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Figure 1. Our implementation of the Rayleigh-Sommerfeld Diffraction (RSD)-based and f—k migration methods outperforms all previous
versions by two orders of magnitude. We compare the performance between real-time (left) and offline reconstructions (right). The left
plot shows the frame rates (FPS) achieved when reconstructing simulated data, combining results from datasets with size (128, 128, 128)
and (256, 256, 512) to emphasize the superior performance of our f—k migration implementation. Thanks to the high throughput of our
algorithm, we show that we remain the fastest even processing 16x the data (which naturally gives a clearer reconstruction). Not Available
(N.A.) denotes methods whose implementations are not released, and an asterisk (*) denotes frame rates extrapolated from reported results.
The right plot compares our GPU-accelerated implementations with the original f—k migration and RSD methods.
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Still, applications of NLOS imaging are set back due to
the huge amounts of data that need to be captured and pro-
cessed. For reference, current methods can spend minutes
to hours capturing and reconstructing a single NLOS im-
age [12]. The main reason is the low Signal-to-Noise Ratio
(SNR) inherent to NLOS setups, due to the indirect three-
bounce path that each photon follows: from the laser to the
relay wall, from the relay wall to the hidden scene and back.

Over the recent years, Single-Photon Avalanche Diode
(SPAD) arrays have emerged as a promising solution to par-
allelize photon acquisition. This greatly alleviates the low
SNR problem: for example, work by Nam et al. [17] uses
two 16 by 1 SPAD arrays to achieve dynamic NLOS imaging
at five frames per second. As the size of SPAD arrays keeps
growing [5, 15], we observe a paradigm shift that is currently
happening in NLOS imaging where the bottleneck moves
from photon acquisition to processing captured information
in real-time. Hence several recent works have attempted
to optimize the NLOS processing pipeline. Notably, Arel-
lano et al. [2] proposed the use of GPU rasterization for a
1.000x speedup compared to conventional backprojection,
bringing the total reconstruction time to a few seconds per
frame. Later, Nam et al. [17] achieved frames per second
in a GPU using a Rayleigh-Sommerfeld Diffraction (RSD)-
based algorithm, while Liao et al. [10] achieved twenty-five
reconstructed frames per second by implementing the RSD
algorithm in a FPGA.

In this work, we push the limits of NLOS imaging speed
and scalability, and accuracy, with two main contributions.
First, we present a GPU-accelerated implementation of con-
focal and non-confocal reconstruction algorithms, achiev-
ing rates from hundreds of frames per second on smaller
datasets to tens of frames on larger ones. Our experiments
demonstrate speedups of up to three orders of magnitude
over previous methods, including FPGA-based approaches,
all while reducing VRAM usage by 60% on average. Con-
cretely, we optimize an RSD-based method [17] and the f—k
migration algorithm [11]. Second, we introduce a novel strat-
egy to combine successive frames of moving objects in an
NLOS video in our real-time imaging pipeline. We leverage
temporal consistency of NLOS frames by averaging phase-
aligned information across time. Since RSD and f—k migra-
tion are wave-based methods operating on complex-valued
data, this phase-based filtering naturally suppresses random
noise while reinforcing static or slowly varying structures.

We showcase our method under two modalities. For real-
time NLOS imaging, our algorithm simultaneously handles
reconstruction for one frame and data processing for the next
frame, as in the work by Nam et al. [17]. Conversely, offline
NLOS imaging focuses on reconstructing already-processed
data as fast as possible, as in works by Arellano et al. [2] or
Liao et al. [10]. We hope that our method can support future
NLOS imaging applications in real-world environments, for

that reason we will make our code public upon acceptance.

2. Related Work

Time-of-flight NLOS imaging. We focus on active NLOS
imaging, where a laser source illuminates the scene. The first
NLOS imaging method relied on a streak camera to capture
indirect light [22, 23]. The introduction of SPADs [3], far
more affordable than streak cameras, broadened access to
NLOS imaging and incentivized the development of mul-
tiple innovative reconstruction methods. For our purposes,
existing approaches can be broadly grouped according to the
capture configuration: confocal [11, 19], where the capture
device is pointed to the same point in the relay wall as the
laser, and non-confocal capture [12, 20, 21], which relaxes
this restriction. Confocal capture is typically slower because
both the laser and detector must steer towards each mea-
surement point. However, reconstruction algorithms based
on confocal data can assume certain properties of about
light paths which enable useful optimizations that make
them more efficient than their non-confocal counterparts
[18]. In this work, we implement a complete NLOS pro-
cessing pipeline that reads raw photon data (from SPAD
sensors or simulation), and reconstructs the 3D scene using
our optimized GPU implementations of existing wave-based
methods. Specifically, we accelerate both the RSD formula-
tion [12] and the f—k migration approach [11]; we support
both confocal and non-confocal acquisition.

