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Virtualized Point Cloud Rendering

José Antonio Collado ™, Alfonso Lopez

Abstract—Remote sensing technologies, such as LiDAR, produce
billions of points that commonly exceed the storage capacity of the
GPU, restricting their processing and rendering. Level of detail
(LoD) techniques have been widely investigated, but building the
LoD structures is also time-consuming. This study proposes a
GPU-driven culling system focused on determining the number
of points visible in every frame. It can manipulate point clouds of
any arbitrary size while maintaining a low memory footprint in
both the CPU and GPU. Instead of organizing point clouds into
hierarchical data structures, these are split into groups of points
sorted using the Hilbert encoding. This alternative alleviates the
occurrence of anomalous groups found in Morton curves. Instead
of keeping the entire point cloud in the GPU, points are transferred
on demand to ensure real-time capability. Accordingly, our solution
can manipulate huge point clouds even in commodity hardware
with low memory capacities. Moreover, hole filling is implemented
to cover the gaps derived from insufficient density and our LoD
system. Our proposal was evaluated with point clouds of up to 18
billion points, achieving an average of 80 frames per second (FPS)
without perceptible quality loss. Relaxing memory constraints fur-
ther enhances visual quality while maintaining an interactive frame
rate. We assessed our method on real-world data, comparing it
against three state-of-the-art methods, demonstrating its ability to
handle significantly larger point clouds.

Index Terms—GPU-driven, GPGPU, point cloud rendering, out-
of-core rendering, dynamic rendering, virtual memory system,
level of detail, acceleration structures, rasterization, visibility,
point-based models.

I. INTRODUCTION

RAPHICS processing units (GPUs) have undergone a
G significant transformation, transitioning to hardware ar-
chitectures with substantial memory capacities able to accom-
modate large datasets. This evolution encompasses not only vi-
sualization tasks but also the realm of general-purpose program-
ming on GPUs, such as in Machine Learning applications [1].
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Despite these advancements, even the most cutting-edge GPUs
encounter challenges regarding real-time rendering of large
point clouds, often surpassing the capabilities of current hard-
ware. Remote sensing technologies and software solutions pro-
duce billions of points that exceed the capacity of video memory
and harden the real-time processing to provide an interactive
frame rate. In addition, the hardware rendering pipeline is ori-
ented to rasterizing triangles rather than points with vertex-wise
information, including color. These points eventually comprise
even dozens of attributes, as occurs in Light Detection and
Ranging (LiDAR) scans that cover vast areas, producing huge
point clouds of up to several terabytes. An example is the
OpenTopography data catalog,' where high-resolution LiDAR,
radar, and photogrammetry datasets are publicly released.

Although rendering huge point clouds is computationally
demanding, the performance of real-time visualization can be
partially enhanced with level of detail (LoD) structures [2], [3],
[4]. In this manner, the number of rasterized points diminishes
in certain parts of the scene without being noticeable to the
naked human eye. However, organizing huge point clouds into
LoD structures is also time-consuming. Usually, the process
stalls until the entire dataset is loaded and organized. Besides
this, rendering point clouds has numerous other challenges.
High-quality results require very dense point clouds; otherwise,
gaps are visible during rendering. Second, colors are obtained
by sampling real-world landscapes at discrete intervals, which
may cause the perception of noise. Finally, vast point cloud
datasets require significant storage, even though most frames
do not utilize the majority of their spatial and vertex-wise
attributes.

In this paper, we propose a virtualized point cloud system
where the footprint of huge point clouds is maintained low both
in the Random Access Memory (RAM) and Video Random
Access Memory (VRAM). Points are organized into spatially
coherent groups that enable rapidly performing frustum culling,
hence discarding not visible groups. The proposed sorting will be
proven to generate tighter groups than in the widespread Morton
encoding. Furthermore, a distance-based LoD is implemented
per group to deal with huge volumes of data that could be
simultaneously visible. Among the visible points, those not
present in the GPU are transferred to it, taking advantage of
the large transfer capacity of modern-day Peripheral Component
Interconnect (PCI) buses. A similar approach is followed in the
Central Processing Unit (CPU) to load point chunks from the
disk and then submit them to the GPU. Finally, the rasterization
is enhanced by interpolating colors in gaps. The entire pipeline
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enables the real-time rendering of dozens of billions of points
while maintaining a minimal memory footprint, without any
noticeable compromise on quality or user interaction.
Our contributions to the state-of-the-art are as follows:
® An asynchronous system designed for transferring and
compacting data between disk, CPU, and GPU. Further-
more, we conducted experiments to determine the optimal
parameters for our solution. We have also published the
code on GitHub.
¢ Interactive visualization of several billions of points with-
out delay nor significant visual cues from the LoD system.
® An alternative sorting method generating more compact
groups of points, improving the frustrum culling efficiency.
® A hierarchy-less structure that can be efficiently built and
enables rapidly determining group-wise LoDs, as depicted
in Fig. 1.

