APUNTES, MANUALES, PRESENTACIONES

Universidad de Jaén

Escuela Politécnica Superior de Jaén

Manual complementario de practicas de
programacion de aplicaciones graficas

Alfonso Lépez Ruiz

2022-2023

Programacion de aplicaciones graficas

[orocle]

IMINLIAE IR
! 1 B i N | d A

Universidad de Jaén

Departamento de Informéatica

Manual complementario de practicas

Programacion de aplicaciones graficas Alfonso Lopez Ruiz

Objetivos de la practica 1

» Construir un proyecto de Visual Studio para comenzar las practicas.

» Enlazar librerias.
» GLFW.
> GLEW.
> GLM.

» Comprobar que nuestro proyecto funciona correctamente con dichas librerias.

» Creacion de ventana y contexto grafico de OpenGL.
» Inicializacion de GLEW.

» Definicion de callbacks.

Librerias

B GLSL PathTracer

Window, context and surface creation

GLFW . G@r>

i

!

GLEW

N

Vuiikan. penGL.

_____________ .
|

l @n P ¥ __| Dear IMGU

4—‘ Math Library ! Interface

o _| __________)

Tipos de aplicaciones graficas

Immediate

Application T Graphics Library —————p

| e » Informatica Gréaficay Visualizacién.

pdate 1

' » glBegin, glEnd...
» Informacion de la escena en la aplicacion.
» Lainformacidn de la escena no se encuentra en la
> GPU, solo se envian comandos de dibujo.
Scene (Model) \ J

Retained

Application ———— Graphics Library ————»

Build scene ; Drawing

» Lainformacién de la escena se transfiere a la GPU.

1 commands
Update 1
v

» Desde la aplicacion solo disponemos de buffers con
informacidn.

:V
Scene (Model) \ /

Librerias

» Podemos enlazarlas...

> Mediante gestor de paquetes: vepkg.

>
>

Mucho mas sencillo.

Librerias globalmente accesibles para cualquier proyecto.

> Descargando dependencias, compilandolas (si fuera necesario) y definiendo localizacion de las mismas:

>

>
>
>

C++ > General: Carpeta include/ (donde se encuentra el codigo fuente).
Vinculador > General: Carpeta con los ficheros .lib.
Vinculador > Entrada: Modulos concretos que necesitamos de cada libreria.

Si necesitamos crear otra aplicacion grafica, sera necesario volver a definir localizaciones, o modificar un
proyecto de Visual Studio previo.

Es necesario afadir los ficheros .dll a nuestra carpeta Debug o Release.

vepkg

» Por comodidad podemaos...
> Enlazar vepkg al Path del sistema.
> Una nueva linea en 'Path’: C:/vcpkg
> Definir la arquitectura del sistema (y de las librerias que buscamos).

> x86, x64

> Nueva variable del sistema. VCPKG_DEFAULT_TRIPLET: x64-windows

([) PAG Command Line

> C:\Users\Alfonso\vcpkg
Commands:
vcpkg search [pat] Search for packages available to be built
vcpkg install <pkg>... Install a package
vcpkg remove <pkg>... Uninstall a package
vcpkg remove --outdated Uninstall all out-of-date packages
vcpkg list List installed packages
vcpkg update Display list of packages for updating
vcpkg upgrade Rebuild all outdated packages

GLFW. Tarjeta grafica

» Al crear la ventanay el contexto, se seleccionara una tarjeta grafica que disponga de los requisitos
establecidos.

> Ordenadores portatiles: tarjeta grafica integrada.

#include <windows.h> // DWORD is undefined otherwise

// Laptop support. Use NVIDIA graphic card instead of Intel

extern "C" {
_declspec(dllexport) DWORD NvOptimusEnablement = ©x00000001;

}

» En Vulkan es posible gestionar dispositivos a muy bajo nivel y elegir el mas adecuado.

GLFW callbacks

» Patron “Observer”:
> Nos suscribimos a un evento, y nos notifican cuando se produzca dicha interaccion.
[> La suscripcidon es para cada tipo de evento.

> Limitado a un Unico observador (puede no haberlo).

