
CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

High-resolution non-line-of-sight imaging at 60 frames per second
via GPU acceleration

Anonymous CVPR submission

Paper ID

Figure 1. Our implementation of the Rayleigh-Sommerfeld Diffraction (RSD)-based and f–k migration methods outperforms all previous
versions by two orders of magnitude. We compare the performance between real-time (left) and offline reconstructions (right). The left
plot shows the frame rates (FPS) achieved when reconstructing simulated data, combining results from datasets with size (128, 128, 128)
and (256, 256, 512) to emphasize the superior performance of our f–k migration implementation. Thanks to the high throughput of our
algorithm, we show that we remain the fastest even processing 16x the data (which naturally gives a clearer reconstruction). Not Available
(N.A.) denotes methods whose implementations are not released, and an asterisk (*) denotes frame rates extrapolated from reported results.
The right plot compares our GPU-accelerated implementations with the original f–k migration and RSD methods.

Abstract

Non-line-of-sight (NLOS) imaging methods can reconstruct001
objects hidden around the corner, with potential applications002
in autonomous driving, medical imaging, remote sensing and003
others. Yet, real-world deployment remains a major chal-004
lenge due to the massive amount of data that must be first005
captured and later processed. The emergence of Single Pho-006
ton Avalanche Diode (SPAD) arrays, which enable parallel007
data acquisition, helps address the capture bottleneck. We008
observe a paradigm shift where the main limitation is moving009
from data capture to real-time processing at scale. To address010
this, we develop hardware-accelerated optimizations for two011
state-of-the-art NLOS imaging algorithms: f–k migration012
and Rayleigh-Sommerfeld Diffraction (RSD)-based methods.013
Our approach achieves speedups of three orders of mag-014
nitude under equal conditions, outperforming all previous015
hardware-accelerated versions including specialized FPGA016
designs. Moreover, our implementation reduces memory us-017

age by about 60% on average, enabling the reconstruction of 018
even larger scenes. With all these advances, we make use of 019
our real-time NLOS imaging pipeline and introduce a novel 020
algorithm that leverages temporal consistency of moving 021
objects to further improve image quality, paving the way for 022
next-generation NLOS video processing software. 023

1. Introduction 024

Non-line-of-sight (NLOS) imaging methods can reconstruct 025
hidden objects by analysing indirect light scattered on a vis- 026
ible relay wall. Among these, time-of-flight (ToF) NLOS 027
imaging leverages ultra-fast sensors to measure the time of 028
flight of individual photons through the hidden scene by illu- 029
minating and capturing individual points on the relay wall. 030
ToF NLOS imaging methods have demonstrated unprece- 031
dented imaging capabilities and are promising candidates 032
for practical applications [6, 8] such as motion tracking and 033
geometry reconstruction in areas autonomous navigation to 034
geological and planetary exploration and disaster response. 035

1

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Still, applications of NLOS imaging are set back due to036
the huge amounts of data that need to be captured and pro-037
cessed. For reference, current methods can spend minutes038
to hours capturing and reconstructing a single NLOS im-039
age [12]. The main reason is the low Signal-to-Noise Ratio040
(SNR) inherent to NLOS setups, due to the indirect three-041
bounce path that each photon follows: from the laser to the042
relay wall, from the relay wall to the hidden scene and back.043

Over the recent years, Single-Photon Avalanche Diode044
(SPAD) arrays have emerged as a promising solution to par-045
allelize photon acquisition. This greatly alleviates the low046
SNR problem: for example, work by Nam et al. [17] uses047
two 16 by 1 SPAD arrays to achieve dynamic NLOS imaging048
at five frames per second. As the size of SPAD arrays keeps049
growing [5, 15], we observe a paradigm shift that is currently050
happening in NLOS imaging where the bottleneck moves051
from photon acquisition to processing captured information052
in real-time. Hence several recent works have attempted053
to optimize the NLOS processing pipeline. Notably, Arel-054
lano et al. [2] proposed the use of GPU rasterization for a055
1.000x speedup compared to conventional backprojection,056
bringing the total reconstruction time to a few seconds per057
frame. Later, Nam et al. [17] achieved frames per second058
in a GPU using a Rayleigh-Sommerfeld Diffraction (RSD)-059
based algorithm, while Liao et al. [10] achieved twenty-five060
reconstructed frames per second by implementing the RSD061
algorithm in a FPGA.062

In this work, we push the limits of NLOS imaging speed063
and scalability, and accuracy, with two main contributions.064
First, we present a GPU-accelerated implementation of con-065
focal and non-confocal reconstruction algorithms, achiev-066
ing rates from hundreds of frames per second on smaller067
datasets to tens of frames on larger ones. Our experiments068
demonstrate speedups of up to three orders of magnitude069
over previous methods, including FPGA-based approaches,070
all while reducing VRAM usage by 60% on average. Con-071
cretely, we optimize an RSD-based method [17] and the f–k072
migration algorithm [11]. Second, we introduce a novel strat-073
egy to combine successive frames of moving objects in an074
NLOS video in our real-time imaging pipeline. We leverage075
temporal consistency of NLOS frames by averaging phase-076
aligned information across time. Since RSD and f–k migra-077
tion are wave-based methods operating on complex-valued078
data, this phase-based filtering naturally suppresses random079
noise while reinforcing static or slowly varying structures.080

