

CONTENTS

] Chapter 1
Geometric Algorithms

2 Chapter 2

Windows O.S.

2.1 Installing vepkg 3
2.2 Microsoft Visual Studio 5
2.3 CLion 5

Chapter 3
Linux O.S.

3.1 CLion 9

Chapter 4
Project features

4.1 Integration of new 2D/3D objects 13
4.1.1 Scene management 16
4.1.2 Multiple instances 18

CHAPTER

GEOMETRIC ALGORITHMS

The primary objective of this subject is to implement geometric algorithms using 2D and 3D data as well
as the spatial data structures that will contain them. Hence, visualizing the outcome of the developed
algorithms helps to check whether they adjust to the expected results. However, building a renderer is
out of the scope of this subject. This document introduces a baseline renderer that must be configured
for an operating system and integrated development environments (IDE) of our choice. The steps to
make it work over Windows and Linux operative systems (O.S.) are illustrated using Microsoft Visual
Studio and CLion IDEs. We have also tested the Linux steps over Mac O.S. Though it seems to work, it
has not been thoughtfully tested.

The baseline code is available at Github and be cloned as follows:

git clone
https://github.com/AlfonsoLRz/AlgoritmosGeometricosUJA.git
-recurse-submodules

https://github.com/AlfonsoLRz/AlgoritmosGeometricosUJA

AN W N =

CHAPTER

WINDOWS O.S.

Windows O.S. is recommended because of the ease of compilation and management of packages to-
gether with vepkg. We can use several development environments within this O.S. Again, using Mi-
crosoft Visual Studio is the most straightforward approach, although you can also find the configuration
for the CLion IDE (JetBrains) in section 2.3. This is not intended to be a self-contained manual, and
we will assume that Microsoft Visual Studio is already installed. If not, it is sufficient to download a
standard version, such as Microsoft Visual Studio Community, and continue the installation with the
basic C++ compilation tools.

This section is structured as follows: 1) installation of libraries using vcpkg and 2) configuration of the
IDE (either MSVC or CLion).

m Installing vcpkg

vepkg is a package manager for C/C++ that enables installing, updating and removing libraries, making
them globally accessible for environments such as CLion or Microsoft Visual Studio. An installation
guide can be found in the vcpkg: Get Started page, although there are two scripts available in the vs
folder: vepkg_install.bat and vepkg_libraries.bat which are intended to simplify the download
and installation.

Nota CLion and vcpkg integration

ClLion has recently integrated vcpkg in case you have not installed it locally on your computer. Be
aware that it has not been tested. Guide: vcpkg integration

First, execute the vcpkg_install.bat script to clone the repository of vcpkg, install it, and integrate
it with Microsoft Visual Studio. By default, it will place vepkg in C:/, but the script can be updated
if you prefer another path or there is no C: storage unit. In any case, it is recommended to use an
easily accessible path. Once the .bat file has been executed, a few environment variables should be
included for easily executing vcpkg in the command console, and automatically selecting the 64-bit
version during installations. The contents of the mentioned script are as follows:

cd C:/

C:

if not exist "vcpkg" git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg

./bootstrap-vcpkg.bat

vcpkg.exe integrate install

Listing 2.1: Installation of vcpkg.

Second, the vcpkg folder must be added to the system path, so that the vcpkg. exe executable can be
globally accessible. To do this, go to System Properties > Environment variables > Pathand add a
new path: C: /vepkg (modify it according to the previous installation). Secondly, we need to define the
architecture of our system so that the installation of packages is carried out with such an architecture.

https://vcpkg.io/en/getting-started
https://www.jetbrains.com/help/clion/package-management.html

The architecture can be configured via System Properties > Environment variables > New Variable,
using the values in Figure 2.1. Nevertheless, the version and architecture can be passed as an argument
during installations.

Editar la variable de usuario =

Mombre de |2 variable: |‘-J‘CPKG_DEFAULT_TRIPLET \

bd-windows ‘
Examinar directono... Examinar archivo... Aceptar Cancelar

Valor de la variable:

Figure 2.1: Configuration of the preferred architecture for packages to be installed.