II. RELATED WORK
A. Rasterization of Point Clouds

Many recent works have investigated the rendering of point
clouds. Traditional rendering pipelines are not fully optimized
for point-based rendering but rather for triangular meshes.
Hence, the generation of huge point clouds of real-world scenar-
ios requires the development of efficient methods for rendering
these complex 3D models. It has long been proven that alter-
native GPGPU-based approaches offer better performance than
their OpenGL counterpart, GL_POINTS. For instance, Open
Computing Language (OpenCL) was first used to project points
and their color using atomic operators together with an early
depth test at the fragment level [5].

More recently, OpenGL’s compute shaders were applied to
determining visible points with the atomic minimum operator
over 64-bit values encoding the distance to the view position and
color (less significant bits) [6]. One of the main bottlenecks of
previous work is that the whole point cloud is projected, while
only a few points are visible in close-view projections. Later,

Schiitz et al. [7] grouped points into regular chunks of 10,240
points after sorting them with Morton encoding. The bottleneck
of memory bandwidth usage was tackled by minimizing the
reads: the points were quantized and encoded in 32 bits in three
different buffers (low, medium, and high resolution) so that the
highest resolution requires three memory accesses. Furthermore,
several values were prefetched at every iteration to unroll the
loop (one thread processes several points). Still, huge point
clouds of several billions of points do not fit in the VRAM.
Goel et al. [8] alleviated this drawback with data compression
and real-time decompression using Huffman codes, rasterizing
up to 6 B points.

In comparison, our work offers real-time visualization with
only a small part of the point cloud in the VRAM. To this end, we
adapted one of the most recent point cloud rasterizers [9]. In our
work, the maximum number of allocated points is not strictly
limited by the VRAM. Instead, it is bounded by the software
according to the hardware capabilities and user requirements. In
the worst-case scenario, the visible points do not fit in VRAM
or RAM, hence increasing the data transferring between disk,
CPU, and GPU.

B. Rasterization of Triangles Meshes

Akin to point cloud rasterization, recent innovations have been
proposed for triangle mesh rendering. Traditional pipelines are
optimized for this representation, but they underperform with
small, pixel-sized triangles. To tackle this, mesh shaders [10],
[11] were proposed to give developers more control over which
triangles are going to be rasterized. Following these innovations,
Unreal Engine released Nanite [12], combining software and
hardware rasterization to render a huge number of triangles while
maintaining an interactive frame rate. This is achieved through
spatial clusters of triangles known as meshlets where different
LoDs are pre-computed, with higher LoDs having fewer trian-
gles while preserving the meshlet boundaries. Therefore, their
connectivity is not broken regardless of the LoD required in each
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meshlet. Additionally, LoDs are selected according to the screen
space size of the projected triangles. Having all these meshlets
and LoDs in VRAM is memory costly, therefore they can be
loaded on demand.

Following this approach, we split the point clouds into groups
of points that are read and transferred to the GPU when they are
visible from a viewpoint. From now on, we will refer to these
groups of points as pointlets to emphasize they are composed of
points instead of triangles as in triangle meshes. Moreover, there
will be more primitives in pointlets than meshlets to equalize
their occupied screen space in point clouds of several billions of
points. We have previously used this spatially coherent division
to accelerate point selections in large point clouds [13].

C. Hole Filling and Colour

The rendering of point clouds is particularly intricate since
the RGB colors of low-density point clouds are harder to in-
terpret. It is possible to exploit the data exchange between
threads within a warp, i.e., a group of 32 GPU threads, to
blend colors from overlapping samples and reduce the image
noise [9]. Similarly, the color of the downsampled blocks of the
point cloud can be estimated by weighting the contribution of
several points. Regarding LiDAR point clouds, color has been
previously enhanced by weighting RGB information with the
observed intensity [14]. Further investigations in point cloud
rendering are focused on photorealism to replicate transparency,
shadows, and other effects [15].

Another feature that helps to interpret point cloud renderings
is to highlight significant depth changes, such as in the edges of
buildings. In this manner, geometry can be interpreted even from
a single view. Without calculating the normals, it is possible to
outline geometry changes with the depth buffer by leveraging
directional light, ambient occlusion, and line shading [16]. A
simpler, yet effective approach is eye-dome lighting (EDL),
where the outlining factor is rapidly estimated from the max-
imum depth difference between a point and its neighbors [17].
It can even be modulated with a strength factor, thus making
geometrical features more evident. Otherwise, bilateral filtering
has been applied to enhance the values near the edges [14].

Another source of problems is holes due to low point den-
sity [18]. It can be partially solved by removing background
points according to the solid angle w.r.t. their neighbors, and
then using anisotropic filling [16]. However, the latter approach
requires a high point density. During hole-filling, we can also
find background pixels that should not be changed (they are
part of the default background). These can be detected with
convolutions [15]. Otherwise, pixels are filled and the image is
smoothed to avoid aliasing. Another approach is to represent
points as circular splats [14], [19] or square splats [20], both
with adaptive size according to the camera distance. Finally,
another promising field is Neural Radiance Fields (NeRFs)
and Gaussian splatting. More specifically, the adaptive size of
Gaussian splats [21], the removal of noise and the spawning of
new points in incomplete regions [22] are of special interest.
Yet, note that these approaches rely on Novel View Synthesis
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and therefore 1) require training and 2) necessitate the image
dataset besides a starting point cloud.

