
CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

High-resolution non-line-of-sight imaging at 60 frames per second
via GPU acceleration

Supplementary Material

A. Integration in a SPAD array001

In this section, we evaluate the potential results that could be002
achieved by running our code on current and next-generation003
live SPAD arrays. We focus on two key metrics: the number004
of photons our work can process every frame, and the image005
quality to expect from these photons.006

To relate our benchmark to the main paper, our real-time007
NLOS imaging results use the dataset released by Nam et al.008
[4]. Reading raw photon counts directly from disk allows009
us to stress-test reconstruction throughput at the maximum010
frame rate, without being limited by current technology. No-011
tably, this dataset contains approximately 106 photons per012
reconstructed frame.013

Figure 1. Photon binning time for a dynamic NLOS scene of shape
190 × 190 × 208. The photon count slightly varies per frame;
typically, it oscillates around 1.2 · 106.

In this experiment, we take the opposite perspective. In-014
stead of fixing the photon count and reporting the resulting015
frame rate, we fix the frame rate and determine how many016
photons our system can process per second. In Figure 1,017
we show that our implementation can sustain frame rates018
above 60 FPS while processing at least 1.6 orders of mag-019
nitude more photons than in the datasets of Nam et al. [4].020
Concretely, the 60-FPS threshold is surpassed with ∼ 47M021
photons, and frame rates remain above 24 FPS for photon022
counts as large as ∼ 96M.023

While our work handles several million photons until sur-024
passing the 60-FPS threshold, we also aim to demonstrate025
that, for a lower number of photons, the hidden scene re-026
mains recognizable using both f–k and RSD however, the027
latter is more resilient to noise, as shown in Figure 2. For028
example, the reconstructions in the third column are obtained029
by processing fewer points than in every frame of Nam et al.030
[4]’s datasets, and the fourth column processes less than half031
of theirs.032

Notably, the dataset of Nam et al. [4] is processed at 033
approximately 400 FPS, whereas the teaser dataset of Lin- 034
dell et al. [2], which contains 178M photons captured over 035
180 min, is processed at slightly below 16 FPS. However, 036
shorter exposure times yield visually similar reconstructions, 037
as shown in Figure 2. 038

Finally, although our experiments read raw data from disk, 039
we also estimate the maximum frame rate supported by the 040
acquisition hardware. Nam et al. [4] report that photon events 041
are streamed from the hardware queue over USB 3.0, whose 042
effective throughput is approximately 500 MBs−1 [5]. Since 043
each photon record occupies 4 bytes [4], this bandwidth 044
allows reading up to 125M photon events per second. To 045
put this in context, this throughput would allow acquiring 046
over one hundred frames per second when using the same 047
per-frame photon count as in our dynamic NLOS sequences. 048
This frame rate would be even higher if fewer photons per 049
wall scan are required, as illustrated in Figure 2. 050

Figure 2. Teaser dataset from f–k [2]. The first and second columns
correspond to datasets measured for 180 and 10 minutes, respec-
tively. We downsample the former to 106 and 5 · 105 photons to
demonstrate that, even with significantly fewer captured photons,
hidden scenes remain recognizable, thus enabling high–frame-rate
reconstruction and photon binning. The first and second rows show
f–k and RSD reconstructions, respectively. The numbers within
each reconstruction indicate the Peak Signal-to-Noise Ratio with
respect to the most informed reconstruction (i.e., the first column).

1

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B. Further implementation details051

B.1. f–k migration implementation052

The following algorithms show the pseudocode of the orig-053
inal f–k migration implementation (Algorithm 1) and our054
version (Algorithm 2). In particular, we aim to highlight the055
simplicity of our pipeline: whereas Algorithm 1 allocates up056
to five auxiliary buffers, our method operates exclusively on057
Ψ and Ψ′, two complex-valued buffers of size (2x, 2y, 2z).058
We additionally merge several steps into single operations;059
for instance, the Fourier shifts and the initial scaling. Finally,060
instead of using the squared amplitude, we extract the magni-061
tude of the reconstructed signal, as we found that the hidden062
scenes become slightly more recognizable.063

Algorithm 1. f–k migration [2]. Reconstruction pipeline follow-
ing prior work; pseudocode shown in a Python-like style. x, y, z
represents the spatial (x, y) and temporal dimensions (z). dmax

refers to the maximum distance, whereas aptwidth is the physical
size in m of the scanned relay-wall.