We can check that the variables have been registered correctly using the following commands:

Readout of | echo %PATH%
environ- | echo %VCPKG DEFAULT TRIPLET%
ment variable
In either case, the vcpkg_libraries.bat script is prepared to indicate that the desired architecture is
64-bit. A few of the most noteworthy operations of vcpkg are listed below, although we will only use
the install operation.

Search: vcpkg search name

Installation: vcpkg install name

Deletion of packages: vcpkg remove name

List of installed packages: vcpkg list

Upgrade: vcpkg upgrade name

The contents of the vepkg_libraries.bat script are as follows:

vcpkg install glfw3:x64-windows

vcpkg install glew:x64-windows

vcpkg install glm:x64-windows

vcpkg install assimp:x64-windows

vcpkg install imgui:x64-windows

vcpkg install imguil[opengl3-binding]:x64-windows --recurse
vcpkg install imguil[glfw-binding]:x64-windows --recurse
vcpkg install imguizmo:x64-windows

vcpkg install lodepng:x64-windows

O 0 N O Ul WIN =

Listing 2.2: Installation of packages using vcpkg.

Nota Installation directory

From now on, we will refer to our installation directory as AGGDIR.

m Microsoft Visual Studio

After installing vcpkg and cloning the project, open it from the folder AGGDIR/vs using Microsoft
Visual Studio. The development environment should be restarted if it was open during the installation
of vepkg. Once the project is opened, notice that the toolset of our development environment may
not match that of the downloaded project (e.g. v142). In that case, you only need to configure the
downloaded project to select your toolset, as shown in Figure 2.2.

Paginas de propiedades de AG2223 ? *

Configuracién: | Todas las config. ~ Plataforma: | Todas las plataformas ~ | | Administrador de configuracién...

4 Propiedades de configuracidn| |~ Propiedades generales

Gene T P i< it .
Avanzado Directorio intermedio <opcienes diferentes>
vepkg Mombre de destino S({ProjectMame)
Depuracion Tipo de configuracién Aplicacién (.exe)
Dirrecturius eRE Version del SDK de Windows 10.0 (diltima versién instalada)
% C:’ e Conjunto de herramientas de la plataforma Visual Studio 2019 (v142) |
b Vinculador) Estandar de lenguaje C+ = Version preliminar: caracteristicas del (ltimo borrador de trabajo de C++ [/std:c++
I Herramienta Manifieste
b Generador de documentos Estandar del lenguaje C Predeterminado (MSVC heredada)
I Informacidn de examen
I Eventos de compilacién
I Paso de compilacion persc

I Andlisis de cédigo

Directorio de salida
Ruta de acceso al lugar donde se ubicara el programa compilade. Puede incluir variables de entorno.

Cancelar Aplicar

Figure 2.2: Project properties in Microsoft Visual Studio. If the v142 platform tools are unavailable, we
must select other available tools through the drop-down menu.

Once configured, you can compile and run the project.

IMPORTANT: Ensure that the project architecture (e.g., x64) matches the architecture used
for vepkg during the installation process (see Figure 2.3).

= P Depurador local de Windows ~

Figure 2.3: Configuration of the build architecture in Microsoft Visual Studio.

An alternative to Microsoft Visual Studio is the CLion IDE, which can also use the Microsoft Visual
Studio compiler. Remember that a one-year educational license can be accessed via the student ac-
count (see Figure 3.1). The compilation flow is here guided by the CMakeLists. txt file available in the
folder clion. The following procedure considers that users have downloaded, installed, and success-
fully launched CLion. The first step is to open the project in clion with the IDE. Although the name
of CMakelLists.txt matches the standard name, it may not be selected by default. On the first boot,
you can choose the location of this file or right-click over the file and select Load CMake project.