Given that our work is oriented to dense point clouds with up
to several billions of points, gaps mainly result from the LoD
system, thus uniformly dispersed. Accordingly, we implement
an efficient hole-filling algorithm that is extremely simple rather
than visually appealing. Moreover, we propose an occlusion
check that unlike Pintus et al. [16] does not require the surface
orientation.

D. Level of Detail of Point Clouds

Several studies have endeavored to refine the point grouping
process with two primary objectives: first, to rapidly build the
LoD structure and second, to seamlessly integrate this optimiza-
tion into the user experience, ensuring that the underlying LoD
remains imperceptible.

The hierarchical structures for organizing point clouds are
frequently named Layered Point Clouds (LPCs). They are binary
trees whose deeper nodes offer higher LoDs and point density.
These are particularly suitable for point cloud visualization
since they are view-dependent. Therefore, the selected LoD
changes according to the view position, and the LPC nodes
can be discarded during rendering if they occupy less than a
number of pixels on the screen [7]. A few variations [18] from
this baseline approach are based on octrees [23], [24], [25],
kd-trees [16], [26], voxelizations [14], grids [27] and ray-based
structures such as sparse-voxel octrees (SVO) [24]. Other LPCs
are Hierarchically Layered Tiles (HLT), which organize points
into a hierarchy (e.g., quadtree), and then each node comprises
multi-layer tiles, from higher to lower LoD. Moreover, a similar
approach has been followed for voxelizations [14]. Notice that
mid-level nodes in these structures have a subsample of points,
which may cause aliasing since these could significantly differ
from points in higher LoDs. To solve this, colors can be averaged
in intermediate nodes [6]. Wavelet decomposition has also been
applied over ordered points to create a hierarchical LoD over the
basis of a kd-tree organized using Principal Component Analysis
(PCA) [26]. Another path yet to be explored is the nesting of
several data structures to better organize the points [28].

Hierarchy-less structures have also been treated to reduce
aliasing and provide a continuous LoD (cLoD). Schiitz et al. [6]
stored different subsampled point clouds (levels) in a flat array,
each denser than the previous one, which were then accessed
to iteratively build an image. Depending on the distance, the
number of rendered levels varies. A similar concept was used
by Dachsbacher et al. [29]. Moreover, cLoD can be adapted to
fit the distribution ratio of distance-based LoD (dLoD) [30].

Another option is to mix both approaches by flattening hi-
erarchical data structures to ease the data access [29]. In their
work, the octree was flattened to sort the nodes from higher to
lower error (measuring how well a parent disk approximates
the children’s disks). Finally, it is also possible to project a
set of random points over new frames whose baseline is the
re-projection of previously visible points. In this manner, the
new frames are generated in several steps using the points visible
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in previous frames [31] and no LoD levels must be calculated
before rendering.

Unlike the revised works, we use an unstructured, Hilbert-
code ordered point cloud whose underlying data structure is a
simple array. It is more trivial to manage and does not require
additional metadata for the data structure. For instance, Sim-
LOD [2] improved their predecessor work [7] in terms of LoD;
however, both the octree metadata and the point clouds are stored
on the GPU.

E. Spatial Organization of Point Clouds

Points can be organized into spatially coherent groups with
similar outcomes during the rasterization, hence improving data
access patterns. A frequent sorting method is Z-curves (Morton
codes) to facilitate data locality [30], and can be further enhanced
by shuffling points to also distribute the workload throughout the
available graphics processing clusters (GPCs). However, split-
ting points sorted with Z-curves into regular chunks also leads
to spatially large groups that cannot be omitted during frustum
culling checks [7]. Otherwise, Hilbert encoding has also been
studied to sort points [32], [33]. It has been primarily applied to
improving database access and storage since it is supported by
several well-known database frameworks. Instead of organizing
points into Z-shapes, Hilbert codes have a maze-like shape [34]
that resembles the octree generation [35]. Hence, it mitigates the
large jumps reported in Morton codes.

F. Management of Point Cloud Data

The efficient management of huge data volumes has been
previously investigated, especially focused on spatial queries on
databases [32], [36]. A few studies have vaguely referred to the
asynchronous data transfer between the storage system, CPU
and GPU [37]. While the term massive point cloud management
is frequently observed, these approaches are rather focused on
rapidly building LoD-based structures and reducing the wait
time for users [2], or comprising data to minimize the storage
footprint [4], [8]. Deibe et al. [4] dynamically computed the
tile layers in the HLTs in a Web browser and points that were
not already present in memory were transferred from the server
side. Then, the optimal number of tiles and points in higher
LoDs was evaluated. A similar on-demand data transfer was
implemented by having duplicate rendering and depth buffers,
while CPU threads received requests to load points from the
disk [3]. A frame rate below 20 was reported for point clouds of
up to 65.5 M points. Another approach focuses on computing a
set of textured meshes that accurately depict the original point
cloud [38], reporting a lower memory footprint when compared
to the entire point cloud. Huge point clouds can also be iteratively
displayed, even with hierarchical data structures such as octrees,
which implies updating them progressively [2]. These are, never-
theless, changed in the GPU by simply transferring points from
old to new nodes. However, the most common assumption in
point cloud studies is that they fit in the GPU, therefore not
requiring any virtualization strategy [7], [31].
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Fig.2.  Overview of the proposed method. The main thread oversees a group of

worker threads, which are responsible for loading the requested points, handling
real-time accesses to small segments of each pointlet. Furthermore, a dedicated
render thread manages the communication between the GPU and the main
thread.

