CVPR

001

002
003
004
005
006
007
008
009
010
011
012
013

014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

High-resolution non-line-of-sight imaging at 60 frames per second
via GPU acceleration

Supplementary Material

A. Integration in a SPAD array

In this section, we evaluate the potential results that could be
achieved by running our code on current and next-generation
live SPAD arrays. We focus on two key metrics: the number
of photons our work can process every frame, and the image
quality to expect from these photons.

To relate our benchmark to the main paper, our real-time
NLOS imaging results use the dataset released by Nam et al.
[4]. Reading raw photon counts directly from disk allows
us to stress-test reconstruction throughput at the maximum
frame rate, without being limited by current technology. No-
tably, this dataset contains approximately 10° photons per
reconstructed frame.

4096

i i
E Per-frame phr\:lr\n% in Nam et al.
i i

1024

i
| Teaser dataset

i from Lindell et al.
1 (10 min. exposure)
i

FPS
256

644 i —- - 60 FPS
,,,,, - i - 24 FPS
16 : 3

41 :

105 106 107 108 109
Photon count

Figure 1. Photon binning time for a dynamic NLOS scene of shape
190 x 190 x 208. The photon count slightly varies per frame;
typically, it oscillates around 1.2 - 10°.

In this experiment, we take the opposite perspective. In-
stead of fixing the photon count and reporting the resulting
frame rate, we fix the frame rate and determine how many
photons our system can process per second. In Figure I,
we show that our implementation can sustain frame rates
above 60 FPS while processing at least 1.6 orders of mag-
nitude more photons than in the datasets of Nam et al. [4].
Concretely, the 60-FPS threshold is surpassed with ~ 47M
photons, and frame rates remain above 24 FPS for photon
counts as large as ~ 96M.

While our work handles several million photons until sur-
passing the 60-FPS threshold, we also aim to demonstrate
that, for a lower number of photons, the hidden scene re-
mains recognizable using both f—k and RSD however, the
latter is more resilient to noise, as shown in Figure 2. For
example, the reconstructions in the third column are obtained
by processing fewer points than in every frame of Nam et al.
[4]’s datasets, and the fourth column processes less than half
of theirs.

Notably, the dataset of Nam et al. [4] is processed at
approximately 400 FPS, whereas the teaser dataset of Lin-
dell et al. [2], which contains 178M photons captured over
180 min, is processed at slightly below 16 FPS. However,
shorter exposure times yield visually similar reconstructions,
as shown in Figure 2.

Finally, although our experiments read raw data from disk,
we also estimate the maximum frame rate supported by the
acquisition hardware. Nam et al. [4] report that photon events
are streamed from the hardware queue over USB 3.0, whose
effective throughput is approximately 500 MB s~! [5]. Since
each photon record occupies 4 bytes [4], this bandwidth
allows reading up to 125M photon events per second. To
put this in context, this throughput would allow acquiring
over one hundred frames per second when using the same
per-frame photon count as in our dynamic NLOS sequences.
This frame rate would be even higher if fewer photons per
wall scan are required, as illustrated in Figure 2.

1.8 - 10® photons

1- 107 photons 1 - 10° photons 5 - 10° photons

Our RSD Our f-k migration

Ground truth

Figure 2. Teaser dataset from f—k [2]. The first and second columns
correspond to datasets measured for 180 and 10 minutes, respec-
tively. We downsample the former to 10% and 5 - 10° photons to
demonstrate that, even with significantly fewer captured photons,
hidden scenes remain recognizable, thus enabling high—frame-rate
reconstruction and photon binning. The first and second rows show
f—k and RSD reconstructions, respectively. The numbers within
each reconstruction indicate the Peak Signal-to-Noise Ratio with
respect to the most informed reconstruction (i.e., the first column).