1: def f–k original (Ψ, x, y, z, dmax, aptwidth):
2: (Xw, Yw, Zw)← mgrid[−x:x, −y:y, −z:z]
3: (Xw, Yw, Zw)← (Xw/x, Yw/y, Zw/z)
4: S ← tile(linspace(0, 1, z), (x, y, z))

5: Ψ← Ψ⊙ S ▷ Initial scaling and zero-padding
6: Ψ′ ← zeros(2x, 2y, 2z)
7: Ψ′[:x, :y, :z]← Ψ

8: Ψ̂← F{fftshift(Ψ′)} ▷ Forward FFT
9: s← x · dmax

/
(4z · (aptwidth/2))

10: Z′
w ←

√
s2(X2

w + Y 2
w) + Z2

w ▷ Stolt remapping
11: Ψ′ ← interpn(Xw, Yw, Zw, Ψ̂, (Xw, Yw, Z′

w))

12: Ψ̂← Ψ′ ⊙ 1Zw>0 ▷ Spectral filtering/compensation
13: Ψ̂← Ψ̂⊙ |Zw|

max(Z′
w)

14: Ψ← ifftshift(F−1{Ψ̂}) ▷ Inverse FFT
15: f(xv)← max z(|Ψ2|)

16: return f(xv) ▷ Final reconstruction

Algorithm 2. Our CUDA-based f–k migration pipeline.

1: def f–k ours (Ψ, x, y, z, dmax, aptwidth):
2: Ψ̂(·, ·, ·)← 0

3: Ψ̂← scale fftshift(Ψ,distance, aptwidth)

4: Ψ̂← F{Ψ̂}
5: s← x · dmax/ (4z · aptwidth/2)

6: Ψ′ ← stolt(Ψ̂, s)

7: Ψ̂← F−1{Ψ′}
8: f(xv)← ifftshift max magnitude(Ψ̂)
9: return f(xv)

B.2. RSD implementation 064

Similarly to the previous section, Algorithms 3 and 4 present 065
both the original RSD implementation and our optimized ver- 066
sion. In the original implementation, the initial Fourier trans- 067
forms are not parallelized: although they could be batched, 068
they are instead executed sequentially. The convolved vol- 069
ume C is also processed sequentially, weighting each slice 070
C(·, ·, c) by wc. Moreover, the Fourier-transformed matrices 071
are not padded, which reduces memory consumption at the 072
expense of introducing artifacts. 073

In contrast, Algorithm 4 highlights the simplicity of our 074
approach: since the RSD kernels are precomputed, the recon- 075
struction reduces to performing batched frequency-domain 076
transforms, convolution, and an inverse Fourier transform. 077

Algorithm 3. RSD as implemented by Nam et al. [4]. Reconstruc-
tion pipeline following prior work. x, y, z represents the spatial
(x, y) and temporal dimensions, dmin, dmax, δd are the minimum,
maximum and delta distance, and w weights each frequency differ-
ently.

1: def rsd original (Ψ,K, x, y, z, dmin, dmax,∆d,w):
2: for c← 1 to z : ▷ 2D forward FFTs
3: Ψ̂c ← F2D{Ψ(·, ·, c)}
4: i← 0
5: Ψ(·, ·, ·)← 0
6: for d← dmin to dmax, step ∆d :
7: C ← Ψ̂c ⊙K(·, ·, ·, i) ▷ Convolution
8: for c← 1 to z :
9: Ψ(·, ·, i)← Ψ(·, ·, i) + wcC(·, ·, c)

10: Ψ(·, ·, i)← F−1
2D{Ψ(·, ·, i)} ▷ Inverse FFT

11: Ψ̂(·, ·, i)← |Ψ(·, ·, i)| ▷ Magnitude at depth i
12: i← i+ 1

13: f(xv)← max z(Ψ̂)
14: return f(xv)

Algorithm 4. Our CUDA-based RSD pipeline.

