
����������
�������

Citation: Béjar-Martos, J.A.;

Rueda-Ruiz, A.J.; Ogayar-Anguita,

C.J.; Segura-Sánchez, R.J.;

López-Ruiz, A. Strategies for the

Storage of Large LiDAR Datasets—A

Performance Comparison. Remote

Sens. 2022, 14, 2623. https://

doi.org/10.3390/rs14112623

Academic Editors: Jorge Delgado

García, Fayez Tarsha Kurdi

and Tarig Ali

Received: 12 April 2022

Accepted: 29 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Strategies for the Storage of Large LiDAR Datasets—A
Performance Comparison
Juan A. Béjar-Martos, Antonio J. Rueda-Ruiz * , Carlos J. Ogayar-Anguita and Rafael J. Segura-Sánchez
and Alfonso López-Ruiz

Cntro de Estudios Avanzados en TIC, University of Jaén, 23071 Jaén, Spain; jabm0010@red.ujaen.es (J.A.B.-M.);
cogayar@ujaen.es (C.J.O.-A.); rsegura@ujaen.es (R.J.S.-S.); allopezr@ujaen.es (A.L.-R.)
* Correspondence: ajrueda@ujaen.es

Abstract: The widespread use of LiDAR technologies has led to an ever-increasing volume of captured
data that pose a continuous challenge for its storage and organization, so that it can be efficiently
processed and analyzed. Although the use of system files in formats such as LAS/LAZ is the most
common solution for LiDAR data storage, databases are gaining in popularity due to their evident
advantages: centralized and uniform access to a collection of datasets; better support for concurrent
retrieval; distributed storage in database engines that allows sharding; and support for metadata
or spatial queries by adequately indexing or organizing the data. The present work evaluates the
performance of four popular NoSQL and relational database management systems with large LiDAR
datasets: Cassandra, MongoDB, MySQL and PostgreSQL. To perform a realistic assessment, we
integrate these database engines in a repository implementation with an elaborate data model that
enables metadata and spatial queries and progressive/partial data retrieval. Our experimentation
concludes that, as expected, NoSQL databases show a modest but significant performance difference
in favor of NoSQL databases, and that Cassandra provides the best overall database solution for
LiDAR data.

Keywords: LiDAR; point clouds; databases; NoSQL

1. Introduction

LiDAR scanning has become an indisputable tool in fields such as civil engineering,
surveying, archaeology, forestry or environmental engineering. The widespread use of
terrestrial and airborne LiDAR, powered by the fast evolution of scanning technology, is
generating an unprecedented amount of data. For instance, the scanning speeds of one
million points per second with an accuracy in the range of 3–5 mm have become common
today in terrestrial scanning [1]. Handling such a massive amount of data poses multiple
challenges related to its storage, transmission, organization, visualization, edition and
analysis, which are actually common to most Big Data applications [2].

LiDAR information has traditionally been stored and exchanged through system
files usually from standard formats such as LAS/LAZ. However, the use of databases
potentially has many advantages such as the centralized access, complex queries based on
metadata, spatial organization of data and distributed storage in databases that support
sharding. NoSQL databases are extensively used in Big Data applications because of their
performance in simple retrieval operations, their flexible schema and their ability to scale
horizontally.

Storing large raw LiDAR data files in a database does not provide any advantages
over system files. However, as stated above, the design of an appropriate database scheme
or the use of a spatial extension [3] allows organizing LiDAR data into a spatial data
structure such as a regular grid, quadtree or octree. This enables spatial data queries and
the selective/progressive transmission of data to clients. This organization requires splitting

Remote Sens. 2022, 14, 2623. https://doi.org/10.3390/rs14112623 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112623
https://doi.org/10.3390/rs14112623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0002-3075-6963
https://doi.org/10.3390/rs14112623
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112623?type=check_update&version=2

Remote Sens. 2022, 14, 2623 2 of 15

the original LiDAR dataset into data blocks that are associated with the corresponding
tree nodes or grid cells. The size of the data block can have a remarkable impact on the
performance of the database.

The main objective of the present work was to provide guidance to those responsible
for the design and implementation of LIDAR information storage and processing systems
on the performances of different database management systems. Four different NoSQL and
relational systems (Cassandra, MongoDB, MySQL PostgreSQL) were compared in terms of
the performance of their upload and retrieval operations in single and concurrent scenarios.
A complex database schema was used, with two nested spatial data structures and three
different data block sizes, following the conceptual model of SPSLiDAR [4].

The rest of this paper is organized as follows: Section 2 reviews some of the extensive
existing literature related to the storage of LiDAR information; Section 3 describes the
dataset used in the experimentation, the conceptual data model of SPSLiDAR, the features
of each database management system evaluated and the implementation of the conceptual
data model in them; Section 4 provides the details of the experimental comparison carried
out and outlines the results that are discussed in depth in Section 5. Finally, Section 6
summarizes the conclusions and proposes some future work.

2. Previous Work

LiDAR point clouds are currently a very valuable resource for all types of decision-
making processes involving spatial data from the real world. The evolution of LiDAR
systems enables the acquisition of massive spatial data models [5] whose volume is steadily
increasing. Current sensors allow, using various technologies, obtaining dense information
at different scales [6] from small objects to large digital terrain models, integrating them
into the Geospatial Big Data [7–10]. Recently, many research papers related to this matter
have been published [5,10–13].