[II. METHODOLOGY

Our methodology revolves around subdividing point datasets
into pointlets, from which the LoD system and data requests are
organized. In the following, we describe how points are struc-
tured (Sections III-A and ITI-B), and then, we explain the virtual
memory system that enables a low footprint in both GPU and
CPU (Section III-C). Finally, the rendering is enhanced with hole
filling in Section III-D. The overview of our method is depicted
in Fig. 2. The Virtual Memory System (VMS) is the core of our
work since it collects the point data. The render thread checks
whether the points requested by the GPU visibility checks are
available in the VMS. These points are either already loaded or
must be asynchronously read from the disk. On the other hand,
the GPU block manages the rendering stage, including visibility
checks.

A. Pointlets

The quality of a pointlet is assessed based on its dimensions.
For instance, a pointlet with a smaller bounding box will enable
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Fig. 3.  The points of the same model sorted using Hilbert and Morton encod-
ing, and split into uniform pointlets. A random pointlet is picked to illustrate how
Hilbert tends to show less spatial jumps, including the average and maximum
distance within that pointlet.

more accurate frustum culling and LoD selection. Hence, the
pointlet quality plays a crucial role in this work, as this factor
will drive the performance of the rest of the stages. State-
of-the-art methodologies frequently employ Morton codes to
organize point clouds spatially [9]. The pointlets are then built by
selecting as many contiguous points as the pointlet size. Despite
being computationally efficient and producing spatially coherent
results, sorting points using the Morton encoding also leads to
spatial disruptions derived from large jumps as illustrated in
Fig. 3. A more optimal approach involves finding the k-nearest
neighbors (KNN), frequently solved in the literature by orga-
nizing points into a k-D tree. However, building spatial data
structures is typically more time-consuming than the previous
encoding and sorting approach.

Consequently, we have sorted our point clouds using another
space-filling curve, known as the Hilbert curve, which has good
locality properties for spatial applications [39], [40], as illus-
trated in Fig. 3. Additionally, Hilbert encoding can be computed
from 30-bit Morton codes [41] and therefore can be smoothly
incorporated into the state-of-the-art work. This approach has a
significantly lower response time than building spatial structures
while achieving better spatial clustering. Finally, the point cloud
is split into fixed-size pointlets once sorted. Their size, k, is
calculated as follows, depending on the number of points, n:

ko = 2825 (1)

where m is the number of pointlets that leverage the number
of tasks and their workload. In our implementation, m equals
100,000, though it can be adjusted depending on the target
hardware.

Upon generation of the pointlets, their axis-aligned bounding
boxes (AABBs) are calculated and stored in a GPU buffer that
will not be modified again throughout the process life. During
rendering, AABBs enable estimating the number of pixels the
projected pointlets occupy on the screen, hence determining their
LoD.
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Fig. 4. Memory layout when rendering point clouds. In the disk, the sorted
points are organized into pointlets, with the points within each pointlet shuffled.
A certain percentage of points from each pointlet is then selected based on
our Level of Detail (LoD) system for a given frame. These selected points are
transferred to the GPU and compacted into a point buffer. In the figure below,
each pointlet of the bunny model is rendered using the same percentage of points.
This does not occur in our renderer unless every pointlet occupy a similar portion
of the screen space, such as in distant views.

B. Level of Detail

The first rendering stage is to discard pointlets early based on
the frustum culling of their AABBs. Then, AABBs are projected
into the image space to estimate the covered pixels, akin to
other state-of-the-art methods [7]. From here, this coverage helps
determine the importance of each pointlet, [, as illustrated in
Fig. 4. [ is calculated as follows:

v v
li =% ||§ * Pcenter; — 5 * Pmax;

2

where ~; is used to cope with pointlets with anomalous dimen-
sions, and it is calculated as shown in (3). v refers to the viewport
size, given as a tuple (width, height), and p are points projected
as shown in (3).

<z; [——— ) 2

n

Yi =

||acenteri - amaxi

. (P anax, )xy 3)
B (P tmax,; ),

with P being the camera projection matrix, n being the number
of pointlets and a referring to AABB points, either its center or
maximum point.

However, (3) does not provide the number of points rendered
for every pointlet. Initially, we multiplied the result of (3) by a o
factor, with values in range [30, 60] providing good results. The
main drawback of this approach is that p is not an intuitive factor.
Furthermore, it leads to low occupancy of the point buffer for
far and closeup views. Instead, we normalized the importance of
each pointlet by dividing it by the overall sum of all the weights
(3= 1;), and multiplied it by a static point bucket size, 5. It is
much more intuitive since it resembles the maximum number of
points that can be rendered per frame. Instead of rendering as

(P : acenteri)xy

| Pmax,
(—P'acenteri)w7 e

Pcenter; =
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few points as possible, it leads to using the whole point bucket
size as long as there are sufficient points. By default, it is set to
25M points, though we have experimented with a bucket size of
up to 90M points.