Unlike Microsoft Visual Studio, integrating vcpkg with CLion is not immediate. If vcpkg has been
installed in the suggested path, C:/, the file CMakeLists. txt is ready to use. Otherwise, the location

of vepkg must be updated.

cmake_minimum_required(VERSION 3.24)
project(AG_CLion)

set (CMAKE_CXX_STANDARD 20)

add_definitions(-D_ITERATOR_DEBUG_LEVEL=0)
set (CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /MDd")
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /MD")

set(FONTS ./Fonts)

set (GEOMETRY ./Geometry)

set(LIBRARIES ../Libraries)

set (PATTERNS ./Patterns)

set (PRECOMPILED_HEADERS ./PrecompiledHeaders)
set (RENDERING ./Rendering)

set(VCPKG C:/vcpkg/installed/x64-windows)

include_directories(${FONTS})
include_directories(${GEOMETRY})
include_directories(${LIBRARIES})
include_directories(${PATTERNS})
include_directories(${PRECOMPILED_HEADERS})
include_directories(${RENDERING})
include_directories(${LIBRARIES}/ImGuiFileDialog)
include_directories(${LIBRARIES}/lodepng)
include_directories(${VCPKG}/include/)
include_directories(${VCPKG}/include/assimp)
include_directories(${VCPKG}/include/GLFW/include)
include_directories(${VCPKG}/include/gl)
include_directories(${VCPKG}/include/glm)

set_source_files_properties(stdafx.cpp
PROPERTIES
COMPILE_FLAGS "-include stdafx.h")

link_directories(${VCPKG}/1ib)

set (SOURCE_FILES
main.cpp
${GEOMETRY}/AABB. cpp
${GEOMETRY}/AABB.h
${GEOMETRY}/BasicGeometry.h

${FONTS}/font_awesome_2.cpp)
add_executable(AG_CLion ${SOURCE_FILES})

target_link_libraries(AG_CLion imgui imguizmo glfw3dll glew32 OpenGL32 assimp-vcl143-mt)

From now on we will stick with the default configuration of CMake (Figure 2.4: MinGW as the toolchain
and Let CMake decide the generator). Notice that other options are available, such as using the Visual
Studio compiler or the Debug build type instead of Release (the Release executable is faster, at the
expense of being unable to trace the program flow and having a bit slower compilation). The next step
is compiling the project or recompiling it if it was previously compiled and failed. There is also a Clean

® NN URWN =

option for removing data generated during build.

Build, Execution, Deployment CMake

Appearance & Behavior
Keymap

> Editor Profiles

Plugins

Versi

Pro

Build, Execution, Deployment

> Languages & Frameworks

Tools

?

Figure 2.4: CMake configuration on Windows.

The outcome of the compilation is a . exe file in cmake-build-debug/Debug/ or
cmake-build-release/Release/. As we integrated vcpkg manually into our project, there are missing
.d11 files that will initially make the execution fail. We have already prepared two scripts that 1) copy
the required .d11 files from our vcpkg installation, and 2) copy the vs/Source/Assets folder with
the shaders and required fonts. These scripts have been named prepare-debug.bat and
prepare-release.bat. They check whether the output directory is already created, and therefore, can
be launched even before compiling.

The contents of the prepare-debug.bat script are as follows:

@echo off

:: Move to the folder where this script is located
cd /d %~dpe

set VCPKG_DIR=C:/vcpkg/
set TRIPLET=x64-windows
set OUTPUT_DIR=cmake-build-debug/Debug/

set DLL_LIST="glew32.dll"” "glfw3.dll"” "assimp-vc143-mt.dll"” "zlib1.dll" "poly2tri.dll” "minizip.dll” "pugixml.dll”

if not exist "%OUTPUT_DIR%" (
mkdir "%OUTPUT_DIR%"

)

echo Copying selected .dll files from vcpkg to %OUTPUT_DIR%..
for %%D in (%DLL_LIST%) do (
if exist "%VCPKG_DIR%\installed\%TRIPLET%\bin\%%~D" (
echo Copying %%~D to %OUTPUT_DIR%
copy "%VCPKG_DIR%\installed\%TRIPLET%\bin\%%~D" "%OUTPUT_DIR%" >nul
) else (
echo WARNING: %%~D not found in %VCPKG_DIR%\installed\%TRIPLET%\bin
)
)

echo Done. Selected DLLs have been copied to %OUTPUT_DIR%.
pause

echo Copying Assets folder to %OUTPUT_DIR%...
xcopy /E /I /H /Y "..\vs\SourcelAssets"” "%OUTPUT_DIR%\Assets"”

Listing 2.3: Script for copying DLL files and resources into the output folder of the debug build.