The processing of LiDAR point cloud data involves a series of steps that range from
its acquisition to the extraction of relevant features, including registering, filtering, seg-
mentation, classification and conversion to other representation schemes. Each of these
steps has its own research topic, and in particular, the storage of massive point clouds
is one of the most notable. In recent years, with increasing processing power, memory
and communication bandwidth, the main challenge with LiDAR data is to make massive
information available for use in different applications [14]. In this sense, there are different
approaches focusing on mass storage in secondary memory, in a cluster of servers or in the
cloud [15–19].

Organizing 3D point clouds with data structures that subdivide space is a common
solution for increasing the performance of spatial queries. However, from a storage point
of view, it also brings the benefit of dividing a potentially massive amount of data into
smaller chunks that can be more efficiently managed, which is of key importance when
transmitting data over a network. The most widely used data structure for out-of-core
point cloud storage is the octree [20–23]. Other widely used structures are the Kd-tree [24],
variants of the R-tree [25], a sparse voxel structure [16] and simple grids [26].

Most spatial data structures can be adapted for out-of-core storage, and in this regard,
there are different variants and approaches. This is of utmost importance, since today it
is common to process LiDAR datasets that do not fit into main memory. The simplest
approach is direct storage in secondary memory using local files [15,19]. Another variant
consists of using storage in distributed file systems [27,28] typically indexed through a
spatial structure hosted in the form of a master index or in a database. LiDAR datasets
usually comprise one or more point cloud files encoded in non-standard ASCII formats,
the LAS format of the American Society for Photogrammetry and Remote Sensing (ASPRS),
its compressed variant LAZ [29], SPD [30], PCD, HDF5 and other general 3D data formats
such as OBJ or PLY. In addition, there are some proposals for specific formats, closely
related to applications which involve additional point attributes and custom compression

Remote Sens. 2022, 14, 2623 3 of 15

algorithms. Understandably, file formats that focus on data compression are the most
useful [11,29,31].

Although file-oriented storage is the simplest and most common option, using databases
is the most versatile solution. An original way of storing a point cloud model in a database
is to use one row for each point in a relational database, including all its attributes. In the
past, this approach was common among GIS applications where sets of points of moderate
size were stored in a spatial database to support spatial queries, mainly 2D. However, this
scheme is not valid for a large amount of data [32], so the next logical solution is to store a
group of points in each row, as systems such as Oracle Spatial or PostGIS do. In addition to
this, there are other solutions based on relational databases to work with point clouds and
spatial information [8,21].

On the other hand, NoSQL databases have some advantages over relational databases
in Big Data applications. Among these, document-oriented databases (MongoDB, Cassan-
dra, Couchbase, etc.) have gained popularity due to their capability to efficiently handle
large volumes of data and are scalable through the use of sharding. Because of this, they
are usually the preferred option for storing point clouds with a Big Data approach for both
semi-structured and unstructured datasets [26,28,32]. However, the everlasting discus-
sion about the theoretical convenience of using the modern NoSQL approach instead of
relational databases for Big Data problems should not diminish the relevance of the latter,
particularly considering their maturity and widespread adoption [33]. In the case of point
cloud datasets, including LiDAR, several approaches use relational database management
systems (DBMSs) for processing information [21,34]. The most relevant part is the data
model of a DBMS that defines the logical structure of a database and that determines how
the data can be stored, organized, and retrieved. In this work, we use SPSLIDAR [4], a data
model with a reference implementation for a LiDAR data repository that can be used with
any spatial indexing.

3. Materials and Methods

In order to study the performance of the different database engines integrated into
SPSLiDAR, various datasets belonging to the city of Pamplona (Spain) were used. We chose
this particular area because of the public availability of LiDAR data acquired at different
moments and densities (0.5–10 points/m2). The areas covered by the LiDAR datasets are
located in the UTM zone 30N and were captured over 6 years to include a variety of terrains
(urban, rural, roads, etc.). Table 1 summarizes the characteristics of the four datasets, and
Figure 1 shows a partial rendering of Dataset 1.

Table 1. Datasets characteristics.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Name Pamplona 2011
Pamplona 2017b
(reduced version

of dataset 4)

Pamplona 2017c
(reduced version

of dataset 4)
Pamplona 2017

Number of
points 30,401,539 244,894,563 534,073,172 1,068,146,345

Density
(points/m2) 0.5 2.5 5 10

Grid size
(meters) 10,000 10,000 10,000 10,000

Size (MBs) 138.29 1850.21 4085.94 8054.36

Point data
record length 34 38 38 38

LAS point data
record format 3 8 8 8

Remote Sens. 2022, 14, 2623 4 of 15

Figure 1. Partial view of Dataset 1 (Pamplona 2011).