NLOS imaging optimizations. Many works have pro-
posed strategies to accelerate NLOS imaging; for example,
using convolutional versions of plane-to-plane propagation
operators [9, 13] or their approximations [1]. Other works
focus on reducing memory consumption during reconstruc-
tion [14]. A parallel line of research explores deep-learning-
based NLOS imaging, where neural networks approximate
the mapping from transient data to geometry [4, 16], in-
cluding dynamic scenes [24]. More relevant to our work
are methods that have exploited vectorized hardware for ac-
celeration. Arellano et al. [2] leveraged GPU rasterization
to speed up backprojection by three orders of magnitude.
Subsequent works, such as NLOS at 5 FPS [17] and FPGA-
accelerated NLOS imaging [10] have demonstrated that hard-
ware specialization can substantially reduce runtime, also
introducing simple strategies to combine consecutive recon-
structed frames. However, most of these systems achieve
high performance at the cost of low spatial resolution, which
limits their applicability to high-resolution NLOS scenes.
In contrast, our work provides optimized GPU implemen-
tations of both RSD-based and f—k migration algorithms
that are at least two orders of magnitude faster than all prior
hardware-accelerated methods, while reconstructing larger
NLOS scenes with lower memory consumption, and with a
better strategy to combine frames.
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Figure 2. Illustration of the capture setup. An ultrafast laser emits
a pulse onto the relay wall, from which part of the light reflects
toward the hidden object. The scattered light from the object then
bounces back onto the wall and is captured by the SPAD array. On
the left, we show from top to bottom the hidden object, its processed
histogram captured by the SPAD array, and the reconstructed scene.

3. Background: non-line-of-sight imaging

This section reviews the key principles of active time-of-
flight NLOS imaging, along with the theory of f—k migration
[11] and the RSD-based method [12], which are the imaging
methods we have adapted in our work.

Figure 2 illustrates a NLOS imaging setup. A laser emits
ultra-short pulses toward each point x; € £ on a visible relay
wall. Light scatters at x; toward the hidden scene and then
returns to the relay wall. An ultra-fast camera captures the
indirect illumination response at points x; € S on the relay
wall, yielding a time-resolved impulse response H (x;, X5, t),
where ¢ denotes time of flight from x; to x;.

We distinguish between confocal capture, where laser and
sensor are directed to the same point (thus x; = x), and non-
confocal capture, which relaxes this constraint and enables
significantly faster acquisition. On the other hand, confocal
capture enables more efficient imaging methods by restrict-
ing the possible light paths. The f—k migration method is
restricted to confocal data, and the RSD formulation is de-
signed for both modalities. In any case, non-confocal data
can be approximately converted to confocal via temporal
shifts of H(x;,xs,t) (see e.g., work by Lindell et al. [11]),
hence both methods can work with both capture modalities.

Generally, the reconstruction procedure operates on the
impulse response H (X, X5, t) to obtain an image f(x,) at
points x,, on the hidden scene. Below is a brief overview of
how the methods in our work operate:

3.1. NLOS imaging methods

f-k migration. Lindell et al. [11] interpret the hidden
scene as a wave field ¥(x, y, z,t) where each point emits
a spherical wave at ¢t = 0. The confocal impulse response
H(xs,Xs,t) measures U(xs,ys, 2s,t) at Xs = (Ts, Ys, 2s)

on the relay wall plane at z; = 0 at a later time ¢ > 0. The
NLOS reconstruction problem is defined as a boundary value
problem of this wave field, using Stolt interpolation in the
frequency domain to migrate the field from 2z = 0tot = 0,
which corresponds to the reconstructed hidden scene f(x,,):

U(z,y,2=0,t) 2% U(z,y,2t=0), (1)
f(xv) - \Ij(xvaylnz'uat - O) (2)