In this manner, we smoothly integrate a distance-based LoD
by estimating the projected AABB length in pixel units. It is also
comparable to continuous LoD as our point cloud structure is
not hierarchical and pointlets are expected to cover fewer pixels
as they get further from the camera.

C. Virtual Memory System

The virtual memory system represents the core of this work.
Its main purpose is to ensure the seamless loading of points
upon request while effectively removing unnecessary ones. A
brief insight into our CPU and GPU memory layout is provided
to understand this section better.

First, two buffers are allocated in VRAM to store 1) positions
and 2) any other kind of attribute, such as RGB colors. The
length of these buffers must be sufficient to allocate the points
selected by the LoD system, whose number is bounded by 5.
However, our approach requires reusing the information from
the previous frame in the following one. Therefore, we dupli-
cated both buffers to maintain the information of two consecutive
frames. Previous work [7] reported that, from the overall number
of points, only a few were finally rasterized; for instance, from
1 B points, 51 M points were rasterized at most. Also, note that
the maximum size of Shader Storage Buffer Objects (SSBOs)
in OpenGL is significantly restrictive (2 GB), regardless of the
VRAM capacity. Accordingly, a point buffer of 2 GB allows us
to maintain up to 178,956,970 points (2 GB / 12 bytes). Although
limited in size, this number of points is far from the number of
potentially visible points since our LoD system will significantly
decimate them. Moreover, we can even control the maximum
number of loaded points using the bucket size, 3. In addition,
another buffer is necessary for storing the pointlets’ AABBs.

We also utilize four additional buffers allocated in RAM,
though they are directly accessible from the GPU via Direct
Memory Access (DMA). These buffers are implemented using
OpenGL’s mapped memory. The first two buffers transfer new
points to the GPU, with a size determined during compilation
according to a user-defined constant. The third one is utilized to
transfer the results of the LoD step from the GPU to the CPU. The
last one is employed for transferring compaction information,
which will be further explained in Section III-C1.

On the CPU side, dynamic memory management is far more
straightforward. Pointlets are represented by objects with four
fields: the number of required points, the number of already
loaded points and two buffers with the positions and attributes
of the loaded points. Hence, the data in the CPU is managed
in a pointlet-wise manner that avoids transferring data to a
global buffer and compacting information. Each pointlet buffer
is resized as required, according to the memory limitations and
the information demanded in a frame. Additionally, another
vector stores the LoD results of the last frame.

Regarding data types, points are represented by three simple
floating point values (12 bytes). Other representations split point

8031

J Append load/unload task

| Task queue

)
Fetch |

| Consumer thread 0 |

Memory manager |

Reads
i

Meshlets information

| Consumer thread 1 | Updates

y

’ Consumer thread k ‘

|
Read

v
| Binary disk cache |

Fig. 5. Management of system-side memory. The memory manager instan-
tiates Load/Unload tasks based on current pointlet information. Subsequently,
task consumers retrieve these tasks from the parallel queue to solve them.

New points buffer

EANEN
New frame l—, \—¢ l
| P, | P, ]'.'| . | P | P
’_T (-
I N A

Previous frame

D Expanded |:| Shrunk |:| Unchanged |:| New points

Fig. 6. Compaction procedure, including the transfer of new points.

coordinates and encode them at different resolutions to minimize
data reads for lower LoDs [7]. However, VRAM bandwidth
is not our main bottleneck and we opted for a simpler data
representation. On the other hand, RGBA colors are encoded as
4-byte values (uint32). This representation allows us to render
many other attributes that can be encoded in 4-byte floating-point
data.

Following is explained the data transfer procedure step by
step:

1) GPU Buffer Compaction: We rebuild the point and at-
tribute buffers on a per-frame basis. From now on, we will
refer to rebuilding the point buffer, but remember that points
and attributes are stored in different buffers, as explained earlier
in this section. This stage employs the results of the LoD system
to annotate the discrepancies between the points to be rendered
in the following frame and those rendered in the previous frame,
which are already loaded into the GPU. As a result, we compute
the compaction info for each pointlet, which specifies the source
range from which points are to be copied and the destination
range where they will be copied, ensuring sufficient space for
new points. Subsequently, this information is transferred to the
GPU, where a shader copies each point and attribute to other
buffers, as shown in Fig. 6.
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2) Transferring Missing Points to the GPU: Transferring
points to the GPU involves several steps. First, we determine
which new points are necessary using the compaction infor-
mation. There are three potential outcomes from here: 1) the
requested points are already loaded in RAM, 2) they are yet
unloaded or 3) some points are loaded while others are not.
In the first scenario, which is also the simplest, the points are
written into the new points buffer, along with their corresponding
position. In the second case, the number of points required for
a pointlet is modified since the points cannot be transferred yet
to the GPU. Hence, the virtual memory system loads them as
soon as possible; meanwhile, fewer points than requested are
rasterized. We also adjust the LoD of the current frame to reflect
the number of points loaded in the CPU. Finally, the hybrid
scenario consists of transferring points available in RAM to
the GPU, while requesting the remaining points. In that case,
the LoD buffer is adjusted to include only the points already
available, excluding those that need to be fetched from disk.

