

Escuela Politécnica Superior de Jaén

Manual de desarrollo de algoritmo de
extracción de envolvente convexa

utilizando paralelización:
massively parallel 3D gift-wrapping

Alfonso López Ruiz
Lidia María Ortega Alvarado

05/03/2025

Algoritmos geométricos

Lidia Ortega & Alfonso López
CS 3141: Prof. Lidia’s Geometric Algorithms
March 5, 2025

Massively parallel 3D gift-wrapping

Goals. To build the 3D convex hull (CH) of a set of points, regardless of whether they belong to the
vertices of a triangle mesh or a point cloud. Although there are many algorithms for extracting the CH
of a point cloud, we will stick to an easy-to-understand algorithm such as Gift wrapping (also known
as Jarvis March). It leverages simplicity by relying on fundamental geometric concepts. However, note
that other algorithms are indeed much more efficient. Therefore, another goal of this project is to
efficiently extract the CH with massively parallel programming with CUDA (in the Graphics Processing
Unit), and OpenMP (in the Central Processing Unit).

Figure 1. Examples of convex hulls extracted from random point clouds and triangle meshes.

Algorithm. The Jarvis march algorithm dates back to 1973 [2, 1], and although it was initially
described for 2D point clouds, it can be trivially adapted to 3D. Instead of comparing segments with a
point cloud, P , these segments can be turned into planes to check if they leave P on one end or another.
Accordingly, a plane cannot be part of the convex hull, C, if part of P is left on one side and the rest on
the other. Further considerations can be made to optimize the algorithm, such as organizing the point
into quadrants, though we will stick to a base and easy-to-follow implementation.

Formally, a convex hull C of a point cloud P is the minimal polyhedron that can wrap P without holes.
It is represented as if a band was stretched over P . Hence, it only touches points from P that belong
to C.

More specifically, the fundamentals of Jarvis March are the following (Figure 2):

1) The point with minimum y coordinate, a, is part of C (O(n)). The same applies to x, y and z.

2) If P is projected by discarding the z coordinate, a segment ab can be found since b is the point
that has the lower angle w.r.t. a (O(n)).

1

2

Figure 2. A possible pipeline for obtaining the first four points from the convex hull. In b), a
point that does not meet the requirements is checked. Then, a valid point such as the one in c)
is found. The red indicates the points above the plane, whereas the green indicates points below
it.

3) A triangle abc can be obtained from a segment ab and a point c. It is part of C whether it leaves
the rest of the points over the plane given by abc or on the same side (O(n)).

4) The same procedure is followed for the rest of the triangles, using the previously found segments
(for instance, ac, bc). Depending on the data structure storing these segments (stack or queue),
the triangles of C can be found in a different order.

5) The following segments, pipj, are extracted from this data structure, and when finding another
valid point, pk, the algorithm should omit the third vertex of the triangle where the segment was
first observed. For a triangle abc and a segment bc, the algorithm should never check again a
when such a segment is checked later in the process. Also, note that vertices may be shared by
more than one triangle. Therefore, they cannot be discarded once found.

The following video showcases how to solve an iterative gift-wrapping algorithm using a stack and a
queue.

https://vimeo.com/142584542

3

Methodology. The procedure is defined below using a queue instead of a stack:

Data: Point cloud P with n points
Result: Convex hull as a set of triangles
Variables BoundaryCH: queue for retrieving edges, but it also should be able to remove any edge
if necessary;

Variables PointsCH: maintains a list of points in the convex hull;
Project P into the XY plane, thus obtaining R;
Retrieve the point a with lowest y coordinate from R;
Retrieve a point b from R that composes a segment ab so that it leaves the rest of the points on
one side;

Retrieve a point c from P such that the triangle abc leaves the rest of the points on one side;
BoundaryCH.insert(ab, bc, ca);
CH.insert(abc);
while BoundaryCH not empty do

de← BoundaryCH.pop();
Retrieve a point f from P such that the triangle def leaves the rest of the points on one side;
CH.insert(def);
if F ̸∈ PointsCH then

PointsCH.insert(f);
BoundaryCH.insert(dv, ev);

end
else

if BoundaryCH.contains(df) then
BoundaryCH.insert(df);

end
else

BoundaryCH.remove(df);
end
if BoundaryCH.contains(ef) then

BoundaryCH.insert(ef);
end
else

BoundaryCH.remove(ef);
end

end
end

Algorithm 1: Pseudocode for 3D gift wrapping.