CVPR

033
034
035
036
037
038

039
040
041
042
043
044
045
046
047
048
049
050

CVPR

051

052

053
054
055
056
057
058
059
060
061
062
063

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B. Further implementation details

B.1. /~k migration implementation

The following algorithms show the pseudocode of the orig-
inal f—k migration implementation (Algorithm 1) and our
version (Algorithm 2). In particular, we aim to highlight the
simplicity of our pipeline: whereas Algorithm | allocates up
to five auxiliary buffers, our method operates exclusively on
¥ and ¥, two complex-valued buffers of size (2x, 2y, 22).
We additionally merge several steps into single operations;
for instance, the Fourier shifts and the initial scaling. Finally,
instead of using the squared amplitude, we extract the magni-
tude of the reconstructed signal, as we found that the hidden
scenes become slightly more recognizable.

Algorithm 1. f—k migration [2]. Reconstruction pipeline follow-
ing prior work; pseudocode shown in a Python-like style. z, y, z
represents the spatial (z,y) and temporal dimensions (2). dmax
refers to the maximum distance, whereas aptwiatn is the physical
size in m of the scanned relay-wall.

1: def f~k_original (¥, z, v, 2, dmax, aPtwidth):

2: (Xw,Yw, Zw) < mgrid[—z:z, —y:y, —z:2]
3: (Xw, Yw, Zw) (Xw/z, Yu/y, Zw/z)

4: S « tile(linspace(0, 1, 2), (z,v, 2))

A

U+—UOS
U’ + zeros(2z, 2y, 2z)
7: Uiz, iy, 2] + U

> Initial scaling and zero-padding

)

8: U« F{fftshift(¥’)} > Forward FFT

9: ER dmax/ (42 - (aptwidsh/2))
10: Z!, «— \/82(X2 +Y2) + Z2 > Stolt remapping
11: U« interpn(Xuw, Yoo, Zws ¥, (Xuw, Yar, Z1))

12: T+« ol Zw>0 > Spectral filtering/compensation

13 Uevo s

14: U « ifftshift(F~1{T})
15: f(xv) < max_z(|¥?))

> Inverse FFT

16: return f(z,) > Final reconstruction

Algorithm 2. Our CUDA-based f—-k migration pipeline.

: def f~k_ours (¥, z,y, z, dmax, aDbwidth):
Uy) 0

U + scale_fitshift(¥, distance, aptyidsh)
U+ F{U}

5 <= @ - dmax/ (42 - aptwiden/2)

U+ stolt(T, s)

U FOU{w}

fxy) iﬁ"tshift,max,magnitude(‘/l\/)
return f(z)

PRI RPREE

B.2. RSD implementation

Similarly to the previous section, Algorithms 3 and 4 present
both the original RSD implementation and our optimized ver-
sion. In the original implementation, the initial Fourier trans-
forms are not parallelized: although they could be batched,
they are instead executed sequentially. The convolved vol-
ume C is also processed sequentially, weighting each slice
C(-,-, ¢) by w.. Moreover, the Fourier-transformed matrices
are not padded, which reduces memory consumption at the
expense of introducing artifacts.

In contrast, Algorithm 4 highlights the simplicity of our
approach: since the RSD kernels are precomputed, the recon-
struction reduces to performing batched frequency-domain
transforms, convolution, and an inverse Fourier transform.

Algorithm 3. RSD as implemented by Nam et al. [4]. Reconstruc-
tion pipeline following prior work. z, y, z represents the spatial
(z,y) and temporal dimensions, dmin, dmax, dd are the minimum,
maximum and delta distance, and w weights each frequency differ-
ently.

1: def rsd_original (¥, IC, z, y, 2, dmin, dmax, Ad, w):

2 forc+ 1toz: > 2D forward FFTs
3 U, <+ Fap{¥(,-,c)}

4: i+ 0

5: W(,-) <0

6: for d < @\min to dmax, step Ad :

7 C+— VY .OK(: 1)

8 forc+— 1toz:

9 W(,eyi) < V(e 1) +weC(s, -, c)

> Convolution

10: U(e, o 0) = Fop{U(,-9)} > Inverse FFT
11: U(-,-,0) « |[U(, -)| > Magnitude at depth ¢
12: i—it1

13: f(zy) < max_z(T)
14: return f(z,)

Algorithm 4. Our CUDA-based RSD pipeline.