3) Managing System Memory: To prevent the system from
being idle, point requests are constantly arriving at our task
queue. Given the assumption that the whole point cloud cannot
be maintained in RAM, it is necessary to determine which points
are simultaneously available. To accomplish this, as illustrated in
Fig. 5, the virtual memory system monitors the number of points
required in every pointlet. If the number of required points does
not match the number of loaded points, the system enqueues a
task aimed atloading/unloading points. However, several criteria
must be met when appending these tasks. First, a load task is
enqueued whether the number of required points is higher than
the number of loaded ones, regardless of the system state. On
the other hand, an unloading task is enqueued if the number
of required points is lower than the number of loaded points
and the system is approaching the maximum RAM capacity.
Hence, loaded points are not erased as long as there is sufficient
memory. Note that, the queue size is established at compile time,
limiting the maximum number of pending tasks. In this manner,
the latency for solving individual tasks is kept low, and they can
be solved in a few frames at most.

From the perspective of a consumer thread, whose number is
variable, tasks are first processed by comparing their information
with the current pointlet information. This approach ensures that
the required task does not collide with the most recent state. Each
pointlet has its own mutex variable to prevent other consumer
threads from modifying the same pointlet. Hence, if another
thread changes a pointlet, the thread that failed to access that
pointlet concludes since it is already being updated based on its
current state. Depending on the free RAM, task consumers can
load up to 25% more points than demanded, thus anticipating
the following requests.

D. Software Rasterization

The point cloud rasterization refers to the projection of points
into the viewport. As our primary objective is not improving the
visualization, but the performance, we implemented the baseline
projection procedure. The points are mapped to the viewport
pixels and an atomic min operator is employed to identify the
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a) Without hole-filling

Without hole filling

r=1

Fig. 7. Comparison of original point cloud and gaps filled using a radius of
1. The closeup view of the painting illustrates the need for larger radius to fill
larger gaps..

point with the minimum depth, together with its color. From
here, it is trivial to adopt other color-enhancing techniques, such
as High-Quality shading (HQS) in Schiitz et al. [9].

However, the designed LoD system subsamples the point
cloud, hence showing a higher number of gaps. Therefore, a
hole-filling method must be implemented to mask these gaps
while still subsampling the pointlets to enable 1) reducing the
VRAM and RAM footprint and 2) improving the frame ratio.

1) Hole Filling: Unlike mesh shading, the rendering of point
clouds may present gaps due to insufficient density in certain
areas. This drawback is pushed further by LoD systems that
reduce the number of rasterized points. Therefore, filling these
gaps prevents users from perceiving the rendered image as noisy
or incomplete. Instead of enhancing the color in nonempty pixels
as in HQS, we estimated the color in empty pixels. A pixel is
filled with the mean color of the surrounding pixels if there is at
least one nonempty pixel in the n x n neighborhood. However,
empty pixels are not filled when dealing with holes larger than
n x n pixels, as shown in the zoomed-in views in Fig. 7. Ad-
ditionally, no boundary detection is performed, thus filling the
edges of the point cloud. Notice that a boundary is defined as the
frontier between the point cloud and the background. Therefore,
filled edges only appear from far views (where they are notably
less visible). However, this drawback comes at the expense of a
significantly fast hole-filling algorithm.

2) Visibility: Large point clouds are typically denser and do
not display background points unless observed from closeup
views. Despite being seldom observed, background points may
harden the interpretation of the point cloud, as observed in Fig. 9.
Previous work has addressed this limitation [16], but it relies on
data unavailable in our late shading stages, such as positions, or
data unavailable in our point clouds, e.g., normals. Specifically,
only colors and depth values are available when composing the
final image after projection.

Given the depth values of two points, we can calculate an
angle 3 enclosed between the vectors illustrated in Fig. 8 as
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‘\ pixel width

Fig. 8. Occlusion checks are conducted by calculating /3, the angle between
two rays cast from the main point, colored in green.

a) Without visibility checks  b) With visibility checks

Fig. 9. Point clouds rendered by a) deactivating and b) activating occlusion
checks.
proposed in (4):
. FOov
pizel depth = 2 - max(dy, d3) * tan 2
Vwidth
ixel width
8 = |arctan purer wndth 4)

dy — do

with pizel depth being the horizontal displacementand d; — d»
being the vertical displacement. Filtering by 5 > 0.1 proved to
be an effective threshold for the datasets used in this work. F'OV/,
and v,,;4¢p are the camera’s horizontal field of view (FOV) and
viewport width, respectively. Similar to hole-filling, this stage
requires a radius to check the visibility of points w.r.t. their
surroundings.