3.1. SPSLiDAR

In previous work, a high-level conceptual model for a repository for LiDAR data,
namely SPSLiDAR, was proposed [4]. The conceptual model of SPSLiDAR, depicted in
Figure 2, comprises three entities: workspace, dataset and datablock. A workspace represents
a set of related datasets, such as, for instance, those generated by the LiDAR coverage of
several counties or provinces, or different scanning campaigns from related archaeological
sites. A dataset comprises one or more point clouds acquired at a particular site. The
points of a dataset are organized into a structure of datablocks starting at one or more
root datablocks. SPSLiDAR exposes its functionalities to the clients through a restful API,
allowing queries by spatial and temporal criteria, and the progressive download of partial
or complete datasets.

The original paper of SPSLiDAR proposed a reference implementation that used a
regular grid to organize datasets and an octree for the datablocks within a dataset. Mon-
goDB was chosen as the underlying database engine due to its flexibility, high performance
and sharding capabilities that allow handling up to petabytes of information distributed
across multiple data servers. The characteristics of the database management system have
a significant influence on the performance of SPSLIDAR, since each time a dataset is sent to
the system, one or more octrees are generated, and each one may comprise hundreds of
thousands of nodes and LAZ files that must be efficiently stored in the database—both in
terms of occupied time and space. Subsequently, the SPSLiDAR API enables the navigation
of the dataset octrees and the retrieval of the point clouds in the LAZ files associated
with the nodes of interest. The ability of the database to fetch the desired datablocks and
transmit the content of the associated point cloud files has a direct impact on latency times
and system throughput, especially considering that usually several clients may interact
with the system at the same time.

Remote Sens. 2022, 14, 2623 5 of 15

Figure 2. Spatial data structures at the workspace and dataset levels. For the sake of clarity, octrees
are depicted as quadtrees at the dataset level.

3.2. Databases

In our experimentation, we used the original MongoDB-based implementation of
the SPSLiDAR and three different adaptations corresponding to the rest of the database
management systems evaluated. Even though the storage of large LiDAR datasets fits
the definition of Geospatial Big Data, we did not want to restrict ourselves only to non-
relational databases, usually considered the standard storage solution for applications in
this domain. Relational databases have also been used for the storage of massive amounts
of data [9,35] and may therefore meet the needs of our use case.

MongoDB, Cassandra, PostgreSQL and MySQL were the four technologies adopted.
All of them are well established products. Among non-relational databases, MongoDB
provides a document-oriented solution while Cassandra follows a wide-column approach.
In the category of relational databases, PostgreSQL and MySQL are among the most widely
adopted. In order to make the fairest comparison, the SPSLiDAR conceptual model was
implemented in each database in the most straightforward way.

3.2.1. MongoDB

MongoDB is a non-relational document-oriented database that uses JSON to encode
information. Documents in MongoDB present a flexible schema so that two documents
representing a similar concept can have different fields and new attributes may be added or
removed at runtime. MongoDB introduces the concept of collection as a means of grouping
documents which represent the same concept or type of information.

The GridFS specification is provided by MongoDB as a means of storing binary files
that surpass the 16 MB per document limit imposed by the system. GridFS uses two
collections to store files. One collection stores the file chunks (fs.chunks) and the other stores
file metadata (fs.files). Each file is decomposed into multiple chunks stored in the fs.chunks
collection, each one containing the binary data of the corresponding section of the file, an
order attribute that specifies its position in the sequence of chunks and a reference to the
file document in the fs.files collection. By default, the maximum amount of data per chunk
is set to 255 KB. The GridFS collections are depicted in Figure 3.

The storage of LAZ files in the database is one of the key points of the implementation
as it has a direct effect on performance. From a technical point of view, we could save these
files through GridFS or embedding the content in a document. We decided to use GridFS
as the standard way of storing files, since this enables the construction of octrees with any
arbitrary node size. A hybrid approach could also be followed to store the LAZ file through
an embedded field if it does not surpass the 16 MB size limit for MongoDB documents,
or via GridFS otherwise. This hybrid approach can easily be implemented in MongoDB
thanks to its flexible document schema, which allows encoding the file data in a BSON

Remote Sens. 2022, 14, 2623 6 of 15

(Binary JSON) field or alternatively, to include a DBRef field with the _id of the document
saved in the fs.files collection of GridFS.

Figure 3. Database design for MongoDB. PK refers to primary key and FK refers to foreign key.

The final structure of documents and collections defined in MongoDB is depicted in
Figure 3, showing the relationships among the different entities. The details of the data
model, including the description of the workspace, dataset and datablock entities can be found
in an original paper describing SPSLiDAR [4]. A mainly denormalized approach was
followed: for instance, a datablock document will contain redundant information that
refers to the workspace, dataset, and grid cell it belongs to. These fields were indexed in
order to accelerate queries since datablock fetching is a crucial operation to access LAZ
data files.

3.2.2. Cassandra

Cassandra is a non-relational database with a partitioned row model. Rows are stored
in different partitions, identified by the partition key (PK) which may consist of one or
more columns. A partition may contain more than one row; in these cases, a clustered
key (CK) is also needed, which may also consist of more than one column and uniquely
identifies each row inside a partition. Therefore, a single row is defined by a composite key
formed by a partition key and optionally a clustered key.