RSD-based method. Liu et al. [13] modulate an arbitrary
signal P(x;,t) on top of the impulse response, yielding
Po(x1,%s) = F{P(xs,t) % H(x;,%Xs,t)} (w) which rep-
resents out-of-focus light waves at the relay wall of angular
frequency w via a convolution *; and Fourier transform F.
Then, NLOS reconstruction is a plane-to-plane propagation
that focuses light from the relay wall to the hidden scene:

ﬁw(xv):/ei“’ts/eml ’ﬁw(xl,xs)dxldxs 3)
S c

where t; = |x; —x,|/cand t; = |x, —X;|/c represent times
of flight, with ¢ the speed of light. The result f(x,) is:

+oo

f(xy) = P (xy) dw. )

4. Method

In this section we describe the design of our NLOS imaging
implementations, which allows us to process and reconstruct
high-resolution datasets a frame rate two orders of magni-
tude higher than all previous work. The key ideas from our
work come from careful kernel design that allows to skip
storing or even computing intermediate variables. We merge
different stages of computation into a single kernel to min-
imize host-device transfer times, and design a performant
kernel scheduling that records computation dependencies for
optimized real-time data streaming.

In this section we will differentiate between real-time
NLOS imaging and offline NLOS imaging (Section 1). We
describe most of this section with the real-time approach
in mind, including our optimizations for the f—k migratio-
nand RSD-based methods, and in the end we describe the
differences for offline NLOS imaging.

4.1. Producer-consumer data processing

SPAD devices output a list of timestamps corresponding to
photon arrival times, which are processed to form a tran-
sient histogram H and later used for reconstruction (see Fig-
ure 2). Our work accomplishes this following the producer-
consumer (PC) structure from Figure 3. These PC systems
are well suited for simultaneously solving the multiple tasks
required by a SPAD asynchronously in a multi-threaded en-
vironment. Briefly, PC systems are composed of threads that
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Section 4.1. Producer-consumer data processing

Offline data Real-time data
SPAD data  Simulated data SPAD array
Photon data ¢ —
s
Data reader & parser

H(xy, x5, t) ¢ PC
Tﬁ Section 4.1.1. Photon binner?

v

Real-time reconstruction
Section 4.2. f-k Section 4.3. RSD

B Reconstructor {------

Section 4.6. Combining frames

v

Section 4.1.2. Display

Image pool —‘—» Renderer

Figure 3. Overview of the producer-consumer scheme. P and C
indicate whether an instance is a consumer, a producer, or both.

(1) Produce data and push them into a queue, (ii) pop data for
Consuming, or (iii) perform both operations (PC). In a PC
system, multiple instances of each worker may exist; how-
ever, for simplicity in this explanation, we assume a single
instance of each component.

We adapted the work of Nam et al. [17] to implement
the PC data processing. Their system supports reading raw
photon data from a binary file (SPAD data) and photons
collected from a SPAD array (Real-time data). Additionally,
our work supports reading offline data, including simulated
transient data and existing NLOS datasets [7, 11]. In contrast
to the dynamic data acquired by Nam et al. [17], offline data
is pre-binned into histograms instead of being loaded as a
stream of individual photons.

The Data reader & parser reads raw photon data and
stream the complete record of photons captured by the SPAD
array after iterating over every relay wall target. Next, the
Photon binner accumulates the photons into histograms (one
per relay wall target), yielding spatio-temporal data. In the
case of RSD the binning is directly performed in the fre-
quency domain by computing the Fourier transform directly.
Then, the Reconstructor works over a spatio-temporal field
(f—k migration) or a phasor field (RSD) and writes the result
into a texture from the Image pool. For offline data, there is
no Data reader & parser, and the Photon binner only copies
data into the expected layout (frequency-major for RSDand

frequency-minor for f—k migration).

4.1.1. Photon binner

Processing data from the SPAD requires binning the raw
photon counts to a histogram before reconstruction. To max-
imize throughput, we perform this operation on the GPU,
whereas Nam et al. [17] solved it on the CPU using multi-
threading. As discussed in the Appendix, this stage becomes
increasingly time-consuming for large photon counts. To
accelerate data transfers, photon data are first uploaded to
host pinned memory instead of VRAM. This type of mem-
ory is locked in physical RAM and cannot be swapped to
disk, allowing faster transfers via Direct Memory Access.
Although this approach may slightly reduce computational
performance during binning, because the data resides out-
side the GPU’s VRAM, it is worthwhile as data transfers
are considerably more time-consuming. Then, the uploaded
photon data are used to build the histograms utilized during
reconstruction.

