838.

[57] D. Meister, J. Bittner, Parallel locally-ordered clustering for bounding volume hi-
erarchy construction, IEEE Trans. Vis. Comput. Graph. 24 (3) (2018) 1345–1353,
http://dx.doi.org/10.1109/tvcg.2017.2669983.

[58] R. Marques, C. Bouville, K. Bouatouch, Optimal sample weights for hemispherical
integral quadratures, Comput. Graph. Forum 38 (1) (2019) 59–72, http://dx.doi.
org/10.1111/cgf.13392.

[59] L. Kocis, W.J. Whiten, Computational investigations of low-discrepancy se-
quences, ACM Trans. Math. Software 23 (2) (1997) 266–294, http://dx.doi.org/
10.1145/264029.264064.

[60] J.B. Burkardt, The halton quasi monte carlo (QMC) sequence, 2010.
[61] J. Wiȩckowski, B. Kizielewicz, J. Kołodziejczyk, Finding an approximate global

optimum of characteristic objects preferences by using simulated annealing, in:
I. Czarnowski, R.J. Howlett, L.C. Jain (Eds.), Intelligent Decision Technologies,
in: Smart Innovation, Systems and Technologies, Springer, Singapore, 2020, pp.
365–375, http://dx.doi.org/10.1007/978-981-15-5925-9_31.

[62] M. Vannucci, V. Colla, S. Cateni, Genetic operators impact on genetic algorithms
based variable selection, in: I. Czarnowski, R.J. Howlett, L.C. Jain (Eds.), Intel-
ligent Decision Technologies, in: Smart Innovation, Systems and Technologies,
Springer, Singapore, 2020, pp. 211–221, http://dx.doi.org/10.1007/978-981-15-
5925-9_18.

http://refhub.elsevier.com/S0926-5805(22)00545-3/sb49
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb49
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb49
http://dx.doi.org/10.1016/j.rse.2013.10.003
http://dx.doi.org/10.1016/j.rse.2016.07.010
http://dx.doi.org/10.1016/j.rse.2016.07.009
http://dx.doi.org/10.1016/j.agrformet.2019.06.009
http://dx.doi.org/10.1016/j.agrformet.2019.06.009
http://dx.doi.org/10.1016/j.agrformet.2019.06.009
http://dx.doi.org/10.1109/tgrs.2020.3035381
http://dx.doi.org/10.1109/tgrs.2020.3035381
http://dx.doi.org/10.1109/tgrs.2020.3035381
http://dx.doi.org/10.1016/j.cma.2019.03.056
http://dx.doi.org/10.1109/dasc.2008.4702838
http://dx.doi.org/10.1109/tvcg.2017.2669983
http://dx.doi.org/10.1111/cgf.13392
http://dx.doi.org/10.1111/cgf.13392
http://dx.doi.org/10.1111/cgf.13392
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://refhub.elsevier.com/S0926-5805(22)00545-3/sb60
http://dx.doi.org/10.1007/978-981-15-5925-9_31
http://dx.doi.org/10.1007/978-981-15-5925-9_18
http://dx.doi.org/10.1007/978-981-15-5925-9_18
http://dx.doi.org/10.1007/978-981-15-5925-9_18

	Metaheuristics for the optimization of Terrestrial LiDAR set-up
	Introduction
	Related work
	Planning for Scanning
	Metaheuristics
	LiDAR simulation

	Material and methods
	Environments
	Solution encoding
	Metrics
	Level of Accuracy, Coverage and Resolution
	Level of Overlap
	Point sampling

	Solution initialization
	Spatial search
	Solution neighbourhood
	Greedy local search
	Simulated Annealing
	Tabu search

	Genetic algorithm
	Interactive tools
	Level selection

	Results and discussion
	Performance of Local Searches
	Path Performance
	Level of Overlap
	Response Time
	Variable height LiDAR

	Conclusions and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

