Universidad de Jaén

Departamento de Informatica

EXCELENCIA + Recognised for Excellence
EUROREA i 5 Star- 2017

i
Bk
v b
E b
B

AR A

Practica 1
Algoritmos geomeétricos

Grado en Ingenieria Informatica Alfonso Lopez Ruiz

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline renderer.

Algoritmos Geométrico

iguracion de proyecto

LIDIA ORTEGA ALVARADO, ALFONSO LOGPEZ RuIZ

CAPITULO

S5.0. WINDOWS

Se recomienda la utilizacion del sistema operative Windows por las facilidades que ofrece en la
compilacién y gestion de librerias junto a vepkg. No obstante, podemos utilizar varios entornos de de
sarrollo dentro de este sistema operativo. De nuevo, se recomienda Microsoft Visual Studio. aungue en
la seccidn Clion podemos encontrar la configuracion del proyecto en Clion (®etBrains). No pretende
ser este un manual autocontenido, y por tanto, partimos de que Microsoft Visual Studio se encuentra
ya instalado. D no ser asi, es suficiente con descargar una version basica del mismo (Microsoft Visual

Studio Community) y levar a cabo la instalacién con las jentas basicas de compilacién de Cor.
Esta seceitn se de la siguiente manera: 1) instalacién de librerias mediante vepkg y 2)
configuracion del entorno de d llo o IDE d Devel i).

m Instalacion de vepkg

vepkg es un gestor de paquetes para C/Co o+ que nos permitird instalar, actualizar, eliminar y consul-
tar librerias, haciéndolas global ibles para entornos como CLion o Microsoft Visual Studio.
Podemas encontrar una guia de instalacion en la pagina de vepkg: Get Started, aungue en la carpe
ta vs hay disponible dos scripts, vepkg_install.bat y vepkg_libraries.bat, que nos simplificaran
todo el proceso de descarga e instalacion.

En primer lugar, ejecutaremos el script vepkg_install.bat para clonar el repositorio de vepkg,
instalarko ¢ integrarlo con Visual Studio. Por defecto se ubicara en D:/Software/, por lo que debes
mclificarko de acuerdo a tu eguips el caso de que qui i wolra ruta o noexista wa unidad
[:. En cualquier caso, se recomienda utilizar una ruta de facil acceso. Una vez ejecutado el fichero _bat,
podemos incluir algunas variables de entorno en el sistema para poder acceder facilmente a vepkg y
sebeccionar automaticamente la version de 64 bits durante la instalacion de librerias que llevaremos a
cabo a continuacion, El contenido del fichero utilizado es el siguiente:
cd D/

D:
if not exist "Software” mkdir Software

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline
renderer.

» Read carefully the installation guide uploaded to Platea.
» Windows + Microsoft Visual Studio + vcpkg
» Windows + JetBrains Clion + vcpkg

» Linux + JetBrains CLion

Algoritmos Geométricos

Configuracion de proyecto

LiDIA ORTEGA ALVARADO, ALFONSO LOPEZ Ruiz

Universidad de Jaén

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline
renderer.

>

It is recommended to use vepkg since it facilitates the installation of
libraries.

The installation flow is already prepared in vepkg_install.bat.
» The first step is to move to a folder, D:/Software.
» Choose one of your choice in the script, if necessary.
» Download git repository and install it.

Append vcpkg to the environment variables (this is not included in the
provided .bat files).

» Follow the guide instructions.

Libraries to be installed are also prepared in vepkg_libraries.bat.

Otherwise follow the vcpkg installation guide provided in their page.

Algoritmos Geométricos

Configuracion de proyecto

LiDIA ORTEGA ALVARADO, ALFONSO LOPEZ Ruiz

Universidad de Jaén

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline
renderer.

» |f Microsoft Visual Studio was opened during vepkg installation, please
close it and reopen.

» Once ready, the project should compile with no errors.
» The first launch should fail as there are some missing .dll files.
» The project needs the .dlL files from the installed libraries.

» Select x64 as the target architecture in Visual Studio.