4.1.2. Display

The purpose of the Image pool and Renderer modules in
Figure 3 is to enable interoperability between OpenGL (dis-
playing reconstructed NLOS images) and CUDA (compute).
The Image pool maintains a set of buffers that are written
by the reconstructor and read by the Renderer. The pipeline
operates as follows: (i) the reconstructor waits for an avail-
able image buffer; once written, (ii) the image is pushed
into the presentation queue and removed from the writing
queue. Asynchronously, (iii) the renderer waits for an image
in the presentation queue; once displayed, (iv) the image is
returned to the writing queue for reuse. The Renderer writes
the contents of an available image into a CUDA surface,
which can be both written from CUDA kernels and sampled
from OpenGL shaders.

4.2. f~k migration optimizations

The f—k migration method consists of four main stages to
reconstruct the hidden scene: (i) distance falloff compen-
sation, (ii) a 3D Fast Fourier Transform (FFT), (iii) Stolt
remapping, and (iv) an inverse FFT. The complexity of its
memory allocation is O(n3) with n = 8 - max(x,y, 2);
however, existing implementations allocate several auxiliary
arrays for padding, remapping, and FFT operations, which
introduces huge memory requirements for high-resolution
NLOS scenes. For example, the compensation (i) is often
implemented as ¥ ® S*¥#, which requires pre-computing
S, and Stolt remapping proceeds similarly (see Algorithm 1
in the Appendix).

We reduced the overall memory footprint by solving
the Stolt remapping on the fly to avoid allocating auxiliary
buffers. Following this approach, each thread handles a voxel,
evaluates its mapping and accesses the eight voxels required
for a trilinear interpolation. Although there is a small overlap
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Unpad, get magnitude & max. Z Normalize >< Bandpass filter >—
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(X,y,2) (2x, 2y, 2z) (2x, 2y, z) (2x, 2y, 2z)
Stream 0 Pad FFT >< Stolt remap IFFT
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Stream 0 Batched FFT >< RSD convolution
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Figure 4. Overview of the CUDA-accelerated f—k migration (top) and RSD (bottom) algorithms. Each node corresponds to a kernel call,
and the label above it indicates the number of threads used to perform the computation. The symbols = and y denote the spatial dimensions,
z the number of time bins (f—k) or frequencies (RSD), and d the number of propagated depths in RSD.

in memory accesses between neighboring voxels, we did not
observe any performance gain from pre-caching surrounding
voxels in shared memory, as shown in Figure 6 (left). In
the experiment, pre-caching was performed by loading the
values within each block, plus a one-voxel neighbourhood,
to enable data reuse among all block threads.

Moreover, our f—k algorithm only requires two buffers,
U’ and 0", of size (2z, 2y, 2z), besides the input ¥(z, y, z)
and the reconstructed image f(x, ). Each processing stage
alternately reads from one buffer and writes to the other,
following a double-buffering scheme. Note that these buffers
double the original dimensions to apply zero-padding and
prevent wrap-around artifacts in the FFT, as illustrated in
Figure 5. Despite the presence of artifacts, we included the
variant without padding in our experiments as a faster alter-
native, trading reconstruction quality for higher performance.
Prior real-time approaches have likewise omitted padding,
presumably for similar efficiency reasons [17].

Padding (2x) ~ Without padding  Padding (2x) ~ Without padding

Figure 5. Two scenes reconstructed with and without padding using
f—k. The reconstruction on the left side does not show artifacts
without padding, whereas the right one does; however, the hidden
scene remains recognizable and the versions without padding were
computed at much higher speed (theoretically up to 8x faster).

Another key optimization arises from the observation
that the original f—k formulation ignores forward transport
by setting half of the remapped matrix, ¥, to zero (see
Line 12 of Algorithm 1 in the Appendix). As illustrated in
Figure 4, this reduces the number of active threads in the
Stolt remapping step to (2x, 2y, z). To enable this optimiza-
tion, U”' must first be initialized with zeros, and only its half
is updated during the Stolt remapping. Additional accelera-
tion is obtained by merging operations that were originally
performed as separate steps; for example, distance falloff
compensation and fftshift. Immediately after the IFFT, we
perform unpadding and peak-magnitude search within a sin-
gle kernel, selecting for each spatial location the spatial slice
with maximum backscattered energy.