4

Resources. The following list of resources is provided as a starting point for solving this practice.

1) Baseline renderer project (Github). As in the previous practices, the OpenGL project can
be used as the baseline for rendering the point cloud and the resulting convex hull (composed
of vertices and triangles). Though previously revised, the following piece of code refreshes how
to define the geometry and topology (point cloud, wireframe, and triangle mesh) of any 3D
model. Note that vertices can be flexibly defined by their position, normal vector, and texture
coordinates. The latter two are not always required and thus can be omitted during definition.
Similarly, not every topology is a must; for this project, only point clouds are necessary, whereas
convex hulls will also be required to define their triangle mesh topology. From a triangle mesh, its
wireframe and point cloud topology can be automatically extracted, and the same applies from
wireframe to point cloud.

1 Component * component = new Component ;
2
3 // Define geometry
4 component -> _vertices . insert (component -> _vertices .end (),
5 {
6 VAO :: Vertex { vec3(x, y, z), vec3(nx , ny , nz) },
7 VAO :: Vertex { vec3(x, y, z) },
8 VAO :: Vertex { vec3(x, y, z), vec3(nx , ny , nz), vec2(u, v) }
9 });

10
11 // Define topologies
12 component -> _indices [VAO :: IBO_TRIANGLES]. insert (
13 component -> _indices [VAO :: IBO_TRIANGLES]. end (),
14 {
15 0, 1, 2,
16 1, 2, 3
17 })
18
19 component -> _indices [VAO :: IBO_LINE]. insert (
20 component -> _indices [VAO :: IBO_LINE]. end (),
21 {
22 0, 1
23 1, 2
24 })
25
26 component -> _indices [VAO :: IBO_POINT]. insert (
27 component -> _indices [VAO :: IBO_POINT]. end (),
28 {
29 0, 1, 2, 3, 4
30 })
31
32 // Automatic generation of other derived primitives
33 component -> completeTopology ();
34
35 // Send component data to GPU
36 this -> buildVao (component);
37
38 // Add to vector to include in the rendering loop
39 this -> _components . push_back (std :: unique_ptr <Component >(component));

Listing 1. Definition of geometry and topology for a custom model.

https://github.com/AlfonsoLRz/AlgoritmosGeometricosUJA

5

2) CUDA handler as a higher-level abstraction to get access to reading, writing, error checks, and
more in CUDA.

1 # pragma once
2
3 class CudaHandler
4 {
5 public :
6 CudaHandler ();
7 virtual ˜ CudaHandler ();
8
9 static void checkError (cudaError_t result);

10
11 template < typename T>
12 static void downloadBufferGPU (T*& bufferPointer , T* buffer , size_t size);
13
14 template < typename T>
15 static void downloadBufferAsyncGPU (T*& bufferPointer , T* buffer , size_t

size , cudaStream_t * stream);
16
17 template < typename T>
18 static void free(T*& bufferPointer);
19
20 template < typename T>
21 static void freeHost (T*& bufferPointer);
22
23 static size_t getNumBlocks (size_t size , size_t blockThreads);
24
25 template < typename T>
26 static void initializeBufferGPU (T*& bufferPointer , size_t size , T* buffer

= nullptr);
27
28 template < typename T>
29 static void initializeHostBufferGPU (T*& bufferPointer , size_t size , T*

buffer = nullptr);
30
31 static int setDevice (uint8_t deviceIndex = UINT8_MAX);
32
33 static void startTimer (cudaEvent_t & startEvent , cudaEvent_t & stopEvent);
34
35 static float stopTimer (cudaEvent_t & startEvent , cudaEvent_t & stopEvent);
36 };

Listing 2. Helpful class for using CUDA at a high-level abstraction.