> El observador debe ser globalmente accesible.

while (!glfwWindowShouldClose(_window)) {
glfwPollEvents();
render();

Refactoring Guru©

https://refactoring.guru/es/design-patterns/observer

GLFW callbacks o |

» Patron “Observer”:
> Nos suscribimos a un evento, y nos notifican cuando se produzca dicha interaccion.
[> La suscripcidon es para cada tipo de evento.
> Limitado a un Unico observador (puede no haberlo).

> El observador debe ser globalmente accesible.

while (!glfwWindowShouldClose(_window)) {

glfwPollEvents(); 2 N. orkE
render(); e New imes
2 =) 4)
== [y iGRACIAS! [—
|(]>@2 IESTAS SUSCRITO! E 1
N ¢ ¢

=R ﬂ/ <
' T @@ / éw
yd

Refactoring Guru®©

https://refactoring.guru/es/design-patterns/observer

Practica 2. Organizando el proceso de rendering Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica 2

» Organizacion de clase Renderer.
» Encargado de organizar el dibujado de la escena.
» Preparacion de contexto de OpenGL.
» Respuesta a eventos de usuario.

» Definicion de patron Singleton.

» Acceso global a Renderer, representado por una instancia Unica.

Patron “Singleton”

» Instancia globalmente accesible.
» Muy 0til, pero no debemos abusar del uso de este patron.
» Caracteristicas:
» Construccion dependiente de un método getInstance.
» Comprueba siya existe una instancia creada.
» Sinoesasi, se construye.

» Construccion y borrado no accesible de manera
publica.

» De no ser asi, no se podria garantizar la unicidad.

» Variable estatica: almacena la instancia Unicay es un
puntero nulo por defecto.

Patron “Singleton”

» Construccion mediante getInstance.

» Todas las clases que implementen este patron tienen una
estructura en comun:

» Variable estatica.
» Método getinstance.

» ;Borrado?

» Punterosinteligentes de C++: std: :unique_ptr<>, std: :shared_ptr<>().

» Borrado automatico al cerrar aplicacion.

SORRY, I THOUGHT
THIS ROOM WASN'T
0CCUPIED.

i

Practica 3. Renderizando nuestro primer triangulo Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica

» Incluir nueva funcionalidad en nuestro Renderer.
» Envio de geometria a la GPU.
» Triangulo.
» Estructura enlazada y no entrelazada de VAOs.
» Compilary enlazar un shader program que indique a la GPU como procesar esa geometria.
» Carga de shaders desde fichero.
» Comunicacion de informacién de vertex shader a fragment shader.

» Configuracion de parametros globales de OpenGL.

Estructura basica

» Inicializa OpenGL.: Renderer
1. Activar profundidad.

i Inicializa

2. Activar multisampling. | OpenGL

» Desde variables string definidas dentro de nuestro Renderer.

» Construir shaders: /\

1. Crear vertex shader. Crea shaders Crea

modelos

2. Crear fragment shader.

3. Unir vertexy fragment shader bajo un shader program. \/

Render

Estructura basica

» Construir modelos:
» Triangulo: tres vértices y tres indices.
» Recuerda: los indices deben definirse en counterclockwise order.
» Maquina de estados.
1. Construye un VAO.
2. Construye un VBO.

3. Construye un IBO.

Ejercicio para trabajar con GLM y organizar mejor la creacion de modelos:
» Sustituir vector de floats por glm::vec3.

» Generar VBO y VAO indicando tamano de vector.

» Podemos utilizar un vector de STL.

Renderer
/" Inicializa
+ OpenGL |
f / Crea
i Creashaders | |
\] modelos
Render

Estructura basica

» Construir VBO:
» Inicio: 0

» Un vértice estara compuesto por tres GL_FLOAT, vy la
distancia entre el inicio de un vértice y el siguiente
ser4 sizeof(GLfloat) * 3.

» Asiduidad de modificacion de datos.

>
>
>
>

GL_STATIC_DRAW.
GL_DYNAMIC_DRAW.
GL_STREAM_DRAW.

Son solo hints de OpenGL (cualquier valor es
valido, aunque pueda ser menos eficiente para
nuestro caso de uso).