IV. RESULTS

We conducted several experiments to showcase the capacity
of loading huge point clouds and the performance of our work
despite transferring significant volumes of data on demand.
Comparisons are performed against the state-of-the-art study:
Schiitzetal. [7], SimLOD [2] and Goel et al. [8]. The first and last
implement a non-hierarchical LoD system, whereas SimLOD
builds an octree. However, all store the whole point clouds and
data structures in VRAM. To provide a fair comparison, HQS
shaders were disabled during the frame time recording.

Experiments were performed on a PC with Intel 19 12900 K
3.2GHz, 64 GB RAM, RTX 4070 GPU with 12 GB VRAM (Ada
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TABLE I
RESULTS OF EVALUATED POINTLET METRICS, TOGETHER WITH THE RESPONSE
TIME FOR ORGANIZING THE POINT CLOUD INTO POINTLETS

Approach | Metric | Alhambra | Solar plant |
Maximum extent (m) 14.198 197.419
Mean extent (m) 0.300 2.305
Morton Standard deviation (m) | 0.226 2.307
Mean squareness (m) 0.085 0.899
| | Response time (s) | 1,974 | 8,553 |
Maximum extent (m) 13.124 177.566
Mean extent (m) 0.253 1.971
Hilbert Standard deviation (m) | 0.154 1.721
Mean squareness (1m) 0.074 0.798
| | Response time (s) | 3473 | 13,170 |
Maximum extent (m) 19.361 170.785
Mean extent (m) 0.246 1.917
K-d tree Standard deviation (m) | 0.218 2.268
Mean squareness (1m) 0.054 0.645
| | Response time (s) | 862,929 | 43,053,817 |

The best results are highlighted in bold.

Lovelace architecture), a2 TB Samsung 990 PRO PCle 4 NVME
(MZ-V9P2TOBW) SSD and Windows 11 OS. Our method was
implemented in C++20 using C++ multithreading utilities for
CPU parallel processing and OpenGL 4.6 [42] for rendering
and GPGPU (general-purpose computing on GPU). The datasets
were either obtained from OpenTopography or collected by us.
We used five point clouds (see Fig. 10): 1) Alhambra (100 million
points), 2) solar plant (500 million points), 3) San Andreas fault
(1 billion points) [43], 4) Dangermond (8 billion points) [44]
and 5) San Simeon and Cambria faults (18 billion points) [45].

A. Pointlet Metrics

The Hilbert curves were adopted to reduce large space jumps
reported in previous work. This improvement is observed during
rendering and in spatial metrics. We evaluated the bounding
boxes of pointlets to extract their maximum and mean extent,
standard deviation and mean squareness (deviation from a per-
fect square). Table I presents the results obtained over the first
two point clouds, using Morton and Hilbert encoding and a
K-d tree. In addition, we incorporated the response time for
organizing the point cloud into pointlets.

By observing Table 1, it is clear that Hilbert curves leverage
response time and required pointlet properties. K-d trees have
excellent results, at the expense of being significantly more time-
consuming. Though spatial queries were not handled in parallel
in K-d trees, the response time is still far from the results obtained
with Morton and Hilbert encoding: ~11.95 hours for 500 M
points, in contrast to ~8.5 seconds for Morton and ~13 seconds
for Hilbert curves. Note that, we built Hilbert codes from Morton
codes, and therefore, it is impossible to improve the response
time.

B. Performance

The principal objective of this study is to maintain a low
memory footprint in CPU and GPU while providing a stable
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Fig. 10.

San Andreas fault (1B)
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Dangermond (8B)

San Simeon (18B)

Point clouds over which the experiments were conducted, ranging in size from a few hundred million to 18 billion points.

TABLE II
COMPARISON OF THE PROPOSED METHOD USING B = 25 M AGAINST THE STATE-OF-THE-ART WORKS [2], [7], [8]

| Data Set | #points | Method | Avg. FPS | Min. FPS | Max. FPS | 1% min. FPS | 0.1% min. FPS |

Schiitz et al., 2022 | 341.6 209.9 355.4 2925 209.9
SimLOD 250.6 127.1 4577 150.5 135.3
Alhambra T00M | Goel et al., 2024 | 1619 130.2 242 141.4 134.5
Ours 110.9 354 173 40.1 357

Schiitz et al., 2022 | 58.8 49.6 713 51.9 49.6

SimLOD NA NA NA NA NA

Solar plant | S00M | 00 "ciar 2004 | 37 10.1 22092% | 106 10.1
Ours 1116 50.8 160 56.2 51.3

Schiitz et al., 2022 | 17.6 145 18.3 153 14.5

San Andreas | 1B SimLOD NA NA NA NA NA
Goel et al., 2024 | 82.6 713 108.3 72.8 71.4

Ours 110.5 435 195.5 50.4 435

Schiitz et al.,, 2022 | NA NA NA NA NA

Daneermond | 8B SimLOD NA NA NA NA NA
g Goel et al., 2024 | NA NA NA NA NA
Ours 101.8 23 165.68 40.6 23

Schiitz et al.,, 2022 | NA NA NA NA NA

San Simeon | 188 SimLOD NA NA NA NA NA
Goel et al., 2024 | NA NA NA NA NA

Ours 73.1 30.8 140.3 329 30.8

The best results are highlighted in bold. NA (not applicable) indicates that the point cloud could not be fully loaded. The asterisk indicates that the program
malfunctioned and failed to load the point cloud, resulting in incorrect statistics.

rendering performance. We evaluated this by recording the frame
ratio obtained when visualizing point clouds ranging from a
few hundred million to up to several billions of points. Since
our work depends on the viewpoint due to the frustum culling
stage, reporting only the mean frame ratio does not reflect well
the nature of our method. To this end, we conducted several
experiments.