We showcase our method under two modalities. For real-081
time NLOS imaging, our algorithm simultaneously handles082
reconstruction for one frame and data processing for the next083
frame, as in the work by Nam et al. [17]. Conversely, offline084
NLOS imaging focuses on reconstructing already-processed085
data as fast as possible, as in works by Arellano et al. [2] or086
Liao et al. [10]. We hope that our method can support future087
NLOS imaging applications in real-world environments, for088

that reason we will make our code public upon acceptance. 089

2. Related Work 090

Time-of-flight NLOS imaging. We focus on active NLOS 091
imaging, where a laser source illuminates the scene. The first 092
NLOS imaging method relied on a streak camera to capture 093
indirect light [22, 23]. The introduction of SPADs [3], far 094
more affordable than streak cameras, broadened access to 095
NLOS imaging and incentivized the development of mul- 096
tiple innovative reconstruction methods. For our purposes, 097
existing approaches can be broadly grouped according to the 098
capture configuration: confocal [11, 19], where the capture 099
device is pointed to the same point in the relay wall as the 100
laser, and non-confocal capture [12, 20, 21], which relaxes 101
this restriction. Confocal capture is typically slower because 102
both the laser and detector must steer towards each mea- 103
surement point. However, reconstruction algorithms based 104
on confocal data can assume certain properties of about 105
light paths which enable useful optimizations that make 106
them more efficient than their non-confocal counterparts 107
[18]. In this work, we implement a complete NLOS pro- 108
cessing pipeline that reads raw photon data (from SPAD 109
sensors or simulation), and reconstructs the 3D scene using 110
our optimized GPU implementations of existing wave-based 111
methods. Specifically, we accelerate both the RSD formula- 112
tion [12] and the f–k migration approach [11]; we support 113
both confocal and non-confocal acquisition. 114

NLOS imaging optimizations. Many works have pro- 115
posed strategies to accelerate NLOS imaging; for example, 116
using convolutional versions of plane-to-plane propagation 117
operators [9, 13] or their approximations [1]. Other works 118
focus on reducing memory consumption during reconstruc- 119
tion [14]. A parallel line of research explores deep-learning- 120
based NLOS imaging, where neural networks approximate 121
the mapping from transient data to geometry [4, 16], in- 122
cluding dynamic scenes [24]. More relevant to our work 123
are methods that have exploited vectorized hardware for ac- 124
celeration. Arellano et al. [2] leveraged GPU rasterization 125
to speed up backprojection by three orders of magnitude. 126
Subsequent works, such as NLOS at 5 FPS [17] and FPGA- 127
accelerated NLOS imaging [10] have demonstrated that hard- 128
ware specialization can substantially reduce runtime, also 129
introducing simple strategies to combine consecutive recon- 130
structed frames. However, most of these systems achieve 131
high performance at the cost of low spatial resolution, which 132
limits their applicability to high-resolution NLOS scenes. 133
In contrast, our work provides optimized GPU implemen- 134
tations of both RSD-based and f–k migration algorithms 135
that are at least two orders of magnitude faster than all prior 136
hardware-accelerated methods, while reconstructing larger 137
NLOS scenes with lower memory consumption, and with a 138
better strategy to combine frames. 139

2

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Illustration of the capture setup. An ultrafast laser emits
a pulse onto the relay wall, from which part of the light reflects
toward the hidden object. The scattered light from the object then
bounces back onto the wall and is captured by the SPAD array. On
the left, we show from top to bottom the hidden object, its processed
histogram captured by the SPAD array, and the reconstructed scene.

3. Background: non-line-of-sight imaging140

This section reviews the key principles of active time-of-141
flight NLOS imaging, along with the theory of f–k migration142
[11] and the RSD-based method [12], which are the imaging143
methods we have adapted in our work.144

Figure 2 illustrates a NLOS imaging setup. A laser emits145
ultra-short pulses toward each point xl ∈ L on a visible relay146
wall. Light scatters at xl toward the hidden scene and then147
returns to the relay wall. An ultra-fast camera captures the148
indirect illumination response at points xs ∈ S on the relay149
wall, yielding a time-resolved impulse response H(xl,xs, t),150
where t denotes time of flight from xl to xs.151

We distinguish between confocal capture, where laser and152
sensor are directed to the same point (thus xl = xs), and non-153
confocal capture, which relaxes this constraint and enables154
significantly faster acquisition. On the other hand, confocal155
capture enables more efficient imaging methods by restrict-156
ing the possible light paths. The f–k migration method is157
restricted to confocal data, and the RSD formulation is de-158
signed for both modalities. In any case, non-confocal data159
can be approximately converted to confocal via temporal160
shifts of H(xl,xs, t) (see e.g., work by Lindell et al. [11]),161
hence both methods can work with both capture modalities.162

Generally, the reconstruction procedure operates on the163
impulse response H(xl,xs, t) to obtain an image f(xv) at164
points xv on the hidden scene. Below is a brief overview of165
how the methods in our work operate:166

3.1. NLOS imaging methods167

f–k migration. Lindell et al. [11] interpret the hidden168
scene as a wave field Ψ(x, y, z, t) where each point emits169
a spherical wave at t = 0. The confocal impulse response170
H(xs,xs, t) measures Ψ(xs, ys, zs, t) at xs = (xs, ys, zs)171

on the relay wall plane at zs = 0 at a later time t > 0. The 172
NLOS reconstruction problem is defined as a boundary value 173
problem of this wave field, using Stolt interpolation in the 174
frequency domain to migrate the field from z = 0 to t = 0, 175
which corresponds to the reconstructed hidden scene f(xv): 176

Ψ(x, y, z = 0, t)
Stolt
=⇒ Ψ(x, y, z, t = 0), (1) 177

178
f(xv) = Ψ(xv, yv, zv, t = 0). (2) 179

RSD-based method. Liu et al. [13] modulate an arbitrary 180
signal P(xl, t) on top of the impulse response, yielding 181
P̂ω(xl,xs) = F {P (xl, t) ∗t H(xl,xs, t)} (ω) which rep- 182
resents out-of-focus light waves at the relay wall of angular 183
frequency ω via a convolution ∗t and Fourier transform F . 184
Then, NLOS reconstruction is a plane-to-plane propagation 185
that focuses light from the relay wall to the hidden scene: 186