GLfloat vertices[] = { -.5, -.5, O,

GLuint indices[] = { @0, 1, 2 };

glGenVertexArrays (1, &idVAO);

glBindVertexArray (idVAO);

glGenBuffers (1, &idVBO);

glBindBuffer (GL_ARRAY_BUFFER, idVBO);

glBufferData (GL_ARRAY_BUFFER, 9*sizeof(GLfloat), vertices,
GL_STATIC_DRAW);

glVertexAttribPointer (@, 3, GL_FLOAT, GL_FALSE, 3*sizeof(GLfloat),

nullptr);

glEnableVertexAttribArray (0);

glGenBuffers (1, &idIBO);

glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, idIBO);

glBufferData (GL_ELEMENT_ARRAY_BUFFER, 3*sizeof(GLuint), indices,
GL_STATIC_DRAW);

Estructura basica

» Construir IBO:

» Tamano total del buffer de indices.

» La GPU se encargard de distinguir cada primitiva.

» GL_TRIANGLES, GL_POINTS, GL_LINES, etc.

» Podemos distinguir primitivas con un indice nulo.

» GL_RESTART_PRIMITIVE_INDEX.

GLfloat vertices[] = { -.5, -.5, O,

GLuint indices[] = { @0, 1, 2 };

glGenVertexArrays (1, &idVAO);

glBindVertexArray (idVAO);

glGenBuffers (1, &idVBO);

glBindBuffer (GL_ARRAY_BUFFER, idVBO);

glBufferData (GL_ARRAY_BUFFER, 9*sizeof(GLfloat), vertices,
GL_STATIC_DRAW);

glVertexAttribPointer (@, 3, GL_FLOAT, GL_FALSE, 3*sizeof(GLfloat),

nullptr);

glEnableVertexAttribArray (0);

glGenBuffers (1, &idIBO);

glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, idIBO);

glBufferData (GL_ELEMENT_ARRAY_BUFFER, 3*sizeof(GLuint), indices,
GL_STATIC_DRAW);

Ejercicios

1. Organiza tu codigo tal y como se muestra en la practica.
. Comprueba que eres capaz de dibujar un triangulo sin color.
2. A partir de aqui, guarda una copia de seguridad y comienza a modificar tus estructuras en GPU.

1. Anade un atributo color a cada vértice. Haz los cambios correspondientes en shader y comprueba que eres capaz de
obtener un gradiente.

2. Modifica tu VAO. Prueba a especificar una estructura entrelazada.

. Guarda tu codigo anterior. Debes subir ambas versiones.

Position (VBO 1) Normal (VBO 2} Texture coordinates (VBO 3)
Position (VBO 1) Po ol p2 Po No to
Normal (VBO 2) No n; n; P: n, t

Textures coordinates (VBO 3) to t tz P- n, t

Ejercicios

¢Por qué escala el triangulo con la ventana?

Vertex Shading

Projection

]

Clipping

I

Screen Mapping

22

Practica 4. Gestionando shader programs y modelos Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica

» Carga, compilacion y enlazado de SHADER OBJECTS.

» Vertex Cargar ,
—_—» Shader object
Asignar
» Fragment (attach)
Shader source U
> Geometry Compilar Shader program
» Tessellation
Asignar U

4 Compute ﬂ; Shader object (attach) Enlazar (link)
» Creacion de SHADER PROGRAMS. Shader source U

» Similar a la Practica 3. Compilar

» Encapsular funciones de OpenGL en un objeto es mucho mas intuitivo que repetir
blogues de cddigo.

Trabajo autonomo

» Desacoplar RENDERER Yy SHADER PROGRAMS.

» Utiliza una clase para encapsular los SHADER PROGRAMS.

» Documentacomo lo has hechoy qué métodos tiene la nueva clase.
» Podemos ir un poco mas alla...

» Podriamos pedir shaders desde multiples puntos de la aplicacion.

» Inicializacidon perezosa: solo se crean cuando se piden por primera vez.

» ;Como gestionamos esta interaccion?

RENDER_POINT_PROG
RENDER_WIREFRAME_ PROG
RENDER_TRIANGLE_PROG

RENDER_PROG_50

Renderer

i \
! \
! \
! \
! \
! \
! \

! \

J \

! \

J \
’ \
1 \
’ \
7 \
) \
I \
. \
i \
’ \
i \
1 \
' \
1 \
’ \
D \

Escena 1

Escena 2

Trabajo opcional

» Puede existir comportamiento comuon entre varios shaders.

» Un OUnico shader con subrutinas para elegir comportamiento.

» Se complica la legibilidad del shader a medida que introducimos variaciones.