1: defrsd_ours (¥, K, z,y, 2, w):
2: U+ F{U} > Batched 2D forward FFTs
3: C + convolve((f',lC7 T,Y, 2, W)

4: U+ F-1{c} > Inverse FFT
50 W« [T

6 f(zy) + max_z(¥’)

7 return f(z,)

B.2.1. GPU-driven RSD simplification

This subsection further discusses our enhancements for mem-
ory usage and runtime for the RSD-based method. We use as
a baseline the implementation by Lindell et al. [2], which is
slightly different from that of Nam et al. [4] and follows the
algorithm of Liu et al. [3]. We use this baseline as reference
for all our offline reconstruction experiments.

CVPR

064

065
066
067
068
069
070
071
072
073
074
075
076
077

078

079
080
081
082
083
084

CVPR

085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

104

105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The first drawback we addressed was the convolution of
the Point Spread Function (PSF), denoted as S in the fol-
lowing equations, with the signal’s phasor representation.
The original implementation allocates two complex-valued
buffers for the phasor representation, P, and Py, which
is suboptimal and allocates twice the required memory. In
this formulation, P..s and Pi;, store the cosine and sine
components of the phasor and are treated as if they were
independent signals: each one is Fourier-transformed, multi-
plied by the PSF in the frequency domain, and then inversely
transformed, and the final complex result is obtained by
combining both outputs.

However, these two components are in fact the real and
imaginary parts of a single complex phasor. Since the Fourier
transform, the pointwise multiplication by S, and the inverse
transform are all linear operations, applying them separately
to P.os and Py, is equivalent to applying them once to their
complex combination. Therefore, we found that the follow-
ing two expressions are equivalent:

P' = F YPuos - S} + i F {Pn - S} =
:.F_l{(pcos""iﬁsin)'s} (2)

with Peos = F{Peos} and Py, = F{Psin }-

Additionally, another time-consuming step is the con-
struction of the transform operator that maps phasor data
from a Cartesian layout to a ring-based layout. In the original
implementation, this operator is built as a sparse matrix of
size M? with M < max(x,y), where each sample index
i contributes a value of 1 at position (i, [v/7]). The matrix
is then iteratively collapsed over log, (max(x, y)) iterations;
in each iteration, pairs of non-contiguous rows are averaged.
After log, M iterations, the matrix is reduced to size M x M,
and the accumulated weights have been scaled by a factor of
(%)log2 M _ ﬁ .

This hierarchical construction is equivalent to directly
creating an M x M matrix and mapping each sample index ¢
to its corresponding ring index [+/¢ + 1], with a final weight
of ﬁm In other words, the hierarchical averaging per-
formed in the original implementation can be collapsed into
a single kernel. In fact, constructing the transform operators
as in the original formulation required building large sparse
matrices (e.g., using the Eigen library) and repeatedly col-
lapsing them on the CPU. After simplifying the algorithm,
the overall reconstruction time was reduced to approximately
one third.

Finally, note that it is not necessary to construct the in-
verse operator explicitly; the kernel can access it by simply
using transposed indices of the forward transform opera-
tor. The forward and backward matrix multiplications were
solved with the cuBLAS (Basic Linear Algebra Subpro-
grams) module on top of CUDA.

C. Additional results and benchmarks

C.1. Dynamic reconstruction of a detailed scene

We report additional results for real-time NLOS imaging
in another dynamic scene from Nam et al. [4]. Figure 3
shows the hidden scene and our reconstructions, in which
the letters 'N’, ’L’, ’O’, and ’S’ appear and disappear over
time. The scene contains 400 frames total. In the plot, we
compare the frames per second for our f—k migration (with
and without padding) and our RSD implementations, and
the RSD implementation of Nam et al. [4].

In the plot, the best performance corresponds to f—k mi-
gration without padding, whereas RSD performs slightly
better than f—k migration with padding. In this case, the re-
constructions for our RSD look the sharpest, clearly showing
the hidden letters.