3) Piece of CUDA code for identifying the maximum and minimum floating point values
in a buffer, returning both the boundary value and the index on which such a value is stored.
We provide this because CUDA natively supports the atomic operations for int types, whereas
floating-point values require additional code.

6

1 ...
2
3 __global__ void reduceMinIdxOptimized (const float * input , const int size ,

float * minOut , int* minIdxOut) {
4 __shared__ float sharedMin ;
5 __shared__ int sharedMinIdx ;
6
7 if (0 == threadIdx .x) {
8 sharedMin = FLT_MAX ;
9 sharedMinIdx = 0;

10 }
11
12 __syncthreads ();
13
14 float localMin = FLT_MAX ;
15 int localMinIdx = 0;
16
17 for (int i = threadIdx .x; i < size; i += blockDim .x) {
18 float val = input[i];
19
20 if (localMin > val) {
21 localMin = val;
22 localMinIdx = i;
23 }
24 }
25
26 const float warpMin = warpReduceMin (localMin);
27 const int warpMinXY = warpBroadcast (localMinIdx , warpMin == localMin);
28 const int lane = threadIdx .x % warpSize ;
29
30 if (lane == 0)
31 fatomicMin (& sharedMin , warpMin);
32
33 __syncthreads ();
34
35 if (lane == 0)
36 if (sharedMin == warpMin)
37 sharedMinIdx = warpMinXY ;
38
39 __syncthreads ();
40
41 if (0 == threadIdx .x) {
42 * minOut = sharedMin ;
43 * minIdxOut = sharedMinIdx ;
44 }
45 }
46
47 ...

Listing 3. Main function to extract the index (and value) of maximum argument in a buffer.

7

OpenMP. Open Multi-Processing, or OpenMP, is a multiplatform application development interface
(API) for Unix and Windows O.S. that enables multi-threading programming using shared memory
in coding languages such as C, C++ and Fortran. The main advantage of OpenMP over other multi-
threading frameworks such as CUDA, OpenCL and OpenGL compute shaders is the ease of incorporating
parallelism into our code (e.g., in for loops). Its main limitations come from the maximum number
of simultaneous threads, given the CPU cores, whereas GPU-based platforms work over much more
numerous and smaller cores.

Figure 3. Enabling the OpenMP capabilities in a Microsoft Visual Studio project.

By default, Microsoft Visual Studio projects do not enable OpenMP, though it is easily enabled as shown
in Figure 3. To this end, it is required to right-click on the project name and select its properties. Then,
we can move to C++ > Language to modify OpenMP compatibility to Yes (/openmp). Warning:
Microsoft Visual Studio does not integrate the latest OpenMP version but provides a trivial way to
incorporate it and use basic parallel definitions.

The OpenMP syntax is characterized by #pragma omp directives, which can be placed before a block
of code that can be a for loop or a set of instructions delimited by {}. You can further check the
instruction set in Microsoft’s documentation, but some of the most important ones are the following:

• #pragma omp parallel for parallelizes a for loop so that each index i (int) will be handled
by a different thread (at the same time if there are enough threads, or in successive bursts).

• #pragma omp atomic, for operations to be performed by only one thread at a time. It only affects
one instruction: allocations, readings/writings, etc. In short, it affects simple operations such as
++i, x = v, v = x * y...

• #pragma omp critical: block of code that can only be executed in one thread at a time. This
block must be delimited with square brackets, except when it affects only one line.

8

• #pragma omp barrier: explicit synchronization of all threads at the point where this directive
is included.

• #pragma omp master / omp single: executes a piece of code in a single thread, which can be
the master or any of them (single).

• private(var): creates a copy of an external variable for each thread to be safely modified.
Alternatively, you can create variables within the code of each thread to avoid simultaneous
access. The main difference with private is that the copied variable for each thread is still
accessible after the multithreaded block ends.