P̂ω(xv) =

∫
S
eiωts

∫
L
eiωtl P̂ω(xl,xs) dxldxs (3) 187

where tl = |xl−xv|/c and ts = |xv−xs|/c represent times 188
of flight, with c the speed of light. The result f(xv) is: 189

f(xv) =

∫ +∞

−∞
P̂ω(xv) dω. (4) 190

4. Method 191

In this section we describe the design of our NLOS imaging 192
implementations, which allows us to process and reconstruct 193
high-resolution datasets a frame rate two orders of magni- 194
tude higher than all previous work. The key ideas from our 195
work come from careful kernel design that allows to skip 196
storing or even computing intermediate variables. We merge 197
different stages of computation into a single kernel to min- 198
imize host-device transfer times, and design a performant 199
kernel scheduling that records computation dependencies for 200
optimized real-time data streaming. 201

In this section we will differentiate between real-time 202
NLOS imaging and offline NLOS imaging (Section 1). We 203
describe most of this section with the real-time approach 204
in mind, including our optimizations for the f–k migratio- 205
nand RSD-based methods, and in the end we describe the 206
differences for offline NLOS imaging. 207

4.1. Producer-consumer data processing 208

SPAD devices output a list of timestamps corresponding to 209
photon arrival times, which are processed to form a tran- 210
sient histogram H and later used for reconstruction (see Fig- 211
ure 2). Our work accomplishes this following the producer- 212
consumer (PC) structure from Figure 3. These PC systems 213
are well suited for simultaneously solving the multiple tasks 214
required by a SPAD asynchronously in a multi-threaded en- 215
vironment. Briefly, PC systems are composed of threads that 216

3

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Overview of the producer-consumer scheme. P and C
indicate whether an instance is a consumer, a producer, or both.

(i) Produce data and push them into a queue, (ii) pop data for217
Consuming, or (iii) perform both operations (PC). In a PC218
system, multiple instances of each worker may exist; how-219
ever, for simplicity in this explanation, we assume a single220
instance of each component.221

We adapted the work of Nam et al. [17] to implement222
the PC data processing. Their system supports reading raw223
photon data from a binary file (SPAD data) and photons224
collected from a SPAD array (Real-time data). Additionally,225
our work supports reading offline data, including simulated226
transient data and existing NLOS datasets [7, 11]. In contrast227
to the dynamic data acquired by Nam et al. [17], offline data228
is pre-binned into histograms instead of being loaded as a229
stream of individual photons.230

The Data reader & parser reads raw photon data and231
stream the complete record of photons captured by the SPAD232
array after iterating over every relay wall target. Next, the233
Photon binner accumulates the photons into histograms (one234
per relay wall target), yielding spatio-temporal data. In the235
case of RSD the binning is directly performed in the fre-236
quency domain by computing the Fourier transform directly.237
Then, the Reconstructor works over a spatio-temporal field238
(f–k migration) or a phasor field (RSD) and writes the result239
into a texture from the Image pool. For offline data, there is240
no Data reader & parser, and the Photon binner only copies241
data into the expected layout (frequency-major for RSDand242

frequency-minor for f–k migration). 243

4.1.1. Photon binner 244

Processing data from the SPAD requires binning the raw 245
photon counts to a histogram before reconstruction. To max- 246
imize throughput, we perform this operation on the GPU, 247
whereas Nam et al. [17] solved it on the CPU using multi- 248
threading. As discussed in the Appendix, this stage becomes 249
increasingly time-consuming for large photon counts. To 250
accelerate data transfers, photon data are first uploaded to 251
host pinned memory instead of VRAM. This type of mem- 252
ory is locked in physical RAM and cannot be swapped to 253
disk, allowing faster transfers via Direct Memory Access. 254
Although this approach may slightly reduce computational 255
performance during binning, because the data resides out- 256
side the GPU’s VRAM, it is worthwhile as data transfers 257
are considerably more time-consuming. Then, the uploaded 258
photon data are used to build the histograms utilized during 259
reconstruction. 260

4.1.2. Display 261

The purpose of the Image pool and Renderer modules in 262
Figure 3 is to enable interoperability between OpenGL (dis- 263
playing reconstructed NLOS images) and CUDA (compute). 264
The Image pool maintains a set of buffers that are written 265
by the reconstructor and read by the Renderer. The pipeline 266
operates as follows: (i) the reconstructor waits for an avail- 267
able image buffer; once written, (ii) the image is pushed 268
into the presentation queue and removed from the writing 269
queue. Asynchronously, (iii) the renderer waits for an image 270
in the presentation queue; once displayed, (iv) the image is 271
returned to the writing queue for reuse. The Renderer writes 272
the contents of an available image into a CUDA surface, 273
which can be both written from CUDA kernels and sampled 274
from OpenGL shaders. 275

4.2. f–k migration optimizations 276

The f–k migration method consists of four main stages to 277
reconstruct the hidden scene: (i) distance falloff compen- 278
sation, (ii) a 3D Fast Fourier Transform (FFT), (iii) Stolt 279
remapping, and (iv) an inverse FFT. The complexity of its 280
memory allocation is O(n3) with n = 8 · max(x, y, z); 281
however, existing implementations allocate several auxiliary 282
arrays for padding, remapping, and FFT operations, which 283
introduces huge memory requirements for high-resolution 284
NLOS scenes. For example, the compensation (i) is often 285
implemented as Ψ⊙ Sx,y,z , which requires pre-computing 286
S, and Stolt remapping proceeds similarly (see Algorithm 1 287
in the Appendix). 288