1: def rsd ours (Ψ,K, x, y, z, w):
2: Ψ̂← F{Ψ} ▷ Batched 2D forward FFTs
3: C ← convolve(Ψ̂,K, x, y, z, w)

4: Ψ̂← F−1{C} ▷ Inverse FFT
5: Ψ′ ← |Ψ̂|
6: f(xv)← max z(Ψ′)
7: return f(xv)

B.2.1. GPU-driven RSD simplification 078

This subsection further discusses our enhancements for mem- 079
ory usage and runtime for the RSD-based method. We use as 080
a baseline the implementation by Lindell et al. [2], which is 081
slightly different from that of Nam et al. [4] and follows the 082
algorithm of Liu et al. [3]. We use this baseline as reference 083
for all our offline reconstruction experiments. 084

2

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The first drawback we addressed was the convolution of085
the Point Spread Function (PSF), denoted as S in the fol-086
lowing equations, with the signal’s phasor representation.087
The original implementation allocates two complex-valued088
buffers for the phasor representation, Pcos and Psin, which089
is suboptimal and allocates twice the required memory. In090
this formulation, Pcos and Psin store the cosine and sine091
components of the phasor and are treated as if they were092
independent signals: each one is Fourier-transformed, multi-093
plied by the PSF in the frequency domain, and then inversely094
transformed, and the final complex result is obtained by095
combining both outputs.096

However, these two components are in fact the real and097
imaginary parts of a single complex phasor. Since the Fourier098
transform, the pointwise multiplication by S , and the inverse099
transform are all linear operations, applying them separately100
to Pcos and Psin is equivalent to applying them once to their101
complex combination. Therefore, we found that the follow-102
ing two expressions are equivalent:103

P ′ = F−1{P̃cos · S}+ iF−1{P̃sin · S} (1)104

= F−1{(P̃cos + i P̃sin) · S} (2)105

with P̃cos = F{Pcos} and P̃sin = F{Psin}.106

Additionally, another time-consuming step is the con-107
struction of the transform operator that maps phasor data108
from a Cartesian layout to a ring-based layout. In the original109
implementation, this operator is built as a sparse matrix of110
size M3 with M ← max(x, y), where each sample index111
i contributes a value of 1 at position (i, ⌈

√
i⌉). The matrix112

is then iteratively collapsed over log2(max(x, y)) iterations;113
in each iteration, pairs of non-contiguous rows are averaged.114
After log2 M iterations, the matrix is reduced to size M×M ,115
and the accumulated weights have been scaled by a factor of116
(12)

log2 M = 1
M .117

This hierarchical construction is equivalent to directly118
creating an M×M matrix and mapping each sample index i119
to its corresponding ring index ⌈

√
i+ 1⌉, with a final weight120

of 1
M

√
i+1

. In other words, the hierarchical averaging per-121

formed in the original implementation can be collapsed into122
a single kernel. In fact, constructing the transform operators123
as in the original formulation required building large sparse124
matrices (e.g., using the Eigen library) and repeatedly col-125
lapsing them on the CPU. After simplifying the algorithm,126
the overall reconstruction time was reduced to approximately127
one third.128

Finally, note that it is not necessary to construct the in-129
verse operator explicitly; the kernel can access it by simply130
using transposed indices of the forward transform opera-131
tor. The forward and backward matrix multiplications were132
solved with the cuBLAS (Basic Linear Algebra Subpro-133
grams) module on top of CUDA.134

C. Additional results and benchmarks 135

C.1. Dynamic reconstruction of a detailed scene 136

We report additional results for real-time NLOS imaging 137
in another dynamic scene from Nam et al. [4]. Figure 3 138
shows the hidden scene and our reconstructions, in which 139
the letters ’N’, ’L’, ’O’, and ’S’ appear and disappear over 140
time. The scene contains 400 frames total. In the plot, we 141
compare the frames per second for our f–k migration (with 142
and without padding) and our RSD implementations, and 143
the RSD implementation of Nam et al. [4]. 144

In the plot, the best performance corresponds to f–k mi- 145
gration without padding, whereas RSD performs slightly 146
better than f–k migration with padding. In this case, the re- 147
constructions for our RSD look the sharpest, clearly showing 148
the hidden letters. 149

Figure 3. Performance and qualitative comparison between our f–k
migration (padded and unpadded), our RSD, and the method of
Nam et al. The evaluated dynamic scene spans 190× 190× 208
voxels, with RSD applied over 50 depths. For each method, two
reconstructed frames are shown next to their ground truth (displayed
on the left of each pair) to illustrate differences in fidelity.