No analogous specification to MongoDB GridFS exists in Cassandra; therefore, we
implemented a custom system that follows the same basic concepts. A new entity called
chunk was defined, which contains a column with binary data and is uniquely identified by
a composite key formed by the partition key of the datablock it belongs to and an additional
chunk_order attribute which identifies the position of the chunk content in the file data. As
a result, all the chunks belonging to the same file are stored on the same partition and
the chunk_order attribute facilitates a complete recovery of the chunks in ascending order,
enabling a straightforward reconstruction of the file. The maximum size of content for each
chunk was set to 255 KB—the same default value used by GridFS.

Figure 4 shows the tables and the columns defined for the persistence of our data
model in Cassandra. As we did in MongoDB, a denormalized approach was followed.
Cassandra recommends a model design based on the queries that will be performed, with
data duplication encouraged to increase reading efficiency.

Remote Sens. 2022, 14, 2623 7 of 15

Figure 4. Database design for Cassandra implementation. PK refers to primary key and FK to
foreign key.

3.2.3. Relational Databases

Regarding relational databases, we integrated two different alternatives into the
system: namely PostgreSQL and MySQL. Due to their similarities, we used almost the
same implementation on the persistence layer, only modifying the types so that they adjust
to each database specification.

In the same way as with Cassandra, we implemented a tailored solution for the
storage of files. The proposed solution defines a new entity called chunk, with a composite
primary key formed by the primary key of its associated datablock together with an
additional attribute that represents the position of the attached binary data block in the
file. Normalization is usually a requirement in relational database schemas, but in order
to avoid table parameters that may adversely affect performance, we denormalized both
the datablocks and chunks entities. We consider that the time performance outweighs the
disadvantages of a denormalized schema for these particular tables since they are expected
to contain a large number of rows and support a high number of queries. In Figure 5, an
entity-relational diagram of the model is shown for both relational databases.

Figure 5. Database design for MySQL and PostgreSQL implementations. PK refers to the primary
key and FK to foreign key.

Remote Sens. 2022, 14, 2623 8 of 15

4. Experiments and Results

To evaluate the performance of each of the databases with large LiDAR datasets, three
experiments were performed. These experiments are based on those proposed in [36]. The
first one (upload test) evaluates the upload time and total storage space required by the four
datasets. The second test (simple requests test) measures the average download time for
1M points from a single client. For this purpose, multiple random LAZ files are requested
until completing 20 M points, computing the average from the total download time. The
third test (concurrent requests test) evaluates the response of the system to high workloads
by measuring the average download time for multiple concurrent requests of 1M points
from several clients.

The upload test and simple requests test were both implemented through a Python
3.9 script that uses the Requests library [37] in order to perform the petitions to the server.
The concurrent requests test was developed using the LoadTest JavaScript package for
Node.js [38]. All operations were performed through the SPSLiDAR API. The tested data
correspond to the four datasets described in Table 1. For each of the datasets, three different
maximum datablock sizes were tested: 10,000, 100,000, and 1,000,000 points. These values
define the maximum number of points of the LAZ file stored at each node of the octree,
and consequently determine its complexity since a lower or higher number of levels would
be required to store the dataset.

All experiments were carried out by running the different implementations of the
SPSLiDAR repository on a server with Intel i7-10700 Octa-Core at 2.9GHz, 16 GB RAM,
and 1 TB SSD drive, running Windows 10 Enterprise 64. All databases were deployed
through Docker using images with MongoDB 4.2.10, Cassandra 3.11.0, MySQL 8.0.24, and
PostgreSQL 13.2. The client computer was a Mackbook Pro laptop with an Intel Core
i7-4770HQ Quad-Core at 2.2 GHz with 16 GB RAM and a 256 GB SSD Drive, running
macOS Big Sur. The connection between the server and client was made through a 1 GB/s
Ethernet cable network.

4.1. Upload Test

A dataset upload comprises two stages. First, the original dataset is preprocessed and
subdivided into a set of small LAZ files whose size is limited by the maximum datablock
size. These files are indexed through octrees that represent the original point cloud. Second,
the files and the octree metadata are stored in the database. The first stage is highly
computationally demanding and consumes most of the time. Therefore, the influence
of the database performance on the overall time is limited. The preprocessing stage is
deterministic and is external to the persistence layer, resulting in the insertion of the same
number of files in each database. Furthermore, note that, in practice, this upload operation
is only to be carried out once per dataset. For this reason, we consider that the results of
this test should have the least weight in the choice of the database.

Table 2 shows the average upload times for each combination of dataset and the maxi-
mum datablock size through three executions. The biggest differences among databases
occurred in Dataset 4 as the octree structure generated is the most complex, with the highest
number of LAZ files to store. Figure 6 shows a relative comparison of the upload times of
Cassandra, PostgreSQL and MySQL with respect to MongoDB. We compared them against
MongoDB because this was used in the reference implementation of SPSLiDAR.