We reduced the overall memory footprint by solving 289
the Stolt remapping on the fly to avoid allocating auxiliary 290
buffers. Following this approach, each thread handles a voxel, 291
evaluates its mapping and accesses the eight voxels required 292
for a trilinear interpolation. Although there is a small overlap 293

4

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Overview of the CUDA-accelerated f–k migration (top) and RSD (bottom) algorithms. Each node corresponds to a kernel call,
and the label above it indicates the number of threads used to perform the computation. The symbols x and y denote the spatial dimensions,
z the number of time bins (f–k) or frequencies (RSD), and d the number of propagated depths in RSD.

in memory accesses between neighboring voxels, we did not294
observe any performance gain from pre-caching surrounding295
voxels in shared memory, as shown in Figure 6 (left). In296
the experiment, pre-caching was performed by loading the297
values within each block, plus a one-voxel neighbourhood,298
to enable data reuse among all block threads.299

Moreover, our f–k algorithm only requires two buffers,300
Ψ′ and Ψ′′, of size (2x, 2y, 2z), besides the input Ψ(x, y, z)301
and the reconstructed image f(xv). Each processing stage302
alternately reads from one buffer and writes to the other,303
following a double-buffering scheme. Note that these buffers304
double the original dimensions to apply zero-padding and305
prevent wrap-around artifacts in the FFT, as illustrated in306
Figure 5. Despite the presence of artifacts, we included the307
variant without padding in our experiments as a faster alter-308
native, trading reconstruction quality for higher performance.309
Prior real-time approaches have likewise omitted padding,310
presumably for similar efficiency reasons [17].311

Figure 5. Two scenes reconstructed with and without padding using
f–k. The reconstruction on the left side does not show artifacts
without padding, whereas the right one does; however, the hidden
scene remains recognizable and the versions without padding were
computed at much higher speed (theoretically up to 8× faster).

Another key optimization arises from the observation312
that the original f–k formulation ignores forward transport313
by setting half of the remapped matrix, Ψ′′, to zero (see314
Line 12 of Algorithm 1 in the Appendix). As illustrated in315
Figure 4, this reduces the number of active threads in the316
Stolt remapping step to (2x, 2y, z). To enable this optimiza-317
tion, Ψ′′ must first be initialized with zeros, and only its half318
is updated during the Stolt remapping. Additional accelera-319
tion is obtained by merging operations that were originally320
performed as separate steps; for example, distance falloff321
compensation and fftshift. Immediately after the IFFT, we322
perform unpadding and peak-magnitude search within a sin-323
gle kernel, selecting for each spatial location the spatial slice324
with maximum backscattered energy.325

4.3. RSD-based method optimizations 326

The inputs to the RSD-based method are the histograms 327
H converted from the time to the frequency domain (the 328
phasors). Note that pipeline further converts such phasors 329
from the 2D spatial to the 2D spatial frequency domain. To 330
align both representations, the data is transformed using 2D 331
FFTs, one per temporal frequency. Nam et al. [17] already 332
leveraged CUDA’s FFT implementation, and we further opti- 333
mized it through CUDA’s batched FFT. As discussed earlier, 334
a notable speed-up comes from merging multiple kernels to 335
minimize launch overhead, and batched FFTs enable com- 336
puting many spatial transforms concurrently. 337

A major limitation of RSD lies in its memory footprint: 338
it requires precomputing a large complex-valued kernel, 339
H(x, y, z, d), where d denotes the number of propagated 340
depths. Otherwise, real-time reconstruction would be imprac- 341
tical. Among other drawbacks, we cannot afford padding 342
data for the FFT due to (i) excessive memory allocation 343
and (ii) real-time constraints. Recent works have addressed 344
excessive memory usage by exploiting the kernel’s radial 345
symmetry while maintaining comparable or even superior 346
performance [9], though this does not fully resolve the per- 347
formance drawback. For instance, Jiang et al. [9] reported 348
an execution time of 1.10 s for a scene of size (190, 190, 93) 349
propagated across 50 depths. 350

Figure 6. The left plot shows the impact of shared-memory in
our f–k implementation, while the right plot compares our RSD
pipeline against a multi-stream variant.

Following the FFT, the spatial–frequency data are con- 351
volved with the precomputed RSD kernel, producing an 352
intermediate buffer of size (x, y, d). During this operation, 353

I(x, y, d) = [Ψ′(x, y, z)w(z)] ∗x,y,z H(x, y, z, d), (5) 354

I must be updated with atomic additions, since f complex 355
samples per (x, y) are accumulated into each (x, y, d) ele- 356
ment. Weights w(z) follow a Gaussian distribution, hence 357

5

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

having higher weights for middle frequencies. The convolved358
signal is then transformed via a batched IFFT, performing d359
two-dimensional inverse FFTs in parallel. Finally, we unpad360
the resulting data, compute its magnitude, and postprocess it361
as described in Section 4.5.362

Figure 4 provides an overview of our RSD implemen-363
tation, which resolves all spatial, temporal, and frequency364
computations simultaneously. In contrast, the method by365
Nam et al. [17] divides the convolution into two stages: (i)366
the convolution itself and (ii) depth-wise weighting (scaling367
by w(z)). The weighting stage is executed independently368
for each frequency and depth, resulting in f × d separate369
kernel launches. A straightforward improvement to this ap-370
proach is to parallelize frequency-wise computations using371
CUDA streams, i.e., independent command queues that en-372
able asynchronous kernel execution, and to merge multiple373
convolution kernels into a single one. Figure 6 (right) com-374
pares the performance of our RSD implementation with this375
stream-based variant, showing that executing all frequencies376
within a single command substantially improves throughput.377