—— Our fk - Our RSD
Our f-k (w/o pad.) ==+ RSD (Nam et al.)
550
500 : ' g
450 l
400 |
2 ! i
200)
150 - =
50 e S b S
0

0 50 100 150 Frame 250 300 350 400

Figure 3. Performance and qualitative comparison between our f—k
migration (padded and unpadded), our RSD, and the method of
Nam et al. The evaluated dynamic scene spans 190 x 190 x 208
voxels, with RSD applied over 50 depths. For each method, two
reconstructed frames are shown next to their ground truth (displayed
on the left of each pair) to illustrate differences in fidelity.

C.2. Offline reconstruction

We extend our reported offline reconstruction timings with a
comprehensive comparison in Table 1, covering a range of
spatial and temporal resolutions. Starting from the original
dataset sizes, we downsample the spatial and temporal di-
mensions. Recall that the f—k migration datasets are 5123,
while the largest Zaragoza datasets are 256 x 256 x 4096.
However, our experiments limit the temporal dimension to
2048 bins because 4096 time bins put significant memory
pressure.

Besides reconstruction time, we also evaluate throughput
in millions of voxels per second. The last two columns re-
port memory usage on both the CPU and GPU. We group
them under the label [V]RAM as the baseline f—k and RSD
implementations allocate buffers in CPU memory, whereas
our optimised variants operate primarily on GPU memory.

CVPR

135

136

137
138
139
140
141
142
143
144

145
146
147
148
149

150

151
152
153
154
155
156
157
158
159

160
161
162
163
164
165

CVPR

166

167
168
169
170
171
172
173
174
175
176
177

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Performance and memory comparison between our accelerated f—k and RSD implementations and their original counterparts,
implemented in Matlab. In addition to reconstruction time, we report throughput in millions of voxels per second, computed as the total
number of voxels divided by the reconstruction time. The memory column (Max. [VJRAM) reflects peak CPU or GPU usage: the original
methods allocate buffers on the CPU, whereas our optimized versions operate primarily on the GPU. For each dataset and dimensionality,

the best-performing implementation is highlighted in bold.