Remote Sens. 2022, 14, 2623 9 of 15

Table 2. Dataset upload times (in seconds) for the implementations based on MongoDB, Cassandra,
PostgreSQL and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra PostgreSQL MySQL

Dataset 1
1,000,000 67 68 69 70
100,000 218 211 224 213
10,000 1444 1373 1553 1411

Dataset 2
1,000,000 746 793 824 727
100,000 2089 2027 2016 1993
10,000 13,962 12,791 12,650 12,942

Dataset 3
1,000,000 1945 1806 1899 2191
100,000 3906 3843 3897 3962
10,000 25,176 24,528 26,823 23,307

Dataset 4
1,000,000 4131 4220 4150 4816
100,000 8460 8258 8887 8575
10,000 45,035 41,290 49,714 42,018

Figure 6. Relative comparison of upload times. Results for (a) Dataset 1; (b) Dataset 2; (c) Dataset 3;
and (d) Dataset 4.

Table 3 shows the final storage space required at the database level by the datasets
after the upload tests. This includes the LAZ files generated in the process in order for all
the entities necessary for the system to work correctly. The results shown are the average of
three upload operations, although we observed low variance among the results. Figure 7
depicts the information of Table 3 as a relative comparison in storage size with respect
to MongoDB.

Remote Sens. 2022, 14, 2623 10 of 15

Table 3. Storage required (in MB) by the implementations based on MongoDB, Cassandra PostgreSQL
and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra PostgreSQL MySQL

Dataset 1
1,000,000 198 197 214 224
100,000 202 200 217 220
10,000 235 224 247 262

Dataset 2
1,000,000 1875 1882 1960 2118
100,000 1893 1884 1970 2109
10,000 2162 2056 2262 2603

Dataset 3
1,000.000 4233 4243 4413 4337
100,000 4313 4308 4486 4365
10,000 5062 4753 5377 6130

Dataset 4
1,000.000 8265 8291 8609 9116
100,000 8388 8478 8726 9397
10,000 9893 9160 10,270 12,406

Figure 7. Relative comparison of the required storage. Results for (a) Dataset 1; (b) Dataset 2;
(c) Dataset 3; and (d) Dataset 4.

4.2. Simple Requests Test

Table 4 shows a relative comparison of the average times required for reading 1M
points from a single client in the different implementations tested. The results are also
graphically summarized in Figure 8.

Remote Sens. 2022, 14, 2623 11 of 15

Table 4. Average times (in seconds) of a request operation of 1M points in the implementations based
on MongoDB, Cassandra, PostgreSQL and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra Postgres MySQL

Dataset 1
1,000,000 0.107 0.11 0.264 0.268
100,000 0.333 0.303 0.965 0.425
10,000 2.547 1.824 5.997 1.72

Dataset 2
1,000,000 0.149 0.222 0.308 0.324
100,000 0.701 0.438 0.992 0.4
10,000 3.718 3.036 9.48 2.792

Dataset 3
1,000,000 0.17 0.237 0.304 0.469
100,000 0.429 0.332 1.094 0.551
10,000 3.559 2.453 8.991 2.223

Dataset 4
1,000,000 0.348 0.188 0.304 0.572
100,000 0.452 0.329 1.042 0.641
10,000 3.663 2.701 6.859 2.894

Figure 8. Relative comparison of the results of the simple requests test with (a) Dataset 1; (b) Dataset
2; (c) Dataset 3; and (d) Dataset 4.

4.3. Concurrent Requests Test

The third experiment evaluates the response time for several concurrent requests of 1M
points from different clients. Tables 5–8 show the results obtained for each implementation
with 10 and 100 concurrent clients, respectively. For the sake of simplicity, requests are only
performed on Dataset 1. Figure 9 graphically compares the throughput of the different
implementations.

Remote Sens. 2022, 14, 2623 12 of 15

Table 5. Results of the concurrent requests test in Cassandra.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 1.085 1.512 7 1.532
100,000 0.174 0.23 55 1.831
10,000 0.025 0.074 386 2.59

100
1,000,000 13.36 18.572 5 18.61
100,000 1.715 2.589 56 17.73
10,000 0.237 0.45 419 23.86

Table 6. Results of the concurrent requests test in MongoDB.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 1.653 1.68 6 1.691
100,000 0.252 0.42 39 2.5705
10,000 0.038 0.076 259 3.8628

100
1,000,000 1.614 1.657 6 16.164
100,000 2.079 3.823 47 21.4625
10,000 0.269 0.527 370 27.011

Table 7. Results of the concurrent requests test in PostgreSQL.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 2.386 3.002 3 3.024
100,000 0.224 0.503 42 2.352
10,000 0.035 0.4 274 3.646

100
1,000,000 23.3 38.57 3 38.62
100,000 3.763 16.51 26 38.691
10,000 0.279 0.597 356 28.071

Table 8. Results of the concurrent requests test in MySQL.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per second)

Total Time
(s)

10
1,000,000 1.547 1.579 6 1.604
100,000 0.232 0.296 42 2.36
10,000 0.044 0.113 223 4.493

100
1,000,000 25.422 34.841 3 34.886
100,000 9.316 23.556 10 95.749
10,000 0.416 0.633 239 41.86

Remote Sens. 2022, 14, 2623 13 of 15

Figure 9. Comparison of the throughput of the different implementations with (a) 10 concurrent
users and (b) 100 concurrent users.