• omp get num threads: checks how many threads can be launched. It is different than
omp get max threads if the number of threads has been modified.

• omp get thread num: returns the id of the operative thread.

• omp get max threads: returns the number of threads that can work simultaneously at most.

• omp set num threads: modifies the number of simultaneous threads.

Instead of letting OpenMP parallelize a for loop, we can manage the indices of a buffer that are handled
by different threads. This choice is slightly more complex but enables reduction operations (e.g., min
and max) without slowing the execution. Otherwise, atomic and critical blocks are traditionally
performance bottlenecks that, if not addressed correctly, could even worsen the sequential performance.
The following example shows how this can be done by dynamically adjusting it to the number of available
threads:

1 std :: vector <T> ompResults (omp_get_max_threads ());
2
3 # pragma omp parallel
4 {
5 int threadCount = omp_get_num_threads ();
6 int id = omp_get_thread_num ();
7 int chunkSize = glm :: ceil(data.size () / threadCount);
8 int start = id * chunkSize , end = glm :: clamp ((id + 1) * chunkSize , 0,

static_cast <int >(data.size ()));
9

10 for (int i = id * chunkSize ; i < end; ++i)
11 {
12 // Thread core
13 }
14 }
15 {
16 // Sequential : merge thread results
17 for (auto& result : ompResults)
18 {
19 // Merge
20 }
21 }

Listing 4. A buffer operated in parallel by the maximum number of threads available.

9

Figure 4. Comparison of response time in milliseconds of two gift-wrapping implementations
using OpenMP and CUDA. The OpenMP version running with a single thread corresponds to
the baseline sequential approach.

What is expected from you?
As shown in algorithm 1, the pipeline is mostly sequential; however each of its steps can be trivially
parallelized by solving O(n) operations with several threads working simultaneously. Therefore, the
previous code should solve almost every stage of the gift-wrapping algorithm. As depicted in Figure 4,
there is a considerable speedup between a single thread and using several of them.

10

CUDA. The last effort in this project is to adapt our code to be executed using CUDA (Compute
Unified Device Architecture) [3]. Besides being a GPU-based multi-threading framework, CUDA is also
a GPU architecture released in 2007. In this manner, NVIDIA intended this new family of GPUs to
be used for general-purpose computing. Unlike other frameworks such as OpenCL, NVIDIA only works
on NVIDIA GPUs. Anyway, this should not be a great deal since NVIDIA currently has the ∼80% of
market shares.

Hence, CUDA provides a software layer that eases access to GPU resources. It is programmed similarly
to C in compute kernels (typically labelled with .cuh and .cu extensions). In this regard, the CUDA
suite also includes the compiler for these kernels, although IDEs such as Microsoft Visual Studio already
include templates that get in charge of using the CUDA C compiler for kernel files.

First, it is required to install the CUDA toolkit (version 12.3 being the last as this is being written),
which also includes the integration with MSVC IDE in the latest versions. Therefore, we will stick to
it. What is left is to create an MSVC project following the CUDA template. Note that we can move
our previous files to the new project or create a new CUDA-based project.

Compute kernels have a .cu extension (with .cuh for header files) and must be explicitly labeled in
MSVC to ensure compilation with CUDA tools, as shown in Figure 5.

Figure 5. Compute kernel labeled as CUDA C file for its later compilation.

The intent of this project is not to dig deep into CUDA principles, and for this reason, a CUDA handler
class is already provided. However, we highly encourage the reader to check the CUDA by example
book [3] for obtaining a broad view of CUDA instructions. Although there are several ways in which
gift-wrapping can be sorted out, we suggest readers solve this problem with code blocks such as 1)
compute (and store) values and 2) extract minimum/maximum values. In this manner, the kernels

https://www.tomshardware.com/news/gpu-market-healthy-and-vibrant-in-q2-2023-report#:~:text=As%20for%20market%20shares%20and,a%20dominant%2080.2%25%20market%20share.