4.3. RSD-based method optimizations

The inputs to the RSD-based method are the histograms
H converted from the time to the frequency domain (the
phasors). Note that pipeline further converts such phasors
from the 2D spatial to the 2D spatial frequency domain. To
align both representations, the data is transformed using 2D
FFTs, one per temporal frequency. Nam et al. [17] already
leveraged CUDA’s FFT implementation, and we further opti-
mized it through CUDA’s batched FFT. As discussed earlier,
a notable speed-up comes from merging multiple kernels to
minimize launch overhead, and batched FFTs enable com-
puting many spatial transforms concurrently.

A major limitation of RSD lies in its memory footprint:
it requires precomputing a large complex-valued kernel,
H(zx,y, z,d), where d denotes the number of propagated
depths. Otherwise, real-time reconstruction would be imprac-
tical. Among other drawbacks, we cannot afford padding
data for the FFT due to (i) excessive memory allocation
and (ii) real-time constraints. Recent works have addressed
excessive memory usage by exploiting the kernel’s radial
symmetry while maintaining comparable or even superior
performance [9], though this does not fully resolve the per-
formance drawback. For instance, Jiang et al. [9] reported
an execution time of 1.10 s for a scene of size (190, 190, 93)
propagated across 50 depths.

Our f-k Our f-k (with SM) —— OurRSD —— Our RSD (with streams)

FPS FPS
100 100
o ol W\

% sofy [V P/
SO NN A AN \/\/\/pr\ \/
40 40
2 Frame 2 Frame

00 50 100 150 200 00 50 100 150 200

Figure 6. The left plot shows the impact of shared-memory in
our f—k implementation, while the right plot compares our RSD
pipeline against a multi-stream variant.

Following the FFT, the spatial-frequency data are con-
volved with the precomputed RSD kernel, producing an
intermediate buffer of size (x,y, d). During this operation,

I(x,y,d) = [V'(z,y, 2)w(2)] 9.2 H(x,y,2,d),  (5)

7 must be updated with atomic additions, since f complex
samples per (z,y) are accumulated into each (z,y, d) ele-
ment. Weights w(z) follow a Gaussian distribution, hence
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having higher weights for middle frequencies. The convolved
signal is then transformed via a batched IFFT, performing d
two-dimensional inverse FFTs in parallel. Finally, we unpad
the resulting data, compute its magnitude, and postprocess it
as described in Section 4.5.

Figure 4 provides an overview of our RSD implemen-
tation, which resolves all spatial, temporal, and frequency
computations simultaneously. In contrast, the method by
Nam et al. [17] divides the convolution into two stages: (i)
the convolution itself and (ii) depth-wise weighting (scaling
by w(z)). The weighting stage is executed independently
for each frequency and depth, resulting in f x d separate
kernel launches. A straightforward improvement to this ap-
proach is to parallelize frequency-wise computations using
CUDA streams, i.e., independent command queues that en-
able asynchronous kernel execution, and to merge multiple
convolution kernels into a single one. Figure 6 (right) com-
pares the performance of our RSD implementation with this
stream-based variant, showing that executing all frequencies
within a single command substantially improves throughput.

4.4. CUDA kernels and graphs

The reconstruction pipelines execute in an infinite loop; thus,
optimizing kernel scheduling and minimizing launch over-
head is critical. CUDA provides graphs to define dependen-
cies among kernel calls (graph nodes), enabling the GPU
to know in advance which kernels, parameters, and grid
configurations will be executed. Since a graph must first be
recorded before execution, this optimization is performant
only for pipelines executed more than once. As illustrated in
Figure 4, both f—k migration and RSD methods, including
the postprocessing, are recorded in a single CUDA graph.