5. Discussion

NoSQL databases are the primary storage option in Big Data applications. Our
experiments with LiDAR datasets confirm in general terms the advantage of using NoSQL
databases over relational ones, although the performance of MySQL is close or even
superior in certain situations. Nevertheless, Cassandra is the clear winner, only beaten
by MongoDB when the spatial data structure was organized in large datablocks (1 M).
One possible explanation for this fact may be the superior performance of GridFS when
handling larger LAZ files. Among all the experiments, the upload tests show less conclusive
results, but in general terms, Cassandra and MySQL perform better with small or medium
datablocks, and therefore, larger octrees, while MongoDB beats the rest of databases with
large datablocks (i.e., smaller octrees). Regarding the storage space required, the two
relational databases clearly perform the worst; most notably MySQL requires up to 20%
more space than MongoDB when using small datablock sizes. This may be due to a
more complex internal organization of the information or a wider use of indexes, which is
necessary to be able to respond to more complex queries in the relational model.

In the simple requests test, Cassandra and MySQL showed the lowest latency with
smaller and medium datablocks up to 25% better than MongoDB, although the latter was
still overall the fastest database with a 1M datablock size. PostgreSQL is clearly the worst
option—up to twice as slow as Cassandra in some experiments.

In the third series of experiments related to concurrent requests, Cassandra showed
the highest throughput followed by MongoDB. Surprisingly, the MySQL performance was
much less satisfactory in situations with concurrent requests than with single requests, com-
ing in last position—even behind PostgreSQL. This is an important weakness of MySQL that
may discourage its use in applications which need to support high concurrent workloads.

In summary, our recommendation for any project that requires storage in a database of
large LiDAR datasets is Cassandra. Its performance is excellent in all operations. MongoDB
can be an interesting alternative when Big Data chunks have to be stored in the database,
thanks to the excellent performance of GridFS. Finally, if using relational databases is a
requirement of the project, MySQL is the option of choice, although its performance under
high concurrent workloads should be carefully observed.

6. Conclusions and Future Work

Databases are a versatile and robust option when storing LiDAR data. In this paper,
we tried to shed some light on the most appropriate choice of database management
system for this type of data. To this end, we compared the performance of four of the
most popular NoSQL and relational database management systems in several areas. Our
conclusion is that although NoSQL databases perform better than relational systems, the
gap, particularly with MySQL, is narrow. Overall, Cassandra shines in all areas, only
lagging behind MongoDB when datasets are split into large blocks.

Remote Sens. 2022, 14, 2623 14 of 15

Many approaches use a database only for storing dataset metadata or spatial indexes,
keeping LiDAR data in external files. We store LiDAR data in the database because of its
clear advantages: simplicity, guaranteed consistency and distributed storage when using
database engines that support sharding. However, a further comparison of the performance
of the in-database vs. file system storage would provide useful information for decision
making when designing systems working with LiDAR data. The storage and processing
of massive volumes of LiDAR data usually requires a distributed architecture. For this
reason, a new experimentation similar to that carried out in this paper but using a cluster
of database nodes would be relevant. However, the relational databases management
systems analyzed are centralized, therefore additional solutions such as MySQL Cluster
CGE would be necessary. The use of this extra infrastructure and the decisions made during
the installation, configuration and tuning of the cluster and database nodes may influence
the experimentation and limit the validity of the results.

Author Contributions: Conceptualization, A.J.R.-R., R.J.S.-S., C.J.O.-A.; methodology, A.J.R.-R.,
R.J.S.-S., C.J.O.-A.; software, J.A.B.-M.; validation, A.J.R.-R., R.J.S.-S., C.J.O.-A., A.L.-R.; formal
analysis, C.J.O.-A., A.L.-R.; investigation, A.J.R.-R., R.J.S.-S., C.J.O.-A.; resources, J.A.B.-M.; data
curation, J.A.B.-M., C.J.O.-A.; writing—original draft preparation, J.A.B.-M., R.J.S.-S., C.J.O.-A.;
writing—review and editing, A.J.R.-R.; visualization, R.J.S.-S., C.J.O.-A.; supervision, A.J.R.-R.,
R.J.S.-S., C.J.O.-A.; project administration, R.J.S.-S.; funding acquisition, R.J.S.-S. All authors have
read and agreed to the published version of the manuscript.

Funding: This result is part of the research project RTI2018-099638-B-I00 funded by MCIN/ AEI/
10.13039/501100011033/ and ERDF funds “A way of doing Europe". Also, the work has been funded
by the University of Jaén (via ERDF funds) through the research project 1265116/2020.