4.4. CUDA kernels and graphs378

The reconstruction pipelines execute in an infinite loop; thus,379
optimizing kernel scheduling and minimizing launch over-380
head is critical. CUDA provides graphs to define dependen-381
cies among kernel calls (graph nodes), enabling the GPU382
to know in advance which kernels, parameters, and grid383
configurations will be executed. Since a graph must first be384
recorded before execution, this optimization is performant385
only for pipelines executed more than once. As illustrated in386
Figure 4, both f–k migration and RSD methods, including387
the postprocessing, are recorded in a single CUDA graph.388

4.5. Postprocessing of reconstructed frames389

The postprocessing stage follows the approach of390
Nam et al. [17] and proceeds as follows. First, the Depth-391
Dependent Average (DDA) is computed as a weighted sum392
of the last three reconstructed frames, with the middle frame393
having a higher weight. The DDA is then followed by a nor-394
malization step to prepare the data for display, and optionally395
by a bandpass filter that removes values outside the interval396
[hb, ht], with hb, ht ∈ (0, 1). We intentionally omit here op-397
erations such as computing the magnitude of complex-valued398
buffers, since, as mentioned earlier, we opted for fusing as399
many kernels as possible. Accordingly, magnitude extraction400
is merged with the unpadding step after the IFFT and the401
subsequent maximum search, in both the f–k migration and402
RSD methods.403

4.6. Combining reconstructed frames404

We introduce a novel strategy that exploits temporal consis-405
tency across consecutive NLOS images of the same hidden406
region to suppress noise and enhance hidden objects. Con-407

sider a sequence of n NLOS images. Looking at Equations 2 408
and 4, our strategy takes the raw output fi(xv) from any 409
algorithm (where the subscript i ∈ {1, . . . , n} represents the 410
frame number in the sequence), and outputs a cleaned frame 411
f̄i(xv) with less noise. 412

We leverage the fact that both the RSD and f–k migration- 413
methods are wave-based, thus their reconstructions fi(xv) 414
not only represent intensity but also contain the phase of 415
the reconstructed wave. This phase is typically discarded in 416
favour of the intensity, however it contains key additional 417
information. Intuitively, this phase will not change in points 418
xv in the hidden scene that correspond to static objects, while 419
image noise will contain random phase that varies between 420
frames. We introduce a coherence metric Ci for each frame, 421
that measures the phase alignment of that frame fi(xv) with 422
respect to the k previous ones: 423

Ci(xv) =

∣∣∣∑i
j=i−k fj(xv)

∣∣∣
ε+

∑i
j=i−k |fj(xv)|

(6) 424

where |fi(xv)| represents the amplitude of the wave and ε a 425
small positive constant. With this, we compute our enhanced 426
frame f̄i(xv) as the mean of the k previous frames, weighted 427
by our coherence metric Ci(xv): 428

f̄i(xv) = Ci(xv)
1

k

∣∣∣∣∣∣
i∑

j=i−k

fj(xv)

∣∣∣∣∣∣ (7) 429

4.7. Offline reconstructions 430

Previously described methods remain similar for offline 431
reconstruction, except that single executions do not ben- 432
efit from CUDA graph optimization. Moreover, precalcula- 433
tions are not required, making offline implementations better 434
suited for validating design choices, as CUDA graphs are 435
more difficult to test and debug. Also, for a fair comparison, 436
we did not implement the offline RSD following our real- 437
time approach. Instead, we accelerated the RSD implementa- 438
tion released and used by Lindell et al. [11] to validate f–k 439
migration. Both methods are essentially the same, although 440
the RSD kernel construction in Lindell et al.’s implementa- 441
tion of Liu et al’s method [12] is considerably more complex. 442
Our optimized version simplifies this construction to make 443
it more GPU-friendly, as discussed in the Appendix. 444

5. Results and evaluation 445

Here we showcase the efficiency of our algorithm, measuring 446
execution time and memory usage under different conditions. 447
We split our tests under two categories: first, Section 5.1 448
deals with real-time NLOS imaging, which accounts for si- 449
multaneous reconstruction of one frame and processing of 450
the next frame. In Section 5.2 we compare against other ap- 451
proaches optimized for real-time imaging. Later, Section 5.3 452

6

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Average frame time, and peak RAM and VRAM usage
for our implementations and [17]. Dataset dimensions are shown
above each group of results.

Approach ↓ Frame time ↑ FPS ↓ Peak VRAM ↓ Peak RAM

Dynamic data
190× 190× 208 ⇒ 63 depths, newmovement3 dataset

Our f–k 18.01± 7.13 ms 55.52 1, 104 MB

1, 354 MB
Our f–k (w/o pad.) 2.62± 4.13 ms 381.67 302 MB
Our RSD 17.25± 12.09 ms 57.97 3, 302 MB
RSD (Nam et al.) 188.86± 21.64 ms 5.29 13, 138 MB

Static data
128× 128× 128 ⇒ 128 depths

Our f–k 4.01± 0.29 ms 249.37 272 MB

478 MB
Our f–k (w/o pad.) 0.57± 0.59 ms 1,754.38 48 MB
Our RSD 6.17± 0.38 ms 162.07 2, 120 MB
RSD (Nam et al.) 207.38± 49.08 ms 4.82 8, 593 MB

256× 256× 512

Our f–k 68.21± 0.29ms 14.66 4, 352 MB
824 MBOur f–k (w/o pad.) 10.04± 0.40 ms 99.60 768 MB

deals with offline NLOS imaging, which only accounts for453
reconstruction time. Finally, Section 5.3.1 showcases our454
phase-aware frame combining approach.455

Execution hardware. Unless otherwise mentioned, all the456
experiments were carried out in a computer with Intel(R)457
Core(TM) i7-14700KF (3.40 GHz), 64 GB RAM, RTX 4080458
SUPER GPU with 16 GB VRAM, and Windows 11 OS.459
Our implementations utilize C++23 using CUDA 13.0 and460
OpenMP for CPU multi-threading. Real-time visualization461
operates on OpenGL 4.6 for rendering and GPGPU (general-462
purpose computing on GPU).463