C.2. Offline reconstruction 150

We extend our reported offline reconstruction timings with a 151
comprehensive comparison in Table 1, covering a range of 152
spatial and temporal resolutions. Starting from the original 153
dataset sizes, we downsample the spatial and temporal di- 154
mensions. Recall that the f–k migration datasets are 5123, 155
while the largest Zaragoza datasets are 256 × 256 × 4096. 156
However, our experiments limit the temporal dimension to 157
2048 bins because 4096 time bins put significant memory 158
pressure. 159

Besides reconstruction time, we also evaluate throughput 160
in millions of voxels per second. The last two columns re- 161
port memory usage on both the CPU and GPU. We group 162
them under the label [V]RAM as the baseline f–k and RSD 163
implementations allocate buffers in CPU memory, whereas 164
our optimised variants operate primarily on GPU memory. 165

3

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Performance and memory comparison between our accelerated f–k and RSD implementations and their original counterparts,
implemented in Matlab. In addition to reconstruction time, we report throughput in millions of voxels per second, computed as the total
number of voxels divided by the reconstruction time. The memory column (Max. [V]RAM) reflects peak CPU or GPU usage: the original
methods allocate buffers on the CPU, whereas our optimized versions operate primarily on the GPU. For each dataset and dimensionality,
the best-performing implementation is highlighted in bold.

Time (s) Throughput (Mvox/s) Max. [V]RAM usage (GB)

Dataset Dimensions Algorithm Ours Original Ours Original Ours Original

Confocal – f–k migration dataset [2]

bike

512×512×512 f–k migration 4.060 ± 0.10 146.624 ± 8.467 33.06 0.92 16.500 52.430
Phasor fields 8.998 ± 0.37 30.872 ± 0.670 14.92 4.35 21.509 33.579

256×256×512 f–k migration 0.157 ± 0.01 10.695 ± 0.658 213.42 3.14 4.250 13.107
Phasor fields 0.249 ± 0.00 6.894 ± 0.195 134.51 4.87 5.501 8.393

256×256×256 f–k migration 0.091 ± 0.00 5.243 ± 0.140 184.05 3.20 2.125 6.554
Phasor fields 0.132 ± 0.01 3.428 ± 0.152 127.19 4.89 2.375 4.194

128×128×512 f–k migration 0.048 ± 0.00 2.552 ± 0.109 174.01 3.29 1.125 3.277
Phasor fields 0.078 ± 0.01 1.607 ± 0.024 107.40 5.22 1.251 2.101

128×128×256 f–k migration 0.032 ± 0.00 1.253 ± 0.031 132.21 3.35 0.062 1.638
Phasor fields 0.048 ± 0.00 0.801 ± 0.027 86.69 5.24 0.625 1.049

128×128×128 f–k migration 0.031 ± 0.00 0.652 ± 0.022 66.61 3.22 0.281 0.819
Phasor fields 0.032 ± 0.00 0.408 ± 0.024 65.95 5.14 0.297 0.524

teaser

512×512×512 f–k migration 4.062 ± 0.09 154.730 ± 14.765 33.04 0.87 16.503 52.433
Phasor fields 9.064 ± 0.07 31.458 ± 2.647 14.81 4.27 21.504 33.579

256×256×512 f–k migration 0.156 ± 0.01 11.462 ± 0.646 214.90 2.93 4.250 13.109
Phasor fields 0.250 ± 0.00 7.155 ± 0.273 134.42 4.69 4.751 8.393

256×256×256 f–k migration 0.091 ± 0.00 5.597 ± 0.197 184.65 3.00 2.125 6.554
Phasor fields 0.126 ± 0.00 3.568 ± 0.112 133.66 4.70 2.751 4.194

128×128×512 f–k migration 0.047 ± 0.00 2.713 ± 0.211 178.12 3.09 1.125 3.277
Phasor fields 0.079 ± 0.01 1.621 ± 0.056 106.74 5.17 1.251 2.101

128×128×256 f–k migration 0.029 ± 0.00 1.435 ± 0.177 142.74 2.92 0.312 1.638
Phasor fields 0.044 ± 0.00 0.822 ± 0.061 94.72 5.10 0.594 1.049