Once the program is successfully compiled and the scripts are executed, running the application should

display a result like the one shown in Figure 2.5.

07 Algoritmos Geometricos - O X
el

Figure 2.5: Rendering of the default scenario after launching the application with CLion (Windows
0.5)).

CHAPTER

LINUX O.S.

In the case of Linux, this document specifically focuses on the CLion development environment (Jet-
Brains).

BEEEE cuon

Installing CLion on Linux is straightforward by running the command

sudo snap install clion --classic. Remember that a one-year educational license can be accessed
via the student account (see Figure 3.1). Following this, we will install the required libraries. First, clone
the repository in the folder of your choice using either HTTPS or SSH, with the first method being the
easiest (git clone https://github.com/AlfonsoLRz/AlgoritmosGeometricosUJA.git). Once the
repository has been downloaded, we can run the script /install_libraries.shin
{AGG_DIR}/clion_linux after providing execution permissions.

Licenses

Activate

Figure 3.1: CLion license activation via an educational email.

Installation cd {AGG_DIR}/clion_linux
script chmod 777 install_libraries.sh
./install libraries.sh

The contents of this script is shown below, taking into account that we need GLFW (graphical interface),
GLM (mathematical operations), GLEW (interface with OpenGL), Assimp (object loading) and TBB

AUl W N =

Copying
the re-
sources folder

(multi-threaded execution).

#!/bin/bash

sudo apt-get install libglfw3-dev
sudo apt-get install libglew-dev
sudo apt-get install libglm-dev
sudo apt-get install libassimp-dev
sudo apt-get install libtbb-dev

Listing 3.1: Installation of libraries needed in the project

When the installation is done, we can open CLion and use the menu File > Open to open the project
located in {AGG_DIR}/clion_linux/. The file CMakeLists. txt is provided with the project, although
we will have to indicate that this will be our roadmap (by default it seems not to be selected, even
though the name matches). The rest of the options have been left as they appear by default (see Figure
3.2), except for the type of Build (Debug, Release), which we have selected as Release to speed up
the execution; however, either option can be used. Configuration of CMake must be done via the action
File > Settings > Build, Execution, Deployment > CMake, where we can configure the build
type (Debug, Release), which toolchain to use and other command line options.

Settings

Build, Execution, Deployment @ CMake

Appearance & Behavior
Keymap
> Editor
Plugins
Version Control

Build, Execution, Deploymen

> Languages & Frameworks

?

Figure 3.2: CMake configuration window in Linux.

Once the configuration is complete, we can compile the project. If there are no errors, we only need
to move the assets folder ({AGG_DIR}/vs/Source/Assets) to the directory where the executable is
located (cmake-build-debug or cmake-build-release). To do this, we can copy the resource folder
as shown below, considering that we are located in the directory {AGG_DIR}/clion_linux/. This task
is also automatized in the scripts prepare-debug. sh and prepare-release. sh.

cp ../vs/Source/Assets/ cmake — build — debug/

10

CHAPTER

PROJECT FEATURES

The interactions available in the application are described below.

@ Camera: interaction through keyboard and mouse.

‘ Movement ‘ Interaction
Forward Right button + W
Backwards Right button + S
Left Right Button + A
Backwards Right-click + D
Zoom Mouse wheel
Horizontal orbit | X
Vertical orbit Y
Camera pan Left mouse button
Reset camera B

@ Gizmos: interaction with models to carry out translation, rotation and scaling transformations.
For this, it is necessary to open the menu Settings > Models and select a model.