Adaptation to real SPAD arrays. Our work processes the464
raw photon records from a SPAD array, instead of stream-465
ing from live hardware. Consequently, we read and process466
photon data as fast as possible from disk, which does not467
necessarily reflect the transfer rates achievable by current468
devices. Reading data from disk allows us to stress test our469
systems at the maximum capacity without being limited by470
current technology.471

5.1. Real-time performance472

Our real-time implementation utilizes data captured by473
Nam et al. [17], whose work we directly compare with, and474
simulated data. They provide the raw output of their SPAD475
array, consisting of individual photon timestamps. To en-476
sure a fair comparison, both read and process the same raw477
output. This allows us to measure how fast each algorithm478
would theoretically process captured data under the capa-479
bilities of next-generation capture hardware. Table 1 shows480
the performance of our work and theirs while reconstructing481
the dynamic dataset that is partly displayed within the plot.482
Additionally, we include here, and in the following exper-483
iments, a f–k migration variant that does not pad data for484
FFT, similarly to the RSD method.485

Besides the vastly superior performance of f–k migra- 486
tion without padding, two aspects are worth noting. First, the 487
frame rate fluctuates slightly because our pipeline waits for 488
the CUDA stream that transfer data to the GPU to complete, 489
which can be delayed by other system processes. Second, 490
RSD performs slightly better than f–k migration due to the 491
low depth resolution (63 depths) and the small spatial resolu- 492
tion (190×190). To further stress our system, we carried out 493
the same experiment with simulated data and increased depth 494
resolution. As shown on the left side of Figure 1, f–k migra- 495
tion without padding remains the fastest by an astonishing 496
margin, followed by standard f–k migration and then RSD, 497
which now propagates across 128 depths. The same experi- 498
ment was repeated with higher spatial, temporal and depth 499
resolution (256× 256× 512 ⇒ 512 depths); f–k migration 500
achieved approximately 14 FPS and its unpadded variant 501
reached about 100 FPS, whereas RSD could not allocate its 502
kernel on the GPU. In Section 5.3, we reconstruct datasets of 503
comparable and larger dimensions using an alternative RSD 504
implementation. 505

The last aspect introduces an additional concern: the peak 506
usage of VRAM and RAM. Table 1 reports the memory 507
statistics collected from the experiments shown in Figure 1, 508
as well as from an additional dynamic NLOS experiment 509
summarized in the Appendix. Real-time approaches make 510
limited use of RAM but are significantly more demanding 511
on the GPU. Nevertheless, f–k migration remains the most 512
efficient method in both VRAM usage and average frame 513
time, requiring about 4 GB for 256× 256× 512 voxels. 514

5.2. Comparison with other methods 515

We compared our reconstruction throughput against other 516
real-time approaches. Specifically, Table 2 summarizes the 517
performance of our method, Fast Back-Projection [2], and 518
Liao et al. [10]. The latter targets FPGA hardware, and no 519
source code is publicly available; thus, we extrapolated their 520
reported throughput for a 128 × 128 × 69 dataset to other 521
dataset sizes. We evaluate all methods in terms of millions 522
of voxels processed per second and average reconstruction 523
time. For smaller volumes, Fast Back-Projection achieves 524
the lowest throughput, whereas RSD performs well due to 525
the low temporal dimensionality. In contrast, f–k migration 526
becomes superior as the temporal resolution increases. For 527
completeness, Nam et al.’s method could not be tested as it 528
exceeded the available VRAM. 529

5.3. Offline reconstruction 530

Figure 7 summarizes the throughput in millions of voxels 531
processed per second for a subset of the offline performance 532
results presented in the Appendix. We evaluated our work 533
on datasets from Lindell et al. [11] and Galindo et al. [7], 534
including confocal and exhaustive captures. The latter were 535
converted to confocal measurements using the Normal Move- 536

7

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Performance of fast reconstruction algorithms, with
throughput reported in millions of voxels per second. The Hardware
column indicates the platform used for each test. Values marked
with an asterisk (*) correspond to Liao et al. [10] as their results
were extrapolated from the throughput reported in their work. OOM
denotes experiments that ran out of memory.

Approach ↑ Mvox/s ↓ Average time (s) Hardware

Dataset: Z, resized to 256× 256× 512 ⇒ 64 depths

Our f–k 492.90 0.068± 0.00

Nvidia RTX 4080 TiOur RSD 62.14 0.54± 0.03
RSD (Nam et al.) OOM OOM
Fast back-projection 1.12 14.962± 75.74
Liao et al. 0.148* 28.3* Stratix 10 FPGA

Dataset: Z, resized to 128× 128× 256 ⇒ 64 depths

Our f–k 516.95 0.008± 0.00

Nvidia RTX 4080 TiOur RSD 619.47 0.007± 0.00
RSD (Nam et al.) 14.95 0.281± 0.03
Fast back-projection 2.50 1.675± 0.00
Liao et al. 28.3* 1.186* Stratix 10 FPGA

Figure 7. Throughput, in millions of voxels processed per second,
for reconstructions from confocal and non-confocal measurements.

out Correction [11]. In addition to reconstruction time, we537
also recorded peak RAM and VRAM usage.538

Across most experiments, our f–k achieves the highest539
performance, with our RSD surpassing it by only a few ms540
in 18.5% of the tests. For both cases we are much faster than541
the original implementations. It is worth to note that both ap-542
proaches exhibit a bell-shaped trend in Figure 7: throughput543
improves for medium-sized datasets but decreases for small544
or large ones. The measured times include both resource allo-545
cation and reconstruction, which penalizes smaller datasets546
due to initialization overhead, while larger datasets are lim-547
ited by increased spatial and temporal dimensions. We ob-548
served that increasing spatial resolution is the main bottle-549
neck, whereas higher temporal resolution adds relatively550
little overhead. In both approaches, this limitation arises551
primarily from the 3D FFT and IFFT stages.552