128×128×128 f–k migration 0.029 ± 0.00 0.672 ± 0.040 72.42 3.12 0.281 0.819
Phasor fields 0.028 ± 0.00 0.409 ± 0.013 74.29 5.13 0.156 0.524

statue

512×512×512 f–k migration 3.834 ± 0.10 152.567 ± 8.222 35.01 0.88 16.500 52.430
Phasor fields 9.067 ± 0.11 32.195 ± 1.857 14.80 4.17 21.501 33.579

256×256×512 f–k migration 0.161 ± 0.01 11.118 ± 0.874 207.97 3.02 4.250 13.107
Phasor fields 0.247 ± 0.00 7.063 ± 0.170 135.70 4.75 4.751 8.393

256×256×256 f–k migration 0.093 ± 0.00 5.340 ± 0.209 181.28 3.14 2.125 6.554
Phasor fields 0.138 ± 0.01 3.476 ± 0.099 121.74 4.83 2.375 4.195

128×128×512 f–k migration 0.045 ± 0.00 2.747 ± 0.159 185.58 3.05 1.125 3.277
Phasor fields 0.074 ± 0.00 1.668 ± 0.040 113.11 5.03 1.251 2.101

128×128×256 f–k migration 0.029 ± 0.00 1.316 ± 0.059 144.30 3.19 0.062 1.638
Phasor fields 0.045 ± 0.00 0.830 ± 0.037 94.06 5.05 0.594 1.049

128×128×128 f–k migration 0.031 ± 0.00 0.686 ± 0.140 67.73 3.06 0.156 0.819
Phasor fields 0.029 ± 0.00 0.392 ± 0.002 72.54 5.35 0.156 0.524

References166

[1] Miguel Galindo, Julio Marco, Matthew O’Toole, Gordon Wet-167
zstein, Diego Gutierrez, and Adrian Jarabo. A dataset for168
benchmarking time-resolved non-line-of-sight imaging, 2019.169
Publication Title: IEEE International Conference on Computa-170
tional Photography (ICCP). 5, 6171

[2] David B. Lindell, Gordon Wetzstein, and Matthew O’Toole.172
Wave-based non-line-of-sight imaging using fast f-k migration.173
ACM Trans. Graph., 38(4):116:1–116:13, 2019. 1, 2, 4174

[3] Xiaochun Liu, Ibón Guillén, Marco La Manna, Ji Hyun Nam,175
Syed Azer Reza, Toan Huu Le, Adrian Jarabo, Diego Gutierrez,176
and Andreas Velten. Non-line-of-sight imaging using phasor-177

field virtual wave optics. Nature, 572(7771):620–623, 2019. 178
Publisher: Nature Publishing Group. 2 179

[4] Ji Hyun Nam, Eric Brandt, Sebastian Bauer, Xiaochun Liu, 180
Marco Renna, Alberto Tosi, Eftychios Sifakis, and Andreas 181
Velten. Low-latency time-of-flight non-line-of-sight imaging 182
at 5 frames per second. Nature Communications, 12(1):6526, 183
2021. Publisher: Nature Publishing Group. 1, 2, 3 184

[5] Richard West, Ahmad Golchin, and Anton Njavro. Real-Time 185
USB Networking and Device I/O. ACM Trans. Embed. Comput. 186
Syst., 22(4):67:1–67:38, 2023. 1 187

4

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Continuation of Table 1.
Time (s) Throughput (Mvox/s) Max. [V]RAM usage (GB)

Dataset Dimensions Algorithm Ours Original Ours Original Ours Original

Confocal – Zaragoza dataset [1]

usaf

256×256×2048 f–k migration 1.849 ± 0.07 139.592 ± 22.222 72.57 0.96 15.823 52.429
Phasor fields 6.686 ± 0.07 31.655 ± 1.257 20.07 4.24 17.755 33.621

256×256×1024 f–k migration 0.293 ± 0.01 20.740 ± 1.525 229.23 3.24 7.911 26.214
Phasor fields 0.489 ± 0.01 14.870 ± 0.242 137.19 4.51 8.874 16.794

256×256×512 f–k migration 0.156 ± 0.01 10.714 ± 0.292 214.98 3.13 3.955 13.107
Phasor fields 0.249 ± 0.00 6.665 ± 0.284 134.70 5.03 4.436 8.393