‘ ‘ ‘ | Time (s) ‘ Throughput (Mvox/s) ‘ Max. [VIRAM usage (GB)
| Dataset | Dimensions | Algorithm | Ours | Original | Ours | Original | Ours | Original |
| Confocal — f—k migration dataset [2] |
512512512 f—k migration 4.060 £ 0.10 146.624 + 8.467 33.06 0.92 16.500 52.430
Phasor fields 8.998 + 0.37 30.872 £ 0.670 14.92 4.35 21.509 33.579
256%256x512 f—k migration 0.157 £ 0.01 10.695 + 0.658 213.42 3.14 4.250 13.107
bike Phasor fields 0.249 + 0.00 6.894 £ 0.195 134.51 4.87 5.501 8.393
256x256x256 f—k migration 0.091 + 0.00 5.243 £+ 0.140 184.05 3.20 2.125 6.554
Phasor fields 0.132 + 0.01 3.428 £+ 0.152 127.19 4.89 2.375 4.194
128x128x512 f—k migration 0.048 + 0.00 2.552 £ 0.109 174.01 3.29 1.125 3.277
Phasor fields 0.078 £ 0.01 1.607 4+ 0.024 107.40 5.22 1.251 2.101
128x128x256 f—k migration 0.032 + 0.00 1.253 £+ 0.031 132.21 3.35 0.062 1.638
Phasor fields 0.048 £ 0.00 0.801 + 0.027 86.69 5.24 0.625 1.049
128x128x128 f—k migration 0.031 + 0.00 0.652 + 0.022 66.61 3.22 0.281 0.819
Phasor fields 0.032 £ 0.00 0.408 + 0.024 65.95 5.14 0.297 0.524
f—k migration 4.062 £+ 0.09 154.730 + 14.765 33.04 0.87 16.503 52.433
512x512x512 &
Phasor fields 9.064 £ 0.07 31.458 £ 2.647 14.81 4.27 21.504 33.579
256%256x512 f—k migration 0.156 + 0.01 11.462 £ 0.646 214.90 2.93 4.250 13.109
teaser ~ - Phasor fields 0.250 = 0.00 7.155 £ 0.273 134.42 4.69 4751 8.393
256x256x256 f—k migration 0.091 + 0.00 5.597 £ 0.197 184.65 3.00 2.125 6.554
Phasor fields 0.126 £ 0.00 3.568 £ 0.112 133.66 4.70 2.751 4.194
128x128x512 f—k migration 0.047 + 0.00 2713 £0.211 178.12 3.09 1.125 3.277
N Phasor fields 0.079 £ 0.01 1.621 + 0.056 106.74 5.17 1.251 2.101
128x128x256 f—k migration 0.029 + 0.00 1.435 £ 0.177 142.74 292 0.312 1.638
Phasor fields 0.044 £ 0.00 0.822 + 0.061 94.72 5.10 0.594 1.049
128x128x128 f—k migration 0.029 + 0.00 0.672 + 0.040 72.42 3.12 0.281 0.819
Phasor fields 0.028 + 0.00 0.409 + 0.013 74.29 5.13 0.156 0.524
512x512x512 f—k migration 3.834 £ 0.10 152.567 =+ 8.222 35.01 0.88 16.500 52.430
- - Phasor fields 9.067 £ 0.11 32.195 £+ 1.857 14.80 4.17 21.501 33.579
2565256512 f—k migration 0.161 + 0.01 11.118 + 0.874 207.97 3.02 4.250 13.107
statue Phasor fields 0.247 £ 0.00 7.063 £ 0.170 135.70 4.75 4751 8.393
256%256x256 f—k migration 0.093 + 0.00 5.340 £ 0.209 181.28 3.14 2.125 6.554
- ~ - Phasor fields 0.138 + 0.01 3.476 £ 0.099 121.74 4.83 2.375 4.195
128x128x512 f—k migration 0.045 + 0.00 2.747 £ 0.159 185.58 3.05 1.125 3.277
Phasor fields 0.074 £ 0.00 1.668 + 0.040 113.11 5.03 1.251 2.101
128x128x256 f—k migration 0.029 + 0.00 1.316 £ 0.059 144.30 3.19 0.062 1.638
Phasor fields 0.045 £ 0.00 0.830 + 0.037 94.06 5.05 0.594 1.049
128x128x128 f—k migration 0.031 £ 0.00 0.686 £ 0.140 67.73 3.06 0.156 0.819
Phasor fields 0.029 + 0.00 0.392 + 0.002 72.54 5.35 0.156 0.524

References

[1] Miguel Galindo, Julio Marco, Matthew O’Toole, Gordon Wet-
zstein, Diego Gutierrez, and Adrian Jarabo. A dataset for
benchmarking time-resolved non-line-of-sight imaging, 2019.
Publication Title: IEEE International Conference on Computa-
tional Photography (ICCP). 5, 6

David B. Lindell, Gordon Wetzstein, and Matthew O’Toole.
Wave-based non-line-of-sight imaging using fast f-k migration.
ACM Trans. Graph., 38(4):116:1-116:13, 2019. 1,2, 4
Xiaochun Liu, Ib6én Guillén, Marco La Manna, Ji Hyun Nam,
Syed Azer Reza, Toan Huu Le, Adrian Jarabo, Diego Gutierrez,
and Andreas Velten. Non-line-of-sight imaging using phasor-

2

—

[3

—

(4]

(5]

field virtual wave optics. Nature, 572(7771):620-623, 2019.
Publisher: Nature Publishing Group. 2

Ji Hyun Nam, Eric Brandt, Sebastian Bauer, Xiaochun Liu,
Marco Renna, Alberto Tosi, Eftychios Sifakis, and Andreas
Velten. Low-latency time-of-flight non-line-of-sight imaging
at 5 frames per second. Nature Communications, 12(1):6526,
2021. Publisher: Nature Publishing Group. 1, 2, 3