Data Availability Statement: The datasets used for the experimentation are publicly available from
SITNA at the following URL: https://filescartografia.navarra.es/, accessed on 11 April 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leica Geosystems. ScanStation P40, P30 and P16 Comparison Chart. Available online: https://leica-geosystems.com/en-us/

products/laser-scanners/-/media/00ac56bc2a93476b8fe3d7c1795040ac.ashx (accessed on 22 May 2022).
2. Li, S.; Dragicevic, S.; Anton, F.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial Big

Data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2015, 115, 119–133.
[CrossRef]

3. Chen, R.; Xie, J. Open Source Databases and their Spatial Extensions; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2,
pp. 105–129. [CrossRef]

4. Rueda-Ruiz, A.J.; Ogáyar-Anguita, C.J.; Segura-Sánchez, R.J.; Béjar-Martos, J.A.; Delgado-Garcia, J. SPSLiDAR: Towards a multi-
purpose repository for large scale LiDAR datasets. Int. J. Geogr. Inf. Sci. 2022, 36, 1–20. [CrossRef]

5. Poux, Florent. The Smart Point Cloud: Structuring 3D Intelligent Point Data. Ph.D. Thesis, Universite de Liege, Liege,
Belgique, 2019. [CrossRef]

6. Bräunl, T. Lidar sensors. In Robot Adventures in Python and C; Springer: Cham, Switzerland, 2020; pp. 47–51. [CrossRef]
7. Evans, M.R.; Oliver, D.; Zhou, X.; Shekhar, S. Spatial Big Data. Case studies on volume, velocity, and varitety. In Big Data:

Techniques and Technologies in Geoinformatics; CRC Press: Boca Raton, FL, USA, 2014.
8. Lee, J.G.; Kang, M. Geospatial Big Data: Challenges and opportunities. Big Data Res. 2015, 2, 74–81. [CrossRef]
9. Pääkkönen, P.; Pakkala, D. Reference architecture and classification of technologies, products and services for Big Data systems.

Big Data Res. 2015, 2, 166–186. [CrossRef]
10. Deng, X.; Liu, P.; Liu, X.; Wang, R.; Zhang, Y.; He, J.; Yao, Y. Geospatial Big Data: Ew paradigm of remote sensing applications.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3841–3851. [CrossRef]
11. Sugimoto, K.; Cohen, R.A.; Tian, D.; Vetro, A. Trends in efficient representation of 3D point clouds. In Proceedings of the 2017

Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur,
Malaysia, 12–15 December 2017; pp. 364–369. [CrossRef]

12. Ullrich, A.; Pfennigbauer, M. Advances in LiDAR point cloud processing. In Laser Radar Technology and Applications XXIV; Turner,
M.D., Kamerman, G.W., Eds.; SPIE: Baltimore, MD, USA, 2019; p. 19. [CrossRef]

13. Ma, X.; Liu, S.; Xia, Z.; Zhang, H.; Zeng, X.; Ouyang, W. Rethinking pseudo-LiDAR representation. In Computer Vision—
ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
Volume 12358, pp. 311–327. [CrossRef]

https://filescartografia.navarra.es/
https://leica-geosystems.com/en-us/products/laser-scanners/-/media/00ac56bc2a93476b8fe3d7c1795040ac.ashx
https://leica-geosystems.com/en-us/products/laser-scanners/-/media/00ac56bc2a93476b8fe3d7c1795040ac.ashx
http://doi.org/10.1016/j.isprsjprs.2015.10.012
http://dx.doi.org/10.1007/978-3-540-74831-1_6
http://dx.doi.org/10.1080/13658816.2022.2030479
http://dx.doi.org/10.13140/RG.2.2.20457.75367
http://dx.doi.org/10.1007/ 978-3-030-38897-3_4
http://dx.doi.org/10.1016/j.bdr.2015.01.003
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1109/JSTARS.2019.2944952
http://dx.doi.org/10.1109/APSIPA.2017.8282059
http://dx.doi.org/10.1117/12.2518856
http://dx.doi.org/10.1007/978-3-030-58601-0_19

Remote Sens. 2022, 14, 2623 15 of 15

14. Poux, F.; Billen, R. A Smart Point Cloud Infrastructure for intelligent environments. In Laser Scanning: An Emerging Technology in
Structural Engineering; CRC Press: Boca Raton, FL, USA, 2019.

15. Scheiblauer, C.; Wimmer, M. Out-of-core selection and editing of huge point clouds. Comput. Graph. 2011, 35, 342–351. [CrossRef]
16. Baert, J.; Lagae, A.; Dutré, P. Out-of-core construction of sparse voxel octrees. Comput. Graph. Forum 2014, 33, 220–227. [CrossRef]
17. Richter, R.; Discher, S.; Döllner, J. Out-of-core visualization of classified 3D point clouds. In 3D Geoinformation Science; Breunig, M.,

Al-Doori, M., Butwilowski, E., Kuper, P.V., Benner, J., Haefele, K.H., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 227–242. [CrossRef]

18. Deibe, D.; Amor, M.; Doallo, R. Supporting multi-resolution out-of-core rendering of massive LiDAR point clouds through
non-redundant data structures. Int. J. Geogr. Inf. Sci. 2019, 33, 593–617. [CrossRef]

19. Schütz, M.; Ohrhallinger, S.; Wimmer, M. Fast out-of-core octree generation for massive point clouds. Comput. Graph. Forum 2020,
39, 155–167. [CrossRef]

20. Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans. ISPRS
J. Photogramm. Remote Sens. 2013, 76, 76–88. [CrossRef]

21. Schön, B.; Mosa, A.S.M.; Laefer, D.F.; Bertolotto, M. Octree-based indexing for 3D point clouds within an Oracle Spatial DBMS.
Comput. Geosci. 2013, 51, 430–438. [CrossRef]

22. Lu, B.; Wang, Q.; Li, A. Massive point cloud space management method based on octree-like encoding. Arab. J. Sci. Eng. 2019,
44, 9397–9411. [CrossRef]

23. Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. OctSqueeze: Octree-structured entropy model for LiDAR compression. arXiv
2020, arXiv: 2005.07178.