‘ Operation Interaction
Model translation T
Model rotation R
Model scaling S

@ Displaying different primitives that have been generated during the loading of the models in
the scene (SceneContent).

Nota Primitives

In this document, the term primitive is used to refer to
a basic unit that defines how the vertices of a model are
interrelated. For example, a triangle, composed of three
vertices, has only one primitive for a mesh of triangles
(defined as {0, 1,2}). However, if we want to draw our
triangle as a wire mesh, composed of lines, we will have
three different primitives ({0,1},{1,2},{2,0}). In this
manner, the indices correspond to the position occupied
by a vertex in the vector geometry.

11

Figure 4.1: Model transformation via the interface. In this case, the image depicts the rotation gizmo.

The primitive to be rendered can be controlled at the global level, so we can enable and disable
its rendering in the menu Settings > Rendering, or at the local level (for each model) via the
Settings > Models menu.

‘ Operation Interaction
Activate/Deactivate point cloud 0
Activate/Deactivate wire mesh 1
Activate/Deactivate triangle grid 2

@ Screenshot with antialiasing (for the documentation :D). We can make a screenshot using the
keyboard or the GUI (menu Settings > Screenshot). The latter option also enables changing
the size of the image as well as the system path.

‘ Operation ‘ Interaction ‘

‘ Screenshot ‘ K ‘

Several other functionalities are offered from the interface:

@ settings > Rendering:

e Modification of the visibility of previously revised topologies.

e Modification of the background colour.
@ settings > Camera:

e Modification of camera properties, including the projection.
9 Settings > Lights:

e Modification of the properties of a single point light (colours and position). Note that, the
objective of this subject is not to learn the principles of rendering and this point light should
be enough to visualize the triangle meshes in the scene.

@ settings > Models:

12

a b W N =

Maodification of transformation matrices of models in the scene.

Modification of materials (point colour, line colour and triangle mesh colour/default tex-
ture).

Modification of point size and line width.

Loading 3D models (.obj, .gltfy . fbx).

7 Algoritmos Geometricos - O X

Light Position

Figure 4.2: Configuration of a point light.

“ Integration of new 2D/3D objects

New models can be implemented as a subclass of Mode13D, which contains all the necessary methods to
load and draw objects in the GPU. Therefore, these tasks can be omitted and the remaining work con-
sists of defining the geometry and how it interrelates. Note that the attributes of a vertex (VAO: : Vertex)
are (in strict order): position (vec3), normal vector (vec3) and texture coordinates (vec2). Thus, we can
add new vertices to our model using the following syntax:

componente->_vertices.insert(component->vertices.end(), { vertices })

where vertices can be defined as follows:

{
VAO::Vertex { vec3(x, y, z), vec3(nx, ny, nz) },
VAO::Vertex { vec3(x, y, z) },
VAO::Vertex { vec3(x, y, z), vec3(nx, ny, nz), vec2(u, v) }
}

Following this strict order is important, although we can omit some of these attributes if they are un-
known. Regarding primitives, three vectors (point cloud, wireframe, and triangle mesh) will be available
in the variable component->_indices. Again, we can insert primitives as shown below:

13

e Triangles:

1 componente->_indices[VAO:: IBO_TRIANGLES]. insert(
2 componente->_indices[VAO::IBO_TRIANGLES].end(),
3 {
4 o, 1, ,
5 1, 2, 3,
6
7 b
e Lines:
1 componente->_indices[VAO:: IBO_WIREFRAME]. insert(
2 componente->_indices[VAO::IBO_WIREFRAME].end(),
3 {
4 o, 1,
5 1, 2,
6
7 b
e Points:
1 componente->_indices[VAO:: IBO_POINT_CLOUD].insert(
2 componente->_indices[VAO::IBO_POINT_CLOUD].end(),
3 {
4 e, 1, 2, 3, 4
5
6 b

Nota Fast generation of point clouds

Given a number of vertices n, we can generate a vector as {0,1,2,....11—1} using
std :: iota(begin, end, 0) after vector.resize(n).