11

are significantly simplified and maximum/minimum operators can be reused. CUDA does not include
native atomic operators for floating-point values; consequently, we have provided them as resources in
this project.

The following piece of code summarizes the basics of CUDA regarding reading, writing, initializing
buffers and calling kernels:

1 // Buffer initialization
2 CudaHandler :: initializeBufferGPU (buffer , size , pointer);
3 CudaHandler :: initializeBufferGPU (buffer , size); // No data yet
4
5 // Transferring data to GPU
6 CudaHandler :: checkError (cudaMemcpy (buffer , pointerOrigin , sizeof (T) * size ,

cudaMemcpyHostToDevice));
7
8 // Download data
9 memcpy (buffer , destinationPointer , sizeof (T) * size);

10
11 // Call to function
12 kernelName <<< CudaHandler :: getNumBlocks (size , 1024) , 1024 , 0>>>(argument_1 , ...,

argument_n);

Listing 5. Examples of basic CUDA instructions accessed through our CUDA interface.

Readers should notice that kernels receive three parameters in the angle brackets. The first is the
number of thread blocks, and the second is the number of threads within each block, with the latter
being more limited in size. For this reason, the number of threads is fixed to a reasonable number, and
the number of blocks is scaled according to the buffer size and the number of threads within each block.

One example of a kernel function that can be implemented in our .cu file is the following:

1 __global__ void myFirstCudaKernel (const glm :: vec3* points , const int size , ...,
float * buffer)

2 {
3 int threadID = threadIdx .x + blockIdx .x * blockDim .x;
4 if (threadID < size)
5 {
6 buffer [threadID] = ...;
7 }
8 }

Listing 6. Example of a kernel that computes the thread ID and performs a writing operation
over a buffer.

Finally, GPU utilization can be further optimized by parallelizing memory transfers and kernel execu-
tion. By allowing copy and compute engines to operate concurrently, idle time is minimized, improving
overall performance. However, our gift-wrapping algorithm has few data transfers since it only re-
quires querying maximum/minimum values. An alternative approach is to maximize GPU utilization
by launching multiple parallel kernels, each solving several iterations concurrently. In any case, this
parallelization is achieved by what is coined as streams. In this manner, asynchronous data transfer
and kernels are linked to streams that work independently. Some examples of stream usage are the
following:

12

1 // Create stream
2 std :: vector < cudaStream_t > stream (numStreams);
3 CudaHandler :: checkError (cudaStreamCreate (& stream [0]));
4
5 // Asynchronous data submission
6 CudaHandler :: checkError (cudaMemcpyAsync (buffer , pointerOrigin , sizeof (T) * size ,

cudaMemcpyHostToDevice , stream));
7
8 // Kernel
9 cudaKernel <<<blocks , threadsBlock , 0, stream [0]>>> (...);

10
11 // Forced synchronization
12 CudaHandler :: checkError (cudaStreamSynchronize (stream [0]));

Listing 7. CUDA operations performed over a specific stream.

Response time measurement. Measurements for CPU-based processes are trivial to implement,
whereas CUDA requires timers for it. The following piece of code shows how to trigger and stop timers
to measure the response time:

1 cudaEvent_t start , stop;
2 CudaHandler :: startTimer (start , stop);
3
4 std :: cout << " Elapsed ms: " << CudaHandler :: stopTimer (start , stop) << std :: endl;
5
6 CudaHandler :: checkError (cudaEventDestroy (start));
7 CudaHandler :: checkError (cudaEventDestroy (stop));

Listing 8. CUDA instructions for triggering and checking a timer.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd
Edition. MIT Press, Cambridge, Massachusetts London, England, September 2009.

[2] Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters,
2(1):18–21, March 1973. Publisher: Elsevier.

[3] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming.
Nvidia, Upper Saddle River, NJ Munich, July 2010.

Campus Las Lagunillas, s/n, A3-102, Jaén (23071)

	Manual de desarrollo de algoritmo de extracción de envolvente-portada.pdf
	Convex_Hull_CUDA_GeometricAlgorithms
	References