5.3.1. Combining reconstructed frames 553

We showcase in Figure 8 how the frame combining algorithm 554
discussed in Section 4.6 leverages temporal consistency in 555
consecutive NLOS reconstructions, in order to attenuate the 556
noise and enhance the result. We simulate a NLOS capture 557
where the hidden scene contains a humanoid-shaped object 558
that moves from side to side, which corresponds to a speed 559
of 15 captured frames fi(xv) per second, and the whole 560
sequence consists of n = 60 frames, i ∈ {1, . . . , 60}. 561

Figure 8. Comparison of reconstruction strategies on a dynamic
NLOS sequence. From left to right: single–frame reconstruction,
naı̈ve temporal mean, our weighted temporal mean, and ground
truth of the final frame.

From left to right, Figure 8 shows the raw reconstructed 562
frame fi(xv), a naı̈ve weighted averaging such as the one 563
used by Nam et al. [17], which does not include our phase 564
alignment term Ci(xv) (Equation 7), and our improved ver- 565
sion f̄i(xv), which combines the last k = 8 frames from 566
Equations 6 and 7. The fourth column contains a simulated 567
ground truth corresponding to the same frame fi(xv) with a 568
much larger number of photons. In comparison, our phase- 569
aware strategy provides a much cleaner result, showing the 570
humanoid and reducing the noise on the outer image regions. 571

6. Conclusions and limitations 572

In this paper, we have presented a CUDA-accelerated sys- 573
tem for reconstructing high-resolution NLOS scenes from 574
both raw photons and simulated transient data in real-time, 575
as well as for processing existing high-resolution datasets 576
in an offline setting. Our real-time pipeline presents frame 577
rates above 50 FPS on dynamic datasets, while the offline 578
pipelines substantially outperform their original implemen- 579
tations, reducing reconstruction time by 98.67% for f–k 580
migration and 78.87% for RSD on the largest dataset. 581

Although our system outperforms prior work, several 582
challenges remain open. Both f–k migration and RSD rely 583
heavily on Fourier operators, which are the most time- 584
consuming stages of our pipelines. Reducing data-type pre- 585
cision to, e.g., 16-bits floats, could cut down time, albeit 586
with potential quality trade-offs. Furthermore, the photon- 587
binning stage continues to be expensive, making partial and 588
asynchronous data uploads a key direction for future im- 589
provement. Finally, leveraging additional properties of RSD, 590
including its kernel symmetries, may further reduce memory 591
usage and improve overall performance. 592

8

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References593

[1] Byeongjoo Ahn, Akshat Dave, Ashok Veeraraghavan, Ioannis594
Gkioulekas, and Aswin Sankaranarayanan. Convolutional595
Approximations to the General Non-Line-of-Sight Imaging596
Operator. In 2019 IEEE/CVF International Conference on597
Computer Vision (ICCV), pages 7888–7898, 2019. ISSN:598
2380-7504. 2599

[2] Victor Arellano, Diego Gutierrez, and Adrian Jarabo. Fast600
back-projection for non-line of sight reconstruction. Optics601
Express, 25(10):11574–11583, 2017. Publisher: Optica Pub-602
lishing Group. 2, 7603

[3] Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin Eliceiri,604
and Andreas Velten. Non-line-of-sight imaging using a time-605
gated single photon avalanche diode. Optics Express, 23(16):606
20997–21011, 2015. Publisher: Optical Society of America.607
2608

[4] Javier Grau Chopite, Patrick Haehn, and Matthias Hullin.609
Non-Line-of-Sight Estimation of Fast Human Motion610
with Slow Scanning Imagers. In Computer Vision – ECCV611
2024, pages 176–194, Cham, 2025. Springer Nature Switzer-612
land. 2613

[5] Enrico Conca, Simone Riccardo, Vincenzo Sesta, Davide614
Portaluppi, Franco Zappa, and Alberto Tosi. Design of a615
16 x 16 fast-gated SPAD imager with 16 integrated shared616
picosecond TDCs for non-line-of-sight imaging. In Emerging617
Imaging and Sensing Technologies for Security and Defence618
IV, pages 25–32. SPIE, 2019. 2619

[6] Daniele Faccio, Andreas Velten, and Gordon Wetzstein. Non-620
line-of-sight imaging. Nature Reviews Physics, 2(6):318–327,621
2020. Publisher: Nature Publishing Group UK London. 1622

[7] Miguel Galindo, Julio Marco, Matthew O’Toole, Gordon623
Wetzstein, Diego Gutierrez, and Adrian Jarabo. A dataset624
for benchmarking time-resolved non-line-of-sight imaging,625
2019. Publication Title: IEEE International Conference on626
Computational Photography (ICCP). 4, 7627

[8] Adrian Jarabo, Belen Masia, Julio Marco, and Diego Gutier-628
rez. Recent advances in transient imaging: A computer graph-629
ics and vision perspective. Visual Informatics, 1(1):65–79,630
2017. 1631

[9] Deyang Jiang, Xiaochun Liu, Jianwen Luo, Zhengpeng Liao,632
Andreas Velten, and Xin Lou. Ring and Radius Sampling633
Based Phasor Field Diffraction Algorithm for Non-Line-of-634
Sight Reconstruction. IEEE Transactions on Pattern Analysis635
and Machine Intelligence, 44(11):7841–7853, 2022. 2, 5636

[10] Zhengpeng Liao, Deyang Jiang, Xiaochun Liu, Andreas Vel-637
ten, Yajun Ha, and Xin Lou. FPGA Accelerator for Real-Time638
Non-Line-of-Sight Imaging. IEEE Transactions on Circuits639
and Systems I: Regular Papers, 69(2):721–734, 2022. 2, 7, 8640