Nota Automatic generation of some topologies

You have available some methods in the class Component to automatically generate topologies from
others of a greater entity, taking into account that: "triangle mesh" > "wireframe" > "point cloud".
Thus, for an OBJ model defined by a set of triangles, the wireframe and point cloud topologies can be
Zenerated automatically. Otherwise, point clouds can also be extracted from a wireframe topology.

In addition, a list of objects is displayed in the menu Settings > Models. Due to C++ inheritance
limitations, the class name of an object that inherits from Mode13D cannot be queried in its constructor.
However, once constructed, it is possible to obtain its name. For this reason, if we want the objects to
have a meaningful name, we can use the function overrideModelName.

The methods SET of the class Model3D have been implemented in such a way that the calls can be
chained in the same line after building the object, including operations such as overrideModelName,
setPointColor, setLineColor or setTopologyVisibility.

To recap, the basic flow of a constructor of a Draw class is as follows for most cases:

14

0N ONUT R W N =

NN —= o a0 ek e
—_ O VN U WN = OV

Component* component = new Component;

// Define geometry
component ->_vertices.push_back(...);
component->_vertices.insert(component->_vertices, {

// Define primitives
component->_indices[VAO:: IBO_TRIANGLE].push_back(...);

component ->_indices[VAO:: IBO_TRIANGLE].insert (component->_indices[VAO:: IBO_TRIANGLE],

// Automatic generation of other derived primitives
component ->completeTopology ();

// Calculate boundaries
this->calculateAABB();

// Send component data to GPU
this->buildVao (component);

DN

// Add to the main vector to include in the rendering loop

this->_components.push_back(std::unique_ptr<Component>(component));

15

{

DN

O NN U WN =

G oot b B DS DS DSBS DD DBREDWWWWWWWWWWNDNDNDNDNNNNRNONENS 2 @A 2 A A A
G R WN =2 OV WN=OVOTIANUURAE WN=2OVWONONUEA WN 2O VOO UBD WN = OO0

4.1.1 Scene management

The management of the scene elements will be carried out in RenderCore/SceneContent
(Rendering/SceneContent in the file system). For this, we have a method called buildScenario where
the scene content will be instantiated only at the start. An example of a scene definition is the following:

vec2 minBoundaries = vec2(-1.5, -.5), maxBoundaries = vec2(-minBoundaries);

auto model = (new DrawMesh())->loadModelOBJ ("Assets/Models/Ajax.obj");
model ->moveGeometryToOrigin(model ->getModelMatrix (), 10.0f);
this->addNewModel (model);

int numPoints = 800, numPointClouds = 6;

for (int pcIdx = 0; pcldx < numPointClouds; ++pcldx)

{
PointCloud* pointCloud = new PointCloud;
for (int idx = 0; idx < numPoints; ++idx)
{
pointCloud->addPoint (Point(rand.x, rand.y));
}
this->addNewModel ((new DrawPointCloud (xpointCloud))
->setPointColor (RandomUtilities::getUniformRandomColor ())
->overrideModelName ());
delete pointCloud;
}
int numSegments = 8;

for (int segmentIdx = 0; segmentIdx < numSegments; ++segmentIdx)

{
SegmentLine* segment = new SegmentLine(a, b);

this->addNewModel ((new DrawSegment (*segment))
->setlLineColor (RandomUtilities::getUniformRandomColor ())
->overrideModelName ());

delete segment;

int numTriangles = 30;
float alpha = ...;

for (int triangleldx = 0; triangleldx < numTriangles; ++triangleldx)

{
Trianglex triangle = new Triangle(a, b, c);

this->addNewModel ((new DrawTriangle(*triangle))
->setlLineColor (RandomUtilities::getUniformRandomColor ())
->setTriangleColor(color)
->overrideModelName ());

delete triangle;

16

To be noted:

o addNewModel receives a pointer to an object whose class inherits from Model3D.

e content is the scene content.

e The setters methods of a 3D model have been implemented as Mode13D* setxx*() to chain
different calls in the same code line.

e What can be changed through setters?:

¥ Models

Open Model

Colour: setPointColor, setLineColor, setTriangleColor. The latter also contem-
plates the alpha value by receiving a vec4 value.