» The necessary .dll files have been attached to the uploaded
project under a dll folder, following the Debug and Release
structure of Visual Studio.

» Copy both Debug and Release to x64 folder, created by Microsoft
Visual Studio after the first launch.

Algoritmos Geométricos

Configuracion de proyecto

LiDIA ORTEGA ALVARADO, ALFONSO LOPEZ Ruiz

Universidad de Jaén

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline renderer.
» Everything should be up and running at this point.

» Something like the following image should be first rendered.

[Algoritmos Geometricos = O X

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline renderer.

» The camera has been limited to 2D for the first practices.

» If the interaction feels a bit weird in 2D, just change the camera initialization and pass false instead of true to enable 3D.
» You will have to in later practices.

» The camerainteraction is described in the installation guide. It is implemented to be Unity-like (more or less).

[87 Algoritmos Geometricos — O X

Installation Guide

» Starting point: a C++ project with OpenGL as the baseline renderer.
» Do not change code in graphics-related files.
» Itisintended to work on any mesh, primitive and shape to be implemented.
» Files that must be modified:
» SceneContent: includes the models and cameras that will be initialized by default.
» Itsonly purpose is to isolate the creation of models and cameras from Renderer.
» Draw®: these files are part of the objectives of this practice and the following.

» Any file under the Geometry folder (or the ones that you will create, related to geometric shapes).

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Point:

» Constructor based on polar coordinates.
» getAlpha()

» distance(p)

» triangleArea(a, b)

» classify(po, pl)

» slope(p)

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Vect2D:
» Override +, -, dot and scalar product Of a vector with respect to another vector.

» Renderer of a vector.

» Itisjustdefined by a slope. We can draw it as a segment centred at (0, 0) with its corresponding slope.

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» SegmentLine:
» isHorizontal()
» isVertical()
» getPoint(t)
> getC()
» segmentIntersection(s)

» impSegmentIntersection(s)

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Line:
» Aninfinite line.
» Trick the user perception by using very large origin and destination points.

» E.g,(-1000,-1000,-1000) -> (1000, 1000, 1000).

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» RayLine:
» Line clamped by origin, though it is infinite from this point.

» Again, use large coordinates for the target point.

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Polygon:

>

vV v v Vv

Implement constructor and storage methods with a common file format so they can interpret it properly.
E.g., CSV-like format, with each point in a new line, and each line composed of x, y (insert jump line).

Other solution which is easier to read, and a bit harder to implement: save the polygon points in a binary file.
convex()

pointInConvexPolygon()

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Vertex (from a polygon):
» convex(), concave()
» next(), previous()

» nextEdge(), previousEdge()

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Point cloud:

» Constructors and storage methods.

» Use the file RandomUtilities for randomized point cloud.
» centralPoint()

» Renderer.

Practice 1

» Objective: to practice some of the 2D-based operations that were explained in theory lectures.

» Please, read carefully what ought to be implemented in this practice.

» Check everything is done before uploading the result.

» Circle:

» isInside(p)

Practice 1

» Final scenario: you will have to compose a final scenario in

1.

SceneContent, consisting of previously implemented primitives.

Random point cloud (100 points) + storage.
* Placeitin avisible area within the viewport.
Three random segments using the cloud points.

Select the points with minimum and maximum X and Y coordinates and create a
polygon defined in counterclockwise direction.

. Check if its convex.

Draw 3 circumferences whose centre is the cloud point which is the closest to
(0, 0). Pick a random point for each circumference and make it pass over the
selected point (use it to calculate the radius).

Preferred format for
rendering a circumference.

Easier, uglier, but it is also
ok.

Results

» What should be uploaded?

» The whole project. Reduce the size with Compile > Clean solution.

» The executable file located either under x64/Debug or x64/Release.

» Check it works before uploading. The Assets folder should be copied under x64/Debug or
x64/Release so that the program can find these files.

» Deadline: February 13th, 23:59

How to implement a new rendering class

» You can find detailed instructions in the final chapter of the uploded guide.