4.5. Postprocessing of reconstructed frames

The postprocessing stage follows the approach of
Nam et al. [17] and proceeds as follows. First, the Depth-
Dependent Average (DDA) is computed as a weighted sum
of the last three reconstructed frames, with the middle frame
having a higher weight. The DDA is then followed by a nor-
malization step to prepare the data for display, and optionally
by a bandpass filter that removes values outside the interval
[hp, he], with hy, by € (0,1). We intentionally omit here op-
erations such as computing the magnitude of complex-valued
buffers, since, as mentioned earlier, we opted for fusing as
many kernels as possible. Accordingly, magnitude extraction
is merged with the unpadding step after the IFFT and the
subsequent maximum search, in both the f—k migration and
RSD methods.

4.6. Combining reconstructed frames

We introduce a novel strategy that exploits temporal consis-
tency across consecutive NLOS images of the same hidden
region to suppress noise and enhance hidden objects. Con-

sider a sequence of n NLOS images. Looking at Equations 2
and 4, our strategy takes the raw output f;(x,) from any
algorithm (where the subscript i € {1,...,n} represents the
frame number in the sequence), and outputs a cleaned frame
fi(x,) with less noise.

We leverage the fact that both the RSD and f—k migration-
methods are wave-based, thus their reconstructions f;(x,)
not only represent intensity but also contain the phase of
the reconstructed wave. This phase is typically discarded in
favour of the intensity, however it contains key additional
information. Intuitively, this phase will not change in points
X,, in the hidden scene that correspond to static objects, while
image noise will contain random phase that varies between
frames. We introduce a coherence metric C; for each frame,
that measures the phase alignment of that frame f;(x,) with
respect to the k previous ones:

Ci) >k fi(x0)
Xy ) = -
e+ 2 1fi(x0)]

where | f;(x, )| represents the amplitude of the wave and € a
small positive constant. With this, we compute our enhanced
frame f;(x,) as the mean of the k previous frames, weighted
by our coherence metric C; (X, ):

(6)

Fib) = Citx) 1| D2 fi(x0) ™

j=i—k
4.7. Offline reconstructions

Previously described methods remain similar for offline
reconstruction, except that single executions do not ben-
efit from CUDA graph optimization. Moreover, precalcula-
tions are not required, making offline implementations better
suited for validating design choices, as CUDA graphs are
more difficult to test and debug. Also, for a fair comparison,
we did not implement the offline RSD following our real-
time approach. Instead, we accelerated the RSD implementa-
tion released and used by Lindell et al. [11] to validate f—k
migration. Both methods are essentially the same, although
the RSD kernel construction in Lindell et al.’s implementa-
tion of Liu et al’s method [12] is considerably more complex.
Our optimized version simplifies this construction to make
it more GPU-friendly, as discussed in the Appendix.

5. Results and evaluation

Here we showcase the efficiency of our algorithm, measuring
execution time and memory usage under different conditions.
We split our tests under two categories: first, Section 5.1
deals with real-time NLOS imaging, which accounts for si-
multaneous reconstruction of one frame and processing of
the next frame. In Section 5.2 we compare against other ap-
proaches optimized for real-time imaging. Later, Section 5.3
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Table 1. Average frame time, and peak RAM and VRAM usage
for our implementations and [17]. Dataset dimensions are shown
above each group of results.

| Approach | | Frame time | 1FPS | | Peak VRAM | | Peak RAM |
Dynamic data
190 x 190 x 208 = 63 depths, newmovement 3 dataset
Our f-k 18.01+7.13ms | 55.52 1,104 MB
Our f-k (w/o pad.) 2.62+4.13 ms | 381.67 302 MB 1.354 MB
Our RSD 17.25+£12.09 ms | 57.97 3,302 MB ’
RSD (Nam et al.) 188.86 £ 21.64 ms | 5.29 13,138 MB
Static data
128 x 128 x 128 = 128 depths
Our f-k 4.01 £0.29 ms | 249.37 272 MB
Our f-k (w/o pad.) 0.57£0.59ms | 1,754.38 48 MB 478 MB
Our RSD 6.17+£0.38 ms | 162.07 2,120 MB
RSD (Nam et al.) 207.38 £ 49.08 ms | 4.82 8,593 MB
| 256 x 256 x 512 |
Our f-k 68.21 £ 0.29ms | 14.66 4,352 MB 824 MB
Our f—k (w/o pad.) 10.04 £ 0.40 ms | 99.60 768 MB

deals with offline NLOS imaging, which only accounts for
reconstruction time. Finally, Section 5.3.1 showcases our
phase-aware frame combining approach.