128×128×2048 f–k migration 0.167 ± 0.01 10.361 ± 0.479 200.87 3.24 4.075 13.107
Phasor fields 0.261 ± 0.01 8.209 ± 0.046 128.58 4.09 4.569 8.454

128×128×1024 f–k migration 0.086 ± 0.00 4.976 ± 0.320 195.57 3.37 2.037 6.554
Phasor fields 0.133 ± 0.00 3.424 ± 0.165 126.09 4.90 2.641 4.211

128×128×512 f–k migration 0.049 ± 0.01 2.468 ± 0.182 172.79 3.40 1.019 3.277
Phasor fields 0.084 ± 0.01 1.611 ± 0.039 99.95 5.21 1.140 2.101

64×64×2048 f–k migration 0.051 ± 0.00 2.590 ± 0.126 163.78 3.24 1.078 3.277
Phasor fields 0.091 ± 0.01 3.285 ± 0.091 92.41 2.55 1.213 2.163

64×64×1024 f–k migration 0.032 ± 0.00 1.509 ± 0.234 130.94 2.78 0.299 1.638
Phasor fields 0.049 ± 0.00 0.987 ± 0.025 86.48 4.25 0.603 1.065

64×64×512 f–k migration 0.029 ± 0.00 0.605 ± 0.047 71.81 3.47 0.270 0.819
Phasor fields 0.032 ± 0.00 0.449 ± 0.039 65.96 4.67 0.285 0.528

bunny

256×256×2048 f–k migration 1.793 ± 0.08 138.419 ± 8.193 74.87 0.97 15.823 52.429
Phasor fields 6.641 ± 0.03 33.418 ± 0.673 20.21 4.02 20.632 33.621

256×256×1024 f–k migration 0.298 ± 0.01 22.058 ± 0.971 224.99 3.04 7.911 26.214
Phasor fields 0.484 ± 0.01 14.709 ± 0.334 138.74 4.56 8.874 16.793

256×256×512 f–k migration 0.157 ± 0.01 10.384 ± 0.179 213.76 3.23 3.955 13.107
Phasor fields 0.249 ± 0.00 7.006 ± 0.258 134.83 4.79 4.436 8.393

128×128×2048 f–k migration 0.160 ± 0.01 10.740 ± 0.568 210.17 3.12 4.075 13.107
Phasor fields 0.252 ± 0.01 8.290 ± 0.140 133.00 4.05 4.569 8.454

128×128×1024 f–k migration 0.092 ± 0.00 5.020 ± 0.155 181.97 3.34 2.037 6.554
Phasor fields 0.132 ± 0.00 3.410 ± 0.068 126.79 4.92 2.280 4.211

128×128×512 f–k migration 0.048 ± 0.00 2.552 ± 0.034 175.55 3.29 1.019 3.277
Phasor fields 0.071 ± 0.00 1.556 ± 0.060 118.41 5.39 1.319 2.101

64×64×2048 f–k migration 0.048 ± 0.00 2.633 ± 0.229 176.32 3.19 1.078 3.277
Phasor fields 0.082 ± 0.01 3.293 ± 0.096 102.07 2.55 1.213 2.163

64×64×1024 f–k migration 0.032 ± 0.00 1.232 ± 0.081 132.92 3.40 0.299 1.638
Phasor fields 0.050 ± 0.00 1.026 ± 0.042 83.77 4.09 0.603 1.065

64×64×512 f–k migration 0.032 ± 0.00 0.679 ± 0.080 64.82 3.09 0.270 0.819
Phasor fields 0.029 ± 0.00 0.420 ± 0.013 72.51 4.99 0.149 0.528

z

256×256×2048 f–k migration 2.821 ± 0.08 142.930 ± 6.273 47.59 0.94 15.823 52.429
Phasor fields 11.408 ± 0.10 32.743 ± 1.422 11.77 4.10 17.755 33.636

256×256×1024 f–k migration 0.297 ± 0.01 23.453 ± 0.799 225.96 2.86 7.911 26.214
Phasor fields 0.486 ± 0.01 14.576 ± 0.379 138.15 4.60 8.874 16.794

256×256×512 f–k migration 0.157 ± 0.01 10.379 ± 0.201 213.74 3.23 3.955 13.107
Phasor fields 0.252 ± 0.00 6.895 ± 0.362 133.15 4.87 4.436 8.400

