
Práctica 1
Algoritmos geométricos

Departamento de Informática

Grado en Ingeniería Informática Alfonso López Ruiz
Curso 2022-2023

2Installation Guide

Starting point: a C++ project with OpenGL as the baseline renderer.

3Installation Guide

Starting point: a C++ project with OpenGL as the baseline
renderer.

Read carefully the installation guide uploaded to Platea.

Windows + Microsoft Visual Studio + vcpkg

Windows + JetBrains Clion + vcpkg

Linux + JetBrains CLion

4Installation Guide

Starting point: a C++ project with OpenGL as the baseline
renderer.

It is recommended to use vcpkg since it facilitates the installation of
libraries.

The installation flow is already prepared in vcpkg_install.bat .

The first step is to move to a folder, D:/Software.

Choose one of your choice in the script, if necessary.

Download git repository and install it.

Append vcpkg to the environment variables (this is not included in the
provided .bat files).

Follow the guide instructions.

Libraries to be installed are also prepared in vcpkg_libraries.bat .

Otherwise follow the vcpkg installation guide provided in their page.

5Installation Guide

Starting point: a C++ project with OpenGL as the baseline
renderer.

If Microsoft Visual Studio was opened during vcpkg installation, please
close it and reopen.

Once ready, the project should compile with no errors.

The first launch should fail as there are some missing .dll files.

The project needs the .dll files from the installed libraries.

Select x64 as the target architecture in Visual Studio.

The necessary .dll files have been attached to the uploaded
project under a dll folder , following the Debug and Release
structure of Visual Studio.

Copy both Debug and Release to x64 folder, created by Microsoft
Visual Studio after the first launch.

6Installation Guide

Starting point: a C++ project with OpenGL as the baseline renderer.

Everything should be up and running at this point.

Something like the following image should be first rendered.

7Installation Guide

Starting point: a C++ project with OpenGL as the baseline renderer.

The camera has been limited to 2D for the first practices.

If the interaction feels a bit weird in 2D, just change the camera initialization and pass false instead of true to enable 3D .

You will have to in later practices.

The camera interaction is described in the installation guide. It is implemented to be Unity -like (more or less).

8Installation Guide

Starting point: a C++ project with OpenGL as the baseline renderer.

Do not change code in graphics -related files.

It is intended to work on any mesh, primitive and shape to be implemented.

Files that must be modified:

SceneContent : includes the models and cameras that will be initialized by default.

Its only purpose is to isolate the creation of models and cameras from Renderer.

Draw*: these files are part of the objectives of this practice and the following.

Any file under the Geometry folder (or the ones that you will create, related to geometric shapes).

9Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Point:

Constructor based on polar coordinates.

getAlpha()

distance(p)

triangleArea(a, b)

classify(p0, p1)

slope(p)

10Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Vect2D:

Override +, -, dot and scalar product of a vector with respect to another vector.

Renderer of a vector.

It is just defined by a slope. We can draw it as a segment centred at (0, 0) with its corresponding slope.

11Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

SegmentLine :

isHorizontal()

isVertical()

getPoint(t)

getC()

segmentIntersection(s)

impSegmentIntersection(s)

12Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Line:

An infinite line.

Trick the user perception by using very large origin and destination points.

E.g., (-1000, -1000, -1000) -> (1000, 1000, 1000).

13Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

RayLine :

Line clamped by origin, though it is infinite from this point.

Again, use large coordinates for the target point.

14Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Polygon:

Implement constructor and storage methods with a common file format so they can interpret it properly.

E.g., CSV-like format, with each point in a new line, and each line composed of x, y (insert jump line).

Other solution which is easier to read, and a bit harder to implement: save the polygon points in a binary file.

convex()

pointInConvexPolygon()

15Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Vertex (from a polygon):

convex(), concave()

next(), previous()

nextEdge(), previousEdge()

16Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Point cloud:

Constructors and storage methods.

Use the file RandomUtilities for randomized point cloud.

centralPoint()

Renderer.

17Practice 1

Objective: to practice some of the 2D -based operations that were explained in theory lectures.

Please, read carefully what ought to be implemented in this practice.

Check everything is done before uploading the result.

Circle :

isInside(p)

18Practice 1

Final scenario: you will have to compose a final scenario in
SceneContent , consisting of previously implemented primitives.

1. Random point cloud (100 points) + storage.

• Place it in a visible area within the viewport.

2. Three random segments using the cloud points.

3. Select the points with minimum and maximum X and Y coordinates and create a
polygon defined in counterclockwise direction.

• Check if its convex.

4. Draw 3 circumferences whose centre is the cloud point which is the closest to
(0, 0). Pick a random point for each circumference and make it pass over the
selected point (use it to calculate the radius).

Preferred format for
rendering a circumference.

Easier, uglier, but it is also
ok.

19Results

What should be uploaded?

The whole project. Reduce the size with Compile > Clean solution.

The executable file located either under x64/Debug or x64/Release.

Check it works before uploading. The Assets folder should be copied under x64/Debug or
x64/Release so that the program can find these files.

Deadline: February 13th, 23:59

20How to implement a new rendering class

You can find detailed instructions in the final chapter of the uploded guide.

1. Everything should be defined within the class constructor: geometry and topology.

2. Revise the concepts of geometry and topology.

3. Every model can be composed of several components.

• For instance, a point cloud could have two components: the point cloud itself and the convex hull calculated from it.

4. Two vectors for each component: geometry and topology.

21How to implement a new rendering class

Geometry and topology.