Execution hardware. Unless otherwise mentioned, all the
experiments were carried out in a computer with Intel(R)
Core(TM) i7-14700KF (3.40 GHz), 64 GB RAM, RTX 4080
SUPER GPU with 16 GB VRAM, and Windows 11 OS.
Our implementations utilize C++23 using CUDA 13.0 and
OpenMP for CPU multi-threading. Real-time visualization
operates on OpenGL 4.6 for rendering and GPGPU (general-
purpose computing on GPU).

Adaptation to real SPAD arrays. Our work processes the
raw photon records from a SPAD array, instead of stream-
ing from live hardware. Consequently, we read and process
photon data as fast as possible from disk, which does not
necessarily reflect the transfer rates achievable by current
devices. Reading data from disk allows us to stress test our
systems at the maximum capacity without being limited by
current technology.

5.1. Real-time performance

Our real-time implementation utilizes data captured by
Nam et al. [17], whose work we directly compare with, and
simulated data. They provide the raw output of their SPAD
array, consisting of individual photon timestamps. To en-
sure a fair comparison, both read and process the same raw
output. This allows us to measure how fast each algorithm
would theoretically process captured data under the capa-
bilities of next-generation capture hardware. Table 1 shows
the performance of our work and theirs while reconstructing
the dynamic dataset that is partly displayed within the plot.
Additionally, we include here, and in the following exper-
iments, a f—k migration variant that does not pad data for
FFT, similarly to the RSD method.

Besides the vastly superior performance of f—k migra-
tion without padding, two aspects are worth noting. First, the
frame rate fluctuates slightly because our pipeline waits for
the CUDA stream that transfer data to the GPU to complete,
which can be delayed by other system processes. Second,
RSD performs slightly better than f—k migration due to the
low depth resolution (63 depths) and the small spatial resolu-
tion (190 x 190). To further stress our system, we carried out
the same experiment with simulated data and increased depth
resolution. As shown on the left side of Figure 1, f—k migra-
tion without padding remains the fastest by an astonishing
margin, followed by standard f—k migration and then RSD,
which now propagates across 128 depths. The same experi-
ment was repeated with higher spatial, temporal and depth
resolution (256 x 256 x 512 = 512 depths); f—k migration
achieved approximately 14 FPS and its unpadded variant
reached about 100 FPS, whereas RSD could not allocate its
kernel on the GPU. In Section 5.3, we reconstruct datasets of
comparable and larger dimensions using an alternative RSD
implementation.

The last aspect introduces an additional concern: the peak
usage of VRAM and RAM. Table 1 reports the memory
statistics collected from the experiments shown in Figure 1,
as well as from an additional dynamic NLOS experiment
summarized in the Appendix. Real-time approaches make
limited use of RAM but are significantly more demanding
on the GPU. Nevertheless, f—k migration remains the most
efficient method in both VRAM usage and average frame
time, requiring about 4 GB for 256 x 256 x 512 voxels.

5.2. Comparison with other methods

We compared our reconstruction throughput against other
real-time approaches. Specifically, Table 2 summarizes the
performance of our method, Fast Back-Projection [2], and
Liao et al. [10]. The latter targets FPGA hardware, and no
source code is publicly available; thus, we extrapolated their
reported throughput for a 128 x 128 x 69 dataset to other
dataset sizes. We evaluate all methods in terms of millions
of voxels processed per second and average reconstruction
time. For smaller volumes, Fast Back-Projection achieves
the lowest throughput, whereas RSD performs well due to
the low temporal dimensionality. In contrast, f—k migration
becomes superior as the temporal resolution increases. For
completeness, Nam et al.’s method could not be tested as it
exceeded the available VRAM.

5.3. Offline reconstruction

Figure 7 summarizes the throughput in millions of voxels
processed per second for a subset of the offline performance
results presented in the Appendix. We evaluated our work
on datasets from Lindell et al. [11] and Galindo et al. [7],
including confocal and exhaustive captures. The latter were
converted to confocal measurements using the Normal Move-

CVPR

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

515

516
517
518
519
520
521
522
523
524
525
526
527
528
529

530

531
532
533
534
535
536



Table 2. Performance of fast reconstruction algorithms, with
throughput reported in millions of voxels per second. The Hardware
column indicates the platform used for each test. Values marked
with an asterisk (*) correspond to Liao et al. [10] as their results
were extrapolated from the throughput reported in their work. OOM
denotes experiments that ran out of memory.