[11] David B. Lindell, Gordon Wetzstein, and Matthew O’Toole.641
Wave-based non-line-of-sight imaging using fast f-k migra-642
tion. ACM Trans. Graph., 38(4):116:1–116:13, 2019. 2, 3, 4,643
6, 7, 8644

[12] Xiaochun Liu, Ibón Guillén, Marco La Manna, Ji Hyun Nam,645
Syed Azer Reza, Toan Huu Le, Adrian Jarabo, Diego Gutier-646
rez, and Andreas Velten. Non-line-of-sight imaging using647
phasor-field virtual wave optics. Nature, 572(7771):620–623,648
2019. Publisher: Nature Publishing Group. 2, 3, 6649

[13] Xiaochun Liu, Sebastian Bauer, and Andreas Velten. Phasor 650
field diffraction based reconstruction for fast non-line-of-sight 651
imaging systems. Nature Communications, 11(1):1645, 2020. 652
Publisher: Nature Publishing Group. 2, 3 653

[14] Pablo Luesia-Lahoz, Diego Gutierrez, and Adolfo Muñoz. 654
Zone Plate Virtual Lenses for Memory-Constrained NLOS 655
Imaging. In ICASSP 2023 - 2023 IEEE International Confer- 656
ence on Acoustics, Speech and Signal Processing (ICASSP), 657
pages 1–5, 2023. ISSN: 2379-190X. 2 658

[15] Davide Moschella, Davide Berretta, Alberto Tosi, and Feder- 659
ica Villa. A 64\times 64 SPAD Array For Quantum Ghost 660
Imaging with Integrated TDCs and Event-Driven Readout in 661
a 40 nm CMOS Technology. In 2024 19th Conference on 662
Ph. D Research in Microelectronics and Electronics (PRIME), 663
pages 1–4. IEEE, 2024. 2 664

[16] Fangzhou Mu, Sicheng Mo, Jiayong Peng, Xiaochun Liu, 665
Ji Hyun Nam, Siddeshwar Raghavan, Andreas Velten, and 666
Yin Li. Physics to the Rescue: Deep Non-Line-of-Sight Re- 667
construction for High-Speed Imaging. IEEE Transactions 668
on Pattern Analysis & Machine Intelligence, 47(08):6146– 669
6158, 2025. Place: Los Alamitos, CA, USA Publisher: IEEE 670
Computer Society. 2 671

[17] Ji Hyun Nam, Eric Brandt, Sebastian Bauer, Xiaochun Liu, 672
Marco Renna, Alberto Tosi, Eftychios Sifakis, and Andreas 673
Velten. Low-latency time-of-flight non-line-of-sight imaging 674
at 5 frames per second. Nature Communications, 12(1):6526, 675
2021. Publisher: Nature Publishing Group. 2, 4, 5, 6, 7, 8 676

[18] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein. 677
Real-time non-line-of-sight imaging. In ACM SIGGRAPH 678
2018 Emerging Technologies, pages 1–2, New York, NY, 679
USA, 2018. Association for Computing Machinery. 2 680

[19] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein. 681
Confocal non-line-of-sight imaging based on the light-cone 682
transform. Nature, 555(7696):338–341, 2018. Publisher: 683
Nature Publishing Group. 2 684

[20] Adithya Pediredla, Akshat Dave, and Ashok Veeraraghavan. 685
SNLOS: Non-line-of-sight Scanning through Temporal Fo- 686
cusing. In 2019 IEEE International Conference on Com- 687
putational Photography (ICCP), pages 1–13, 2019. ISSN: 688
2472-7636. 2 689

[21] Oscar Pueyo-Ciutad, Julio Marco, Stephane Schertzer, Frank 690
Christnacher, Martin Laurenzis, Diego Gutierrez, and Albert 691
Redo-Sanchez. Time-Gated Polarization for Active Non-Line- 692
Of-Sight Imaging. In SIGGRAPH Asia 2024 Conference 693
Papers, pages 1–11, New York, NY, USA, 2024. Association 694
for Computing Machinery. 2 695

[22] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok 696
Veeraraghavan, Moungi G Bawendi, and Ramesh Raskar. Re- 697
covering three-dimensional shape around a corner using ul- 698
trafast time-of-flight imaging. Nature Communications, 3(1): 699
745, 2012. Publisher: Nature Publishing Group UK London. 700
2 701

[23] Andreas Velten, Di Wu, Adrian Jarabo, Belen Masia, Christo- 702
pher Barsi, Chinmaya Joshi, Everett Lawson, Moungi 703
Bawendi, Diego Gutierrez, and Ramesh Raskar. Femto- 704
Photography: Capturing and Visualizing the Propagation of 705
Light. ACM Transactions on Graphics, 32(4):1–8, 2013. Pub- 706
lisher: ACM New York, NY, USA. 2 707

9

CVPR
#

CVPR
#

CVPR 2026 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[24] Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, and Feihu Xu.708
Plug-and-Play Algorithms for Dynamic Non-line-of-sight709
Imaging. ACM Trans. Graph., 43(5):155:1–155:12, 2024. 2710

10

	Introduction
	Related Work
	Background: non-line-of-sight imaging
	NLOS imaging methods

	Method
	Producer-consumer data processing
	Photon binner
	Display

	f–k migration optimizations
	RSD-based method optimizations
	CUDA kernels and graphs
	Postprocessing of reconstructed frames
	Combining reconstructed frames
	Offline reconstructions

	Results and evaluation
	Real-time performance
	Comparison with other methods
	Offline reconstruction
	Combining reconstructed frames

	Conclusions and limitations