Richard West, Ahmad Golchin, and Anton Njavro. Real-Time
USB Networking and Device I/0. ACM Trans. Embed. Comput.
Syst., 22(4):67:1-67:38, 2023. 1

CVPR

178
179
180
181
182
183
184
185
186
187

Table 2. Continuation of Table 1.

| | | Time (s) | Throughput (Mvox/s) | Max. [VIRAM usage (GB)
Dataset | Dimensions | Algorithm | Ours | Original | Ours | Original | Ours | Original
Confocal — Zaragoza dataset [1]
f—k migration 1.849 + 0.07 139.592 + 22.222 72.57 0.96 15.823 52.429
‘ 256x256x2048 ‘ Phasor fields 6.686 £ 0.07 31.655 + 1.257 20.07 4.24 17.755 33.621
f—k migration 0.293 £ 0.01 20.740 + 1.525 229.23 3.24 7.911 26.214
‘ 236x236x1024 ‘ Phasor fields | 0489 £0.01 | 14870 £0242 | 137.19 | 451 8874 | 16794
256%256x512 f—k migration 0.156 + 0.01 10.714 + 0.292 214.98 3.13 3.955 13.107
usaf Phasor fields 0.249 + 0.00 6.665 + 0.284 134.70 5.03 4.436 8.393
128x128x2048 f—k migration 0.167 £ 0.01 10.361 £ 0.479 200.87 3.24 4.075 13.107
Phasor fields 0.261 £ 0.01 8.209 + 0.046 128.58 4.09 4.569 8.454
128x128x1024 f—k migration 0.086 + 0.00 4.976 £+ 0.320 195.57 3.37 2.037 6.554
Phasor fields 0.133 £ 0.00 3.424 + 0.165 126.09 4.90 2.641 4.211
128x128x512 f—k migration 0.049 + 0.01 2.468 + 0.182 172.79 3.40 1.019 3.277
Phasor fields 0.084 £ 0.01 1.611 £ 0.039 99.95 5.21 1.140 2.101
64x64x2048 f—k migration 0.051 £ 0.00 2.590 + 0.126 163.78 3.24 1.078 3.277
Phasor fields 0.091 £ 0.01 3.285 £ 0.091 9241 2.55 1.213 2.163
64x64x1024 f—k migration 0.032 + 0.00 1.509 + 0.234 130.94 2.78 0.299 1.638
Phasor fields 0.049 +£ 0.00 0.987 £ 0.025 86.48 4.25 0.603 1.065
64x64x512 f—k migration 0.029 + 0.00 0.605 £ 0.047 71.81 3.47 0.270 0.819
Phasor fields 0.032 £ 0.00 0.449 £ 0.039 65.96 4.67 0.285 0.528
f—k migration 1.793 + 0.08 138.419 + 8.193 74.87 0.97 15.823 52.429
‘ 256x256x2048 ‘ Phasor fields 6.641 £ 0.03 33418 £ 0.673 20.21 4.02 20.632 33.621
256325631024 f—k migration 0.298 + 0.01 22.058 + 0.971 224.99 3.04 7911 26.214
Phasor fields 0.484 £ 0.01 14.709 £ 0.334 138.74 4.56 8.874 16.793
256%256x512 f—k migration 0.157 £ 0.01 10.384 £ 0.179 213.76 3.23 3.955 13.107
bunny Phasor fields | 0249 +0.00 | 7.006 & 0.258 13483 | 479 4436 | 8393
128x128x2048 f—k migration 0.160 + 0.01 10.740 £ 0.568 210.17 3.12 4.075 13.107
Phasor fields 0.252 £ 0.01 8.290 + 0.140 133.00 4.05 4.569 8.454
128x128x1024 f—k migration 0.092 + 0.00 5.020 £ 0.155 181.97 3.34 2.037 6.554
Phasor fields 0.132 £ 0.00 3.410 £ 0.068 126.79 492 2.280 4.211
128x128x512 f—k migration 0.048 + 0.00 2.552 + 0.034 175.55 3.29 1.019 3.277
Phasor fields 0.071 £ 0.00 1.556 4+ 0.060 118.41 5.39 1.319 2.101