128×128×2048 f–k migration 0.155 ± 0.00 10.414 ± 0.356 216.14 3.22 4.075 13.107
Phasor fields 0.257 ± 0.01 8.356 ± 0.199 130.46 4.02 4.569 8.454

128×128×1024 f–k migration 0.089 ± 0.01 5.169 ± 0.109 187.59 3.25 2.037 6.554
Phasor fields 0.143 ± 0.01 3.464 ± 0.044 117.40 4.84 2.280 4.211

128×128×512 f–k migration 0.052 ± 0.01 2.933 ± 0.214 160.91 2.86 1.019 3.277
Phasor fields 0.087 ± 0.01 1.567 ± 0.056 96.56 5.35 1.140 2.101

64×64×2048 f–k migration 0.048 ± 0.00 2.525 ± 0.158 174.56 3.32 1.078 3.277
Phasor fields 0.087 ± 0.01 3.268 ± 0.043 96.88 2.57 1.213 2.163

64×64×1024 f–k migration 0.035 ± 0.01 1.270 ± 0.082 119.27 3.30 0.539 1.638
Phasor fields 0.046 ± 0.00 1.028 ± 0.013 91.90 4.08 0.572 1.065

64×64×512 f–k migration 0.035 ± 0.01 0.642 ± 0.075 60.53 3.27 0.270 0.819
Phasor fields 0.032 ± 0.00 0.416 ± 0.008 66.29 5.04 0.285 0.528

5

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Continuation of Table 2.
Time (s) Throughput (Mvox/s) Max. [V]RAM usage (GB)

Dataset Dimensions Algorithm Ours Original Ours Original Ours Original

Exhaustive – Zaragoza dataset [1]

concavities 16×16×16×16×2048 f–k migration 0.035 ± 0.01 0.588 ± 0.036 55.77 3.35 0.231 0.770
Phasor fields 0.038 ± 0.01 2.107 ± 0.011 52.03 0.93 0.274 0.558

16×16×16×16×1024 f–k migration 0.029 ± 0.00 0.305 ± 0.019 33.61 3.23 0.115 0.384
Phasor fields 0.030 ± 0.00 0.479 ± 0.005 32.66 2.05 0.119 0.263

16×16×16×16×512 f–k migration 0.030 ± 0.00 0.157 ± 0.019 16.16 3.13 0.058 0.192
Phasor fields 0.031 ± 0.00 0.153 ± 0.002 15.96 3.22 0.062 0.127

t (in a box) 16×16×16×16×2048 f–k migration 0.071 ± 0.08 0.613 ± 0.056 27.91 3.21 0.231 0.770
Phasor fields 0.077 ± 0.09 2.119 ± 0.020 25.41 0.93 0.273 0.559

16×16×16×16×1024 f–k migration 0.030 ± 0.00 0.286 ± 0.016 33.35 3.44 0.115 0.384
Phasor fields 0.031 ± 0.00 0.469 ± 0.004 32.24 2.10 0.126 0.262

16×16×16×16×512 f–k migration 0.032 ± 0.00 0.149 ± 0.006 15.47 3.30 0.058 0.192
Phasor fields 0.031 ± 0.00 0.152 ± 0.004 16.04 3.24 0.062 0.127

bunny 16×16×16×16×2048 f–k migration 0.071 ± 0.08 0.685 ± 0.104 27.84 2.87 0.231 0.769
Phasor fields 0.084 ± 0.07 2.187 ± 0.028 23.38 0.90 0.274 0.560

16×16×16×16×1024 f–k migration 0.031 ± 0.00 0.348 ± 0.034 32.12 2.83 0.115 0.384
Phasor fields 0.030 ± 0.00 0.490 ± 0.015 33.05 2.01 0.126 0.262

16×16×16×16×512 f–k migration 0.029 ± 0.00 0.159 ± 0.019 16.93 3.09 0.058 0.192
Phasor fields 0.029 ± 0.00 0.158 ± 0.004 16.78 3.11 0.062 0.127

6

	Integration in a SPAD array
	Further implementation details
	f–k migration implementation
	RSD implementation
	GPU-driven RSD simplification

	Additional results and benchmarks
	Dynamic reconstruction of a detailed scene
	Offline reconstruction