Primitive size/width: setPointSize y setLineWidth.

Visibility of primitives: setTopologyVisibility. It receives the kind of primitive,
VAO: : IBO_slots, and a Boolean value.

moveGeometryToOrigin: this method calculates the transformation matrix that places
a model in the origin of the coordinate system. It even receives a scaling factor to make
it fit in the viewport.

overrideModelName: by default, a model obtains a generic name in the constructor,
e.g.,Model3D 8, Comp. @. Nonetheless, this name can be automatically customized so
that it can be rapidly visualized in the model list (which can be accessed via Settings >
Models. Note that a subclass cannot query the class name in the constructor, although
it can be done once built.

¥ Models

Open Mode

Table 4.1: Comparison of two model lists, using generic names and custom names for each model
(automatically assigned).

Finally, note that the camera is configured in the SceneContent class, using the buildCamera method
so that you can modify its position or any other view parameter. During the first assignments, the
camera is constrained to 2D by blocking three-dimensional movements. This limitation can be modified
in the camera builder. Also, notice that the camera will be built after generating the models, and
therefore it is possible to adjust it to the scene content. To achieve this, the camera has a method

17

NN U WN =

track to pass an axis-aligned bounding box of any 3D model (it could be the main model in the scene
or the boundaries of the whole scene).

4.1.2 Multiple instances

Most primitives in this subject have a small footprint (segments, rays, circles, etc.). The main source of
problems in terms of performance comes from rendering thousands and millions of these instances. This
is easily observed in voxelizations, i.e., discretizations of primitives into quads and cubes (2D/3D). For in-
stance, a small voxelization of 256% implies the rendering of sixteen million cubes (x6 quads each). These
scenarios degrade the performance of our renderer and harden the interaction. For this reason, we have
wrapped the rendering of voxelizations into two classes: Voxelization and DrawVoxelization.

The Voxelization objects could be generated explicitly, for instance, to build a sphere, but they will be

mainly extracted from existing objects (e.g., triangle meshes). The implementation under DrawVoxelization

is based on OpenGL’s instancing. Instead of drawing isolated objects, all of them are rendered in the
same batch. Together with their geometry, we can pass information such as translations, rotations, etc.
that relate to each instance individually. In this manner, we can render millions of equidistant cubes
with the same size.

Following is the code to generate a DrawVoxelization instance from a triangle mesh. Unlike the
previous primitives, most of the required code to make voxelizations work is not in the repository. This
is not considered baseline code and should be implemented by the students.

void AlgGeom::SceneContent::buildScenario()

{
// Mesh
TriangleModelx triangleModel = new TriangleModel ("Assets/Models/Ajax.obj");
auto model = (new DrawMesh(xtriangleModel))->overrideModelName ();
this->addNewModel (model);
// Voxelization
const vec3& voxelSize = vec3(.015f);
Voxelization* voxelization = new Voxelization(triangleModel, voxelSize);
voxelization->sweep();
voxelization->printData();
this->addNewModel (voxelization->getRenderingObject (true)->setModelMatrix(
glm::translate(mat4(1.0f), vec3(-.2f, .of, .5f)))->overrideModelName ()
)
delete triangleModel;
delete voxelization;
3

We can either build a voxelization from triangle meshes or build our
models with implicit functions (e.g., a sphere), as shown in Figure 4.3.

18

Figure 4.3: Examples of voxelizations in our renderer.

19

	Geometric Algorithms
	Windows O.S.
	Installing vcpkg
	Microsoft Visual Studio
	CLion

	Linux O.S.
	CLion

	Project features
	Integration of new 2D/3D objects
	Scene management
	Multiple instances