‘ Approach ‘ 1T Mvox/s ‘ J Average time (s) ‘ Hardware ‘
| Dataset: Z, resized to 256 x 256 x 512 = 64 depths |
Our f-k 492.90 0.068 £ 0.00
Our RSD 62.14 0.54 £0.03

RSD (Nametal) | OOM 0OM Nvidia RTX 4080 Ti

Fast back-projection | 1.12 14.962 £ 75.74

Liao et al. 0.148%* 28.3* Stratix 10 FPGA

‘ Dataset: Z, resized to 128 x 128 x 256 = 64 depths
Our f-k 516.95 0.008 £ 0.00
Our RSD 619.47 0.007 £ 0.00 L .
RSD (Nam et al.) 14.95 0.281 + 0.03 Nvidia RTX 4080 Ti
Fast back-projection | 2.50 1.675 £ 0.00
Liao et al. 28.3* 1.186%* Stratix 10 FPGA
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Figure 7. Throughput, in millions of voxels processed per second,
for reconstructions from confocal and non-confocal measurements.

out Correction [11]. In addition to reconstruction time, we
also recorded peak RAM and VRAM usage.

Across most experiments, our f—k achieves the highest
performance, with our RSD surpassing it by only a few ms
in 18.5% of the tests. For both cases we are much faster than
the original implementations. It is worth to note that both ap-
proaches exhibit a bell-shaped trend in Figure 7: throughput
improves for medium-sized datasets but decreases for small
or large ones. The measured times include both resource allo-
cation and reconstruction, which penalizes smaller datasets
due to initialization overhead, while larger datasets are lim-
ited by increased spatial and temporal dimensions. We ob-
served that increasing spatial resolution is the main bottle-
neck, whereas higher temporal resolution adds relatively
little overhead. In both approaches, this limitation arises
primarily from the 3D FFT and IFFT stages.

5.3.1. Combining reconstructed frames

We showcase in Figure 8 how the frame combining algorithm
discussed in Section 4.6 leverages temporal consistency in
consecutive NLOS reconstructions, in order to attenuate the
noise and enhance the result. We simulate a NLOS capture
where the hidden scene contains a humanoid-shaped object
that moves from side to side, which corresponds to a speed
of 15 captured frames f;(x,) per second, and the whole
sequence consists of n = 60 frames, i € {1,...,60}.

Coherence-
weighted mean

Naive mean Ground truth

Single reconstruction

Figure 8. Comparison of reconstruction strategies on a dynamic
NLOS sequence. From left to right: single—frame reconstruction,
naive temporal mean, our weighted temporal mean, and ground
truth of the final frame.

From left to right, Figure 8 shows the raw reconstructed
frame f;(x,), a naive weighted averaging such as the one
used by Nam et al. [17], which does not include our phase
alignment term C;(x,) (Equation 7), and our improved ver-
sion fi(x,), which combines the last k¥ = 8 frames from
Equations 6 and 7. The fourth column contains a simulated
ground truth corresponding to the same frame f;(x,) with a
much larger number of photons. In comparison, our phase-
aware strategy provides a much cleaner result, showing the
humanoid and reducing the noise on the outer image regions.

6. Conclusions and limitations

In this paper, we have presented a CUDA-accelerated sys-
tem for reconstructing high-resolution NLOS scenes from
both raw photons and simulated transient data in real-time,
as well as for processing existing high-resolution datasets
in an offline setting. Our real-time pipeline presents frame
rates above 50 FPS on dynamic datasets, while the offline
pipelines substantially outperform their original implemen-
tations, reducing reconstruction time by 98.67% for f-k
migration and 78.87% for RSD on the largest dataset.

Although our system outperforms prior work, several
challenges remain open. Both f—k migration and RSD rely
heavily on Fourier operators, which are the most time-
consuming stages of our pipelines. Reducing data-type pre-
cision to, e.g., 16-bits floats, could cut down time, albeit
with potential quality trade-offs. Furthermore, the photon-
binning stage continues to be expensive, making partial and
asynchronous data uploads a key direction for future im-
provement. Finally, leveraging additional properties of RSD,
including its kernel symmetries, may further reduce memory
usage and improve overall performance.
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