» Varios shaders mas legibles.

» Problema: codigo duplicado.

» Podemos introducir librerias personalizadas.

» Preprocesamiento personalizado de shaders.

RENDER_TRIANGLE_01

RENDER_TRIANGLE_02

Leer propiedades de material
Calculo de color en funcion de luz y material
Comportamiento personalizado

#include <module/triangRendering.glsl>
Comportamiento personalizado

Trabajo opcional

» Puede existir comportamiento en comun entre varios shaders.

» Deteccion de sintaxis especifica para nuestros modulos.

» Podemos emplear una sintaxis similar a la de C++:

» #include “Path de M6dulo” o #include <Path de Modulo>.

» i0jo! Un modulo se plantea como tal porque se empleara en varios SHADER PROGRAMS.

» No hace falta leerlo desde fichero cada vez que se pida.

» Podemos almacenarlos una vez se hayan cargado.

RENDER_TRIANGLE_01

RENDER_TRIANGLE_02

Leer propiedades de material
Calculo de color en funcion de luz y material
Comportamiento personalizado

#include <module/triangRendering.glsl>
Comportamiento personalizado

27

Practica 5. Gestionando modelos 3D Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica

» Encapsular el concepto de VAO para generalizarlo a un modelo cualquiera.

» Una nueva clase VAO.
» Definicion de estructura.
» Transferencia de datos hacia GPU.
> VBO(s), IBO(s).
» Carga de modelos.
» Encapsulamiento de modelos en una nueva clase.
» Por defecto, ocupara una posicion en el mundo.

» Cada modelo podra sufrir una transformacion diferente, definida mediante M.,

VAO

> |BO:
» Siempre recibimos el mismo tipo de dato.
» Generalizar para recibir X indices.

» Necesitamos un IBO por topologia: malla de alambre, puntos,
triangulos, etc.

VAO

» Un poco mas dificil:

» Constructor de un VAO:

» Transferencia de datos de VBO.

» Seleccién de layout (entrelazado, no entrelazado).

» Por lo general, disponemos de un conjunto de
atributos estaticos: Posicion, Normal, Coordenadas

de textura, etc.

» idem para entrelazado, la estructura de un objeto es
conocida de antemano y es fija.

» Puede ser un vector de posiciones, normales, un
objeto personalizado...

» ;Como lo hariais?

Posicion de la primera caja

nuIIptr

GL_FLOAT

e B

Caja1l (aja2

e

1 ¥ sizeof(GLfloat) + 3 * sizeof(GLfloat) =
1* sizeof(MyStruct)

1 3
GL_FLOAT GL_FLOAT

MyStruct ' t

GlLfloat ved3

glVertexAttribPointer(Vbo_Caja_Id,
1,

GL_FLOAT,

GL_FALSE,

1 * sizeof(MyStruct),

nullptr);

* e

glVertexAttribPointer(Vbo_Manzana_Id,
3,

GL_FLOAT,

GL_FALSE,

1 * sizeof(MyStruct),

sizeof(GLfloat));

-Qiiiﬁ

Posicién de la primera manzana Manzana ‘l

Manzana 2

snzeof(Glroat) _/

3 *sizeof(GLfloat) + 1* sizeof(GLfloat) =

1% sizeof(MyStruct)

Carga de modelos

» Utilizacion de modelos de una fuente externa.

» Formatos: OBJ, GLTF (GL Transmission Format), COLLADA
(.DAE, Digital Asset Exchange), FBX (Autodesk), PLY
(Polygon File Format), etc.

» Proyectos para cargar modelos OBJ: OBJ-Loader,
tinyobjloader, obj-loader, etc.

» ASSIMP: Open Asset Import Library.

» Libreria para cargar multiples formatos, incluyendo
todos los anteriores.

» Modelos con animaciones.

» Podemos instalarlo con vepkg, como hicimos en la
practica 1 con el resto de librerias.

Carga de modelos

» ASSIMP

» Utilizad como referencia la guia de LearnOpenGL.
» Para abrir un modelo se deben especificar algunos flags:
» Join Identical Vertices: menos espacio en memoaoria.

» Triangulacion: algunos modelos contienen otros tipos
de poligonos.

» Quads.

» Trabajamos con GL_TRIANGLES.

» Tipos de normales: smooth o duras (GenSmoothNormals
vs GenNormals).