1. Everything should be defined within the class constructor: geometry and topology.
2. Revise the concepts of geometry and topology.

3. Every model can be composed of several components.

. For instance, a point cloud could have two components: the point cloud itself and the convex hull calculated from it.

4. Two vectors for each component: geometry and topology.

How to implement a new rendering class

» Geometry and topology.

» Topology is called ‘primitives’ in your installation guide to avoid overlapping with later concepts.

Geometry: raw vertices. Topology: defines how
vertices are correlated
to create a solid
model, a wireframe
mesh, etc.

Universidad de Jaén

Departamento de Informatica

EXCELENCIA + Recognised for Excellence
EUROREA i 5 Star- 2017

i
Bk
v b
E b
B

AR A

Practica 4.B
Algoritmos geomeétricos

Grado en Ingenieria Informatica Alfonso Lopez Ruiz

A fast voxel traversal algorithm for ray tracing

» Lanzamos un rayo y obtenemos qué voxeles atraviesa.

» Obtener dicho conjunto de voxeles y renderizarlo:

» new DrawVoxelization(voxels.data(), voxels.size(), voxels[@].extent() * 2.0f)

A fast voxel traversal algorithm for ray tracing

» Lanzamos un rayo y obtenemos qué voxeles atraviesa.
» Obtener dicho conjunto de voxeles y renderizarlo:
» new DrawVoxelization(voxels.data(), voxels.size(), voxels[@].extent() * 2.0f)
» Los voxeles grises pueden almacenar un conjunto de tridngulos (opcional).

» Ejecutar test ray-tridngulo en dichas primitivas.

» Determinar qué primitivas son intersectadas y renderizarlas.

» DrawTriangle

A fast voxel traversal algorithm for ray tracing

si

» Algoritmo:

yik/fast-voxel-traversal-algorithm

ze_t current_7_index = MAX(1l, std::ceil(ray_start.z() - grid.minBound().z() /

nst size_t end_Z_index = MAX(1l, std::ceil{ray_end.z() - grid.minBound().z(} /

int stepi;

value_type tDeltal;

value_type tMaxZ;

if (ray.direction().z() » ©.8) {

stepZ = 1;
tDeltaZ = grid.voxelSizeZ() / ray.direction().z();
tMaxZ = tMin + (grid.minBound().z() + current_Z_index *
- ray_start.z()) / ray.direction().z();
if (ray.direction{).z() <« @.8) {
stepZ = -1;
tDeltaZ = grid.voxelSizeZ() / -ray.direction().z();
const size_t previous_7_index = current_7_index - 1;
tMaxZ = tMin + (grid.minBound().z() + previous_Z_index *
- ray_start.z()) / ray.direction().z()
else {
stepZ =
tDeltal

tMaxi =

hile (current_X_index '= end_¥_index || current_¥_index != end_¥Y_index || current_Z_index != end_Z_index) {

if (tMaxX <« tMax¥ && tMaxX < tMaxZ) {

current_X_index += stepX;
tMaxX += tDeltaX;

} else if (tMax¥ < tMaxZ) {

current_¥_index += stepY;
tMax¥ += tDeltaY;
} else {

current_I_index += stepZ;

tMaxZ += tDeltaZ;

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Comprobar que el punto esta dentro de la voxelizacion.

» glm::all(glm::greaterThanEqual(point, 0)) && ..

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Obtener avance en voxel.

» Sielrayo tiene una coordenada x positiva, siempre avanzaremos +1 en X cuando sea necesario.

» Sielrayo tiene una coordenada x negativa, siempre avanzaremos -1en X cuando sea necesario.

» glm::sign(rayDirection)

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Obtener la longitud del avance, tDel ta.

» tDelta dependerd del tamafno de voxel y de la direccion del rayo.

» Notese que se trata de un valor positivo siempre (es un t a lo largo del rayo).

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Obtener el t inicial, tMax.

» La situacidon mas normal es que el origen del rayo no se encuentre en las fronteras de un voxel,
sino dentro de él.