Topology is called ‘primitives’ in your installation guide to avoid overlapping with later concepts.

Geometry: raw vertices.
Topology: defines how
vertices are correlated

to create a solid
model, a wireframe

mesh, etc.

Práctica 4.B
Algoritmos geométricos

Departamento de Informática

Grado en Ingeniería Informática Alfonso López Ruiz
Curso 2022-2023

23A fast voxel traversal algorithm for ray tracing

Lanzamos un rayo y obtenemos qué vóxeles atraviesa .

Obtener dicho conjunto de vóxeles y renderizarlo:

new DrawVoxelization(voxels.data(), voxels.size(), voxels[0].extent() * 2.0f)

24A fast voxel traversal algorithm for ray tracing

Lanzamos un rayo y obtenemos qué vóxeles atraviesa .

Obtener dicho conjunto de vóxeles y renderizarlo:

new DrawVoxelization(voxels.data(), voxels.size(), voxels[0].extent() * 2.0f)

Los vóxeles grises pueden almacenar un conjunto de triángulos (opcional).

Ejecutar test ray -triángulo en dichas primitivas.

Determinar qué primitivas son intersectadas y renderizarlas.

DrawTriangle

25A fast voxel traversal algorithm for ray tracing

Algoritmo:

cgyurgyik/fast-voxel-traversal-algorithm

26A fast voxel traversal algorithm for ray tracing

Algoritmo:

1 Comprobar que el punto está dentro de la voxelización.

glm::all(glm::greaterThanEqual(point, 0)) && …

27A fast voxel traversal algorithm for ray tracing

Algoritmo:

2 Obtener avance en vóxel.

Si el rayo tiene una coordenada x positiva, siempre avanzaremos +1 en X cuando sea necesario.

Si el rayo tiene una coordenada x negativa, siempre avanzaremos -1 en X cuando sea necesario.

glm::sign(rayDirection)

28A fast voxel traversal algorithm for ray tracing

Algoritmo:

3 Obtener la longitud del avance, tDelta.

tDelta dependerá del tamaño de vóxel y de la dirección del rayo.

Nótese que se trata de un valor positivo siempre (es un t a lo largo del rayo).

29A fast voxel traversal algorithm for ray tracing

Algoritmo:

4 Obtener el t inicial, tMax.

La situación más normal es que el origen del rayo no se encuentre en las fronteras de un vóxel,
sino dentro de él.

Sin embargo, los incrementos antes calculados se aplican desde los límites del vóxel.

30A fast voxel traversal algorithm for ray tracing

Algoritmo:

4 Obtener el t inicial, tMax.

El rayo comienza en el vóxel i, j, k.

Es posible calcular el mínimo punto del vóxel i, j, k: voxelization.min + voxelSize * indices

¿Cuál es la t? (Punto obtenido – Origen del rayo) / Dirección del rayo

31A fast voxel traversal algorithm for ray tracing

Algoritmo:

4 Obtener el t inicial, tMax.

Importante: si la dirección del rayo es negativa, se utiliza i – 1, j – 1, k – 1.

32A fast voxel traversal algorithm for ray tracing

Algoritmo:

5 Proceso iterativo.

Se recorre la voxelización mientras los índices sean mayores que 0
y menor que el número de subdivisiones.

Si tMaxX < tMaxY y tMaxX < tMaxZ:

tDeltaX se suma a tMaxX.

stepX se suma a i.

33Operaciones Booleanas

Dada una voxelización A y una voxelización B:

Una nueva voxelización que incluye la caja envolvente de A y B, con el tamaño de vóxel de A.

34Operaciones Booleanas

A AND B

A OR B

A XOR B

Práctica 5.A
Algoritmos geométricos

Grado en Ingeniería Informática Alfonso López Ruiz
Curso 2022-2023

Departamento de Informática

36CGAL

The Computational Geometry Algorithms Library

Procesamiento de nubes de puntos.

Procesamiento de mallas de triángulos.

Sintaxis compleja.

typedef para simplificarla

37CGAL

The Computational Geometry Algorithms Library

Sintaxis compleja.

CGAL::Delaunay_triangulation_2<CGAL::Projection_traits_xy_3< CGAL::Exact_predicates_inexact_constructions_kernel>>

38CGAL

The Computational Geometry Algorithms Library

Sintaxis compleja.

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Projection_traits_xy_3<K> Gt;

typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;

typedef K::Point_3 Point;

39Envolvente convexa

La envolvente convesa encapsula un conjunto de puntos.

Obtiene un envoltorio en forma de malla de triángulos (3D).

La envolvente convexa es mucho más estricta que la cóncava.

Se adapta peor a la forma de los puntos.

Aporta una representación mucho más fácil en la que se pueden llevar
a cabo comprobaciones con menor tiempo de respuesta.

40CGAL

Ejemplo de uso de CGAL

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Projection_traits_xy_3<K> Gt;
typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;
typedef K::Point_3 Point;

int main()
{

 std::ifstream in("data/terrain.cin");
 std::istream_iterator<Point> begin(in);
 std::istream_iterator<Point> end;

 Delaunay dt(begin, end);
 std::cout << dt.number_of_vertices() << std::endl;
 return 0;
}

github.com/CGAL/cgal/

41Envolvente convexa

Algoritmo:

1 Convex hull

42Envolvente convexa

Algoritmo:

2 Triangulación con Delaunay + Convexa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