Flujo de la aplicacion

1. Genera el contenido de la escena.

» Crea modelo(s).

» Crea shader(s).

2. Renderizado.
» Activa shader.
» Itera por los objetos de la escena.
» ltera por componentes de un objeto.
» Dibuja utilizando el VAO.
3. Comprobar callbacks.
1. Afnadir modelo si el usuario pulsa la tecla ‘a’.

2. Eliminar modelo si el usuario pulsa la tecla 'd".

Flujo de la aplicacion

Xmax! Zmax
1. Genera el contenido de la escena.
» Crea modelo(s).
» Crea shader(s).
2. Renderizado.
» Activa shader.
» Itera por los objetos de la escena. X i Zimin
» ltera por componentes de un objeto. X g
max’ “max

» Dibuja utilizando el VAO.

3. Comprobar callbacks.

1. Afnadir modelo si el usuario pulsa la tecla ‘a’.

2. Eliminar modelo si el usuario pulsa la tecla 'd".

X

y4

min’ “min

Matrices de transformacion

Ml*pi —

GPU Buffer

Matrices de transformacion

pi —»

GPU Buffer

Uniform

»
Ll

Rendering

Frame,

Frame,

Frame3

Frame .

Frame5

Ejercicio opcional

» Modelos 0BJ (.obj) » Ficheros binarios (.bin, aunque podria ser cualquier otra extension)
» Vértices. » std:vector<vec3>
» Normales. » std:vector<vec2>
» Coordenadas de textura. » std:vector<GLuint>

» indices de triangulos.

Estructura interna de la aplicacion

std:vector<vec3>, std:vector<GLuint>...

Siguardamos los datos de un vector, desconocemos el tamafo cuando
volvamos a leer (fix: guarda tamafio y a continuacién, los datos).

En formato binario, no ASCII, y por tanto, no legible.

Acoplado a una estructura de informacion (si hacemos cambios, habra que
borrar el binario o hacer un intérprete que transfiera los datos a la nueva
estructura).

38

Practica 6. Camara virtual Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica

» Implementacion de una camara con los siguientes movimientos:

> Pan.

w G Pe
Boon;/Crane. @-l — % @

Zoom.

v VvV Vv vV v

Oz/gj @lﬂ

AV A
TROCK « DoLLyY

Objeto camara

» Sistema de coordenadas:
> UVN

» View matrix:
> Eye, look at, up.
> View matrix.

» Projection matrix:

> Field of view (Y), Z near, Z far, aspect ratio.

> Projection matrix.

Camara

» Facilitar la especificacion de la camara para un usuario.

> Para el usuario es mucho mas facil...
> Definir relacion de aspecto mediante anchuray altura.
> Angulos en grados.
> glm::radians.
> Angulos horizontales en lugar de verticales (field of view).

> Trigonometria conociendo tamano de ventana.

Camara

» Comparaciones entre vectores y valores reales.

([) PAG 2022/2023

[1] v := (0, 1, 9)

[2] if v == (0, 1, 9)

[3] do things

[4] print(v)

[Out] [.00000000001, 1.000000001, .0]

#include <glm/glm.hpp>
#include <glm/ext/vector_relational.hpp> // Para equal
#include "glm/gtc/constants.hpp” // Constantes, como epsilon

#include <glm/gtc/epsilon.hpp> // Para epsilonEqual

glm: :bvec3 v3 = epsilonEqual(vl, v2, glm::epsilon<float>());

glm: :bvec3 v3 = equal(vl, v2, glm::epsilon<float>()));

// En ambos casos, devuelve un vector con tres valores booleanos

Camara

» Gestion de un nUmero excesivo de eventos

void miFuncion ()
{
static clock_t ultimaEjecucion = clock(); // Solo se ejecuta la primera vez
if ((clock() - ultimaEjecucion) > 100)
{

ultimaEjecucion = clock ();

Camara

» Recalculo eficiente de parametros:
> Pensad qué ejes se modifican.

> Pensad qué atributos se modifican.

> Recalculad matrices en funcion de esto.

Camara

» Asignacion de teclas para movimientos:

> Libre eleccion.

> Documentacion.