24. Goswami, P.; Erol, F.; Mukhi, R.; Pajarola, R.; Gobbetti, E. An efficient multi-resolution framework for high quality interactive
rendering of massive point clouds using multi-way kd-trees. Vis. Comput. 2013, 29, 69–83. [CrossRef]

25. Gong, J.; Zhu, Q.; Zhong, R.; Zhang, Y.; Xie, X. An efficient point cloud management method based on a 3D R-tree. Photogramm.
Eng. Remote Sens. 2012, 78, 373–381. [CrossRef]

26. Hongchao, M.; Wang, Z. Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds.
Comput. Geosci. 2011, 37, 193–201. [CrossRef]

27. Krämer, M.; Senner, I. A modular software architecture for processing of Big Geospatial Data in the cloud. Comput. Graph. 2015,
49, 69–81. [CrossRef]

28. Deibe, D.; Amor, M.; Doallo, R. Big Data storage technologies: A case study for web-based LiDAR visualization. In Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3831–3840.
[CrossRef]

29. Isenburg, M. LASzip. Photogramm. Eng. Remote. Sens. 2013, 79, 209–217. [CrossRef]
30. Bunting, P.; Armston, J.; Lucas, R.M.; Clewley, D. Sorted pulse data (SPD) library. Part I: A generic file format for LiDAR data

from pulsed laser systems in terrestrial environments. Comput. Geosci. 2013, 56, 197–206. [CrossRef]
31. Cao, C.; Preda, M.; Zaharia, T. 3D point cloud compression: A survey. In Proceedings of the 24th International Conference on 3D

Web Technology, Los Angeles, CA, USA, 26–28 July 2019; pp. 1–9. [CrossRef]
32. Boehm, J. File-centric organization of large LiDAR point clouds in a Big Data context. In Proceedings of the Workshop on

Processing Large Geospatial Data, Dallas, TX, USA, 4 November 2014.
33. Pandey, R. Performance Benchmarking and Comparison of Cloud-Based Databases MongoDB (NoSQL) vs. MySQL (Relational) Using

YCSB; National College of Ireland: Dublin, Ireland, 2020. [CrossRef]
34. Cura, R.; Perret, J.; Paparoditis, N. Point Cloud Server (PCS): Point clouds in-base management and processing. ISPRS Ann.

Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W5, 531–539. [CrossRef]
35. Migrating Facebook to MySQL 8.0. Available online: https://engineering.fb.com/2021/07/22/data-infrastructure/mysql

(accessed on 22 May 2022).
36. van Oosterom, P.; Martinez-Rubi, O.; Ivanova, M.; Horhammer, M.; Geringer, D.; Ravada, S.; Tijssen, T.; Kodde, M.; Gonçalves, R.

Massive point cloud data management: Design, implementation and execution of a point cloud benchmark. Comput. Graph. 2015,
49, 92–125. [CrossRef]

37. Reitz, K. HTTP for Humans(TM)—Requests 2.25.1 Documentation. Available online: https://docs.python-requests.org/
(accessed on 9 March 2021).

38. Fernández, A. Loadtest 5.1.2. Available online: https://www.npmjs.com/package/loadtest (accessed on 9 March 2021).

http://dx.doi.org/10.1016/j.cag.2011.01.004
http://dx.doi.org/10.1111/cgf.12345
http://dx.doi.org/10.1007/978-3-319-12181-9_14
http://dx.doi.org/10.1080/13658816.2018.1549734
http://dx.doi.org/10.1111/cgf.14134
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1016/j.cageo.2012.08.021
http://dx.doi.org/10.1007/s13369-019-03968-7
http://dx.doi.org/10.1007/s00371-012-0675-2
http://dx.doi.org/10.14358/PERS.78.4.373
http://dx.doi.org/10.1016/j.cageo.2010.05.017
http://dx.doi.org/10.1016/j.cag.2015.02.005
http://dx.doi.org/10.1109/BigData.2018.8622589
http://dx.doi.org/10.14358/PERS.79.2.209
http://dx.doi.org/10.1016/j.cageo.2013.01.019
http://dx.doi.org/10.1145/3329714.3338130
http://dx.doi.org/10.13140/RG.2.2.10789.32484
http://dx.doi.org/10.5194/isprsannals-II-3-W5-531-2015
https://engineering.fb.com/2021/07/22/data-infrastructure/mysql
http://dx.doi.org/10.1016/j.cag.2015.01.007
https://docs.python-requests.org/
https://www.npmjs.com/package/loadtest

	Introduction
	Previous Work
	Materials and Methods
	SPSLiDAR
	Databases
	MongoDB
	Cassandra
	Relational Databases

	Experiments and Results
	Upload Test
	Simple Requests Test
	Concurrent Requests Test

	Discussion
	Conclusions and Future Work
	References