» Sin embargo, los incrementos antes calculados se aplican desde los limites del voxel.

j‘_\.‘/ Vol
e
%x\'b

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Obtener el t inicial, tMax.

» Elrayocomienzaenelvoxeli, j, k.

» Esposible calcular el minimo punto del voxel i, j, k: voxelization.min + voxelSize * indices

» ;Cualeslat? (Punto obtenido - Origen del rayo) / Direccién del rayo

j‘_\.‘/ Vol
e
%x\'b

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Obtener el t inicial, tMax.

» Importante: si la direccion del rayo es negativa, se utilizai - 1, j - 1, k - 1.

% ’

A fast voxel traversal algorithm for ray tracing

» Algoritmo:

» Proceso iterativo.

» Serecorre la voxelizacion mientras los indices sean mayores que 0
y menor que el nUmero de subdivisiones.

» SitMaxX < tMaxY y tMaxX < tMaxZ:
» tDeltaX se suma a tMaxX.

» stepXSesumaai.

Operaciones Booleanas

» Dada una voxelizacion A y una voxelizacion B:

» Una nueva voxelizacion que incluye la caja envolvente de Ay B, con el tamafo de voxel de A.

Operaciones Booleanas

A AND B

AXORB

Universidad de Jaén

Departamento de Informatica

EXCELENCIA + Recognised for Excellence
EUROREA i 5 Star- 2017

i
Bk
v b
E b
B

AR A

Practica 5.A
Algoritmos geomeétricos

Grado en Ingenieria Informatica Alfonso Lopez Ruiz

CGAL

» The Computational Geometry Algorithms Library

» Procesamiento de nubes de puntos.

» Procesamiento de mallas de triangulos.

» Sintaxis compleja.

» typedef parasimplificarla

P
B A AN : B AR T\U &
3 N/ @
L %\k Q.—% _/
\\n) n \
¢ N
F M 3 NN pd
\/ S P
< |m /1 B
g N PRe
— e Vi
D : /1D D,
N AN/

SVis

SICEIS I

CGAL

» Sintaxis compleja.

» The Computational Geometry Algorithms Library

» CGAL::Delaunay_triangulation 2<CGAL: :Projection_traits_xy 3< CGAL::Exact_predicates_inexact_constructions_kernel>>

~k
\11

L/ V]

T

%K |

\A
Y

%m
i

s

b

Y5

N/

\\\ /’(
s
<,h,<’)<\l\f

VW @u

/=

SICEIS I

CGAL

» The Computational Geometry Algorithms Library

» Sintaxis compleja.

vV v.v Vv

~k
1

L

L/ V] [

typedef K::Point_3 Point;

typedef CGAL::Projection_traits xy 3<K> Gt;

T

\§
\‘_a.
KA 1]

[

%
e
|

b

Y5

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;

N/
N
s
<,h,<’)<\l\f
VW @u

/=

SICEIS I

Envolvente convexa

» La envolvente convesa encapsula un conjunto de puntos.
» Obtiene un envoltorio en forma de malla de tridangulos (3D).

» Laenvolvente convexa es mucho mas estricta que la concava.
» Se adapta peor ala forma de los puntos.

» Aporta unarepresentacion mucho mas facil en la que se pueden llevar
a cabo comprobaciones con menor tiempo de respuesta.

yiA

wiA

CGAL

» Ejemplo de uso de CGAL

#include
#include
#include
#include

<CGAL/Exact_predicates_inexact_constructions_kernel.h>
<CGAL/Projection_traits_xy 3.h>
<CGAL/Delaunay_triangulation_2.h>

<fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Projection_traits xy 3<K> Gt;

typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;

typedef K::Point_3 Point;

int main()

{

std::ifstream in("data/terrain.cin");
std::istream_iterator<Point> begin(in);
std::istream_iterator<Point> end;

Delaunay dt(begin, end);
std::cout << dt.number_of_vertices() << std::endl;
return 0;

github.com/CGAL/cgal/

Envolvente convexa

» Algoritmo:

Envolvente convexa

» Algoritmo:

Triangulacion con Delaunay + Convexa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