D U n eJ em p lo Esc F1 F2 F3 Fa FS F6 F7 F8 F9 F10 F11 F12 ES’;“,:;" scrol ::: B:a':d Loq_i T’e
D WI S: DO“y pOSitiVO y negatiVO. - ! @ W s % A & * () - + 4 Backspace Insert Home || Page Num / +
$ 1 2 3 4 5 6 7 8 9 0 - o e
> A D: Truck negativo y positivo. wolc e fw e (R [T [y fu [+ Jo [[| o fed fwel” 17 |E
[] Hom * Pg Up
D SCfOll Zoom Caps Lock A S D F G H J K L g o « Enter 4 5 6
; : <« -
. t:Shift Z X C \' B N M 5 > ? §. Shi : 4 1 2 3
[> X: Orb/t. 3 ; / \ End v Pg D
Curl Alt Alt Gr ctrl < * - O .
> Y:arcball. s oe!
> Ratén (manteniendo pulsado): dolly, tilt.

Ejercicios opcionales

» Movimiento arcball.

Ejercicios opcionales

» Aceleracion de movimientos.

> Movimientos en rafaga (seguidos): contador.

> Velocidad de movimiento en funcién de este valor.

Practica /. Subrutinas GLSL y materiales Curso académico 2022-2023

Programacion de aplicaciones graficas

Objetivos de la practica

» Incluir subrutinas en nuestros shaders.

» Permite elegir diferentes rutas de ejecucion.

» Evita duplicar cddigo; en su lugar, se implementan varias posibilidades.

» Cambios de comportamiento de dibujado en tiempo de ejecucion.

Use shaders

4

Set uniform (1)

Set uniform (2)

Set uniform (n)

-1si no consigue establecer la subrutina

Set subroutine uniform (1)

Set subroutine uniform (k)

4

Apply active subroutines

Subrutinas GLSL

Use shaders

Use shaders

Set uniform (1)

Set uniform (2)

Set uniform (n)

Set uniform (1)

Set uniform (2)

Set uniform (n)

Set subroutine uniform (“colorUniform”, “red”)

Set subroutine uniform (“colorUniform”, “blue”)

4

Apply active subroutines

Apply active subroutines

Subrutinas GLSL

Use shaders

Use shaders

Set uniform (1)

Set uniform (2)

Set uniform (n)

Set uniform (1)

Set uniform (2)

Set uniform (n)

Set subroutine uniform (“colorUniform”, “red”)

Set subroutine uniform (“colorUniform”, “blue”)

4

Apply active subroutines

_—

Apply acti foutines

/

Subrutinas GLSL

Vertex Shader

Fragment Shader

Subroutine #1

Uniform

Subroutine #1

Uniform

Subroutine #1

Uniform

Subroutine #2

Uniform

Subroutine #3

Uniform

Subroutine #4

Uniform

Subroutine #2

Uniform

Subroutine #3

Uniform

> glGetProgramStageiv(id, shader_stage, GL_ACTIVE_SUBROUTINE_UNIFORMS, &valor)

My

Practica 8. lluminacion y sombreado Curso académico 2022-2023

Programacion de aplicaciones graficas

Luces

» Ambient Light

Luces

» Ambient Light

Luces

» Point Light

Luces

» Directional Light

Luces

» Spot Light

Luces

» Spot Light

Luces B

» Rim Light

Luces

» Rim Light

62

Practica 9. Texturas, sombreado y practica opcional Curso académico 2022-2023

Programacion de aplicaciones graficas

Normal Mapping

» Seleccion de vector normal utilizando la informacion de la textura.

Normal Mapping

» Seleccion de vector normal utilizando la informacion de la textura.

Normal de VBO

Normal de bump mapping

Normal Mapping

» Calculo de tangentes y bitangentes.

Assimp: :Importer importador;

const aiScene* escena = importador.ReadFile (rutaArchivo,

aiProcess_JoinIdenticalVertices
| aiProcess_Triangulate
| aiProcess_GenSmoothNormals

| aiProcess_CalcTangentSpace);

glm::vec3 t;
t.x = malla->mTangents[i].x;

t.y = malla->mTangents[i].y;

t.z = malla->mTangents[i].z;

_tangentes.push_back (t);

glm::vec3 bt;

bt.x = malla->mBitangents[i].x;
bt.y = malla->mBitangents[i].y;
bt.z = malla->mBitangents[i].z;

_bitangentes.push_back (bt);

if (malla->mTangents) // Si hay tangentes, también habra bitangentes

Shadow Mapping B

» Hard shadows vs soft shadows.