64x64x2048 f—k migration 0.048 £ 0.00 2.633 £ 0.229 176.32 3.19 1.078 3.277
Phasor fields 0.082 £ 0.01 3.293 + 0.096 102.07 2.55 1.213 2.163
64x64x1024 f—k migration 0.032 £ 0.00 1.232 4+ 0.081 132.92 3.40 0.299 1.638
Phasor fields 0.050 £ 0.00 1.026 + 0.042 83.77 4.09 0.603 1.065
f—k migration 0.032 £ 0.00 0.679 £ 0.080 64.82 3.09 0.270 0.819
64x64x512
Phasor fields 0.029 + 0.00 0.420 £ 0.013 72.51 4.99 0.149 0.528
f—k migration 2.821 £ 0.08 142.930 + 6.273 47.59 0.94 15.823 52.429
‘ 256x256x2048 ‘ Phasor fields | 11408 £0.10 | 32743+ 1422 | 1177 | 4.10 17.755 | 33.636
f—k migration 0.297 £ 0.01 23.453 £+ 0.799 22596 | 2.86 7.911 26.214
‘ 256x256x1024 ‘ Phasor fields 0.486 £ 0.01 14.576 + 0.379 138.15 4.60 8.874 16.794
256%256x512 f—k migration 0.157 £ 0.01 10.379 £ 0.201 213.74 3.23 3.955 13.107
z Phasor fields 0.252 £ 0.00 6.895 + 0.362 133.15 4.87 4436 8.400
128x128x2048 f—k migration 0.155 + 0.00 10.414 £ 0.356 216.14 3.22 4.075 13.107
Z Phasor fields 0.257 £ 0.01 8.356 + 0.199 130.46 4.02 4.569 8.454
128x128x1024 f—k migration 0.089 + 0.01 5.169 + 0.109 187.59 3.25 2.037 6.554
Phasor fields 0.143 £ 0.01 3.464 + 0.044 117.40 4.84 2.280 4211
128x128x512 f—k migration 0.052 + 0.01 2933 +0.214 160.91 2.86 1.019 3.277
Phasor fields 0.087 £ 0.01 1.567 + 0.056 96.56 5.35 1.140 2.101
64x64x2048 f—k migration 0.048 £ 0.00 2.525 £ 0.158 174.56 3.32 1.078 3.277
Phasor fields 0.087 £ 0.01 3.268 + 0.043 96.88 2.57 1.213 2.163
64x64x1024 f—k migration 0.035 £ 0.01 1.270 £ 0.082 119.27 3.30 0.539 1.638
Phasor fields 0.046 £ 0.00 1.028 4+ 0.013 91.90 4.08 0.572 1.065
f—k migration 0.035 £ 0.01 0.642 £ 0.075 60.53 3.27 0.270 0.819
64x64x512
Phasor fields 0.032 £ 0.00 0.416 £ 0.008 66.29 5.04 0.285 0.528

CVPR

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Continuation of Table 2.

| | | | Time (s) | Throughput (Mvox/s) | Max. [VIRAM usage (GB)

| Dataset | Dimensions | Algorithm | Ours | Original | Ours | Original | Ours | Original |
‘ Exhaustive — Zaragoza dataset [1] ‘
oo	AT	OBEON	dr o [T emom					
ooy	e	O sow Gt e e on						
	16aexedeatz	fEmeon	0T 00	013 koo	195	532	00%	o1
	16aextexaanas	fL e	00	SN0t 000	asat	0sn	oo	055
	16aextoxenons	fRmemon	001000	Oaox 000	dmas	20	ous	oacs
ooy	i	Qome o	pspme g 20	o				
oo	e	e	oo	w2 e ow				
e e E R B T e								
oo	e	s	Smon en e					

CVPR

	Integration in a SPAD array
	Further implementation details
	f–k migration implementation
	RSD implementation
	GPU-driven RSD simplification

	Additional results and benchmarks
	Dynamic reconstruction of a detailed scene
	Offline reconstruction