» Se puede suavizar la informacidn de profundidad procedente de nuestra textura de shadow mapping.

» Fragment shader.

» La sombra varia en funcion de la proyeccion empleada.

T~

Ortographic projction
DIRECTIONAL LIGHT

Perspective projection
POINT LIGHT

Superficies de revolucion

» Construccion de superficies de revolucion.

:5 STRIP 2
5

STRIP 1 -7

(D

GL_TRIANGLE_STRIP

a) b) c)

GL_TRIANGLE_FAN

Superficies de revolucion

» Perfil de revolucion procedente de datos de usvario.

» Habra que tener en cuenta ciertos casos de error.

X, -Y X, -Y X, -Y X,-Y

XY

Superficies de revolucion

» Subdivision de perfiles de revolucion.

Superficies de revolucion

» Subdivision de perfiles de revolucion.

il

r_ 3p, n Pi n Pis

. P;
Py e Ty

Superficies de revolucion

» Informacion de textura en perfiles de revolucion.

Superficies de revolucion

» Procesamiento en paralelo en CPU.

» OpenMP.

Piginas de propiedades de PAG

Configuracion: | Todas las cenfig.

4 Propiedades de configurac A
General
Avanzado
vepkg
Depuracion
Directorios de VC++
4 C/C++
General
Optimizacién
Preprocesador
Generacion de codi
Idierma
Encabezados precor
Archivos de salida
Informacién de exa
Archivos incluidos ¢
Avanzadas
Todas las epciones
Linea de comandos
I> Vinculador
I> Herramienta Manifiestc
I Generadoer de documer .,

< >

~ | Plataforma | Todas las plataformas i

? x

Administrador de configuracian...

Deshabilitar extensiones de lenguaje
Mede de conformidad

Tratar WChar_t como tipo integrado
Forzar ajuste en el ambito del bucle For
Quitar codigo y datos sin referencias
Exigir reglas de conversion de tipo
Habilitar informacian de tipo en tiempo

Mo

Si (/permissive-)
Si(fZcwchar_t)
S (fZcforScope)
Si(fZcinling)

Compatibilidad con OpenMP Si (fopenmp) i

Estandar de lenguaje C++
Estandar del lenguaje C
Habilitar médulos de la biblioteca estan

Versién preliminar: caracteristicas del dltimo borrador de t
Predeterminado (MSVC heredado)

Compatibilidad con OpenMP

Habilita las extensiones de lenguaje OpenMP 2.0, (fopenmp)

Cancelar Aplicar

72

/ Parallel programming / OpenMP / OpenMP library reference / v

OpenMP Directives

Article = 18/05/2022 » 10 minutes to read = 11 contributors

Provides links to directives used in the OpenMP API.
Visual C++ supports the following OpenMP directives.

For parallel work-sharing:

Directive Description

parallel Defines a parallel region, which is code that will be executed by multiple threads in parallel.

for Causes the work done in a for loop inside a parallel region to be divided among threads.

sections ldentifies code sections to be divided among all threads.

single Lets you specify that a section of code should be executed on a single thread, not necessarily the main thread.

For main thread and synchronization:

Directive Description

master Specifies that only the main thread should execute a section of the program.

critical Specifies that code is only executed on one thread at a time.

barrier Synchronizes all threads in a team; all threads pause at the barrier, until all threads execute the barrier.
atomic Specifies that a memory location that will be updated atomically.

flush Specifies that all threads have the same view of memory for all shared objects.

@

n,

Superficies de revolucion

» Procesamiento en paralelo en CPU.

» OpenMP.

#pragma omp parallel for
for (int idx = @; idx < n; ++idx)
DoSomething();

var += 1ij;

102000

#pragma omp critical

{ g Multicare CPU - 1549
vector.push_back(var); S ow s
o = = -
= Sequential -23:&42
(]
Multicore CPU ' 16,769

\%

o

=

- R 2 g
Sequential '363}

0 5000 10000 15000 20000 25000 30000

Tiempo derespuesta (ims)

	Manual complementario de prácticas de programación de aplicaciones gráficas-portada.pdf
	ManualPracticas_ProgramacionAplicacionesGraficas
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