First, we collected the frame times while orbiting around the
point cloud. While following this path, we changed the zoom
level by increasing and decreasing the vertical field of view. We
established the bucket size, 3, to 25 M points. Table II compares
the result of our methods against the state-of-the-art, and Fig. 11
illustrates the average FPS. Note that some rows of Table II
display "NA’ because the compared approaches could not fully
load all the point clouds.

Schiitz et al. achieved the best performance when rendering
the smallest point cloud since it was fully loaded into VRAM.
Similarly, SimLOD obtained good results, despite having a
slight overhead from the LoD system. However, these results did
not extend to larger point clouds. SimLOD could not fully load
them, and Schiitz et al.’s approach struggled when projecting
several hundred million points. Additionally, the method by Goel

B Ours I Schiitz et al. (2022) BN SimLOD B Goel et al. (2024)
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E
£ 500.0
2
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75 .

Alhambra Solar plant ~ San Andreas Dangermond  San Simeon

Point cloud

Fig. 11.  Average number of FPS per point cloud and approach. The text above
the bar highlights the highest FPS average per point cloud.

et al., which shares the same baseline renderer as Schiitz et al.
exhibited similar behavior, with slightly worse performance due
to real-time decompression. However, this does not hold for
the San Andreas point cloud, where Goel et al. achieved better
results. The key advantage of real-time decompression is its
ability to reduce GPU memory reads, making it more beneficial
than direct memory access when handling larger point clouds.
On the other hand, the largest two point clouds could not be
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Fig. 13. Relation between recorded FPS and the camera’s vertical FOV. The

lines reflect the fourth-degree polynomial fit to the recorded values, represented
with dots.

processed by any of the compared approaches. In contrast, our
method offers a more stable and scalable solution, regardless of
point cloud size.

Fig. 12 illustrates the interval of recorded FPS using our
approach with B = 25 M, whereas Fig. 13 tries to correlate the
camera’s FOV and the FPS rate. Both figures illustrate the FPS
collected by zooming in and out while the camera orbits around
the point cloud. As expected, there is no clear correlation since
the number of rendered points varies significantly across differ-
ent point clouds, even with the same FOV. Moreover, even within
a single point cloud, performance fluctuates under the same FOV
due to factors such as previously observed points, variations
in geometry within the frustum and non-uniform point density.
Consequently, the recorded FPS values primarily depend on the
number of points to be compacted and the camera path leading
to a frame. The main takeaway from Fig. 13 is that performance
cannot be reliably predicted while the camera moves and highly
depends on the specific point cloud being rendered. However,
Fig. 12 also indicates that, on average, performance remains
relatively consistent, regardless of the point cloud size.

In summary, correlating the recorded FPS values with all the
involved parameters, and illustrating it, is not straightforward.
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At most, we can conclude from Fig. 13 that lower FOVs result
in slightly lower performance. This is expected, as they require
rendering fewer pointlets at their maximum LoD, many of which
may not yet be loaded. In contrast, far views render a larger
number of pointlets with fewer points, either already loaded or
available within a few frames. Additionally, far views involve
fewer visibility changes, reducing compaction overhead.

Another relevant experiment is to record the performance
with different bucket sizes. Previously, we used B = 25 M, but
larger sizes offer fewer visual cues of the LoD system (it is
further evaluated in Section IV-C). Therefore, Fig. 14 shows
the average FPS and the interval of observed values for a point
cloud with 18 B points when changing B. As depicted, larger
bucket sizes worsen the performance but maintain an interactive
frame rate. Note that we conducted this experiment based on
the conclusions of Schiitz et al. [7]. For a point cloud of 1 B
points, the maximum number of simultaneously rendered points
was 51M points. Also, we considered that larger point clouds
typically grow in spatial size due to more extensive surveys.
Therefore, the conclusions drawn from [7] are valid for point
clouds larger than 1 B points. Furthermore, the bounds of 51M
points can be even lowered with the help of the LoD system and
hole-filling.

Fig. 15 provides further details into the compaction delay
by illustrating the average response time across five rendering
stages for two point clouds, containing 1 B and 18 B points,
while changing the bucket size. As observed, the time spent
on compaction increases linearly with the bucket size, although
it remains similar to the response time of the projection phase.
Therefore, the combined overhead of compacting and projecting
visible points nearly doubles the frame time of the first compute-
shader-based renderer described by Schiitz et al. [9]. Besides
this, there is no linear growth in time as the point cloud size
increases. It rather depends on the camera path and the point
cloud features.

For further insight into real-time performance, we encourage
the readers to watch the video published as Additional data. It
shows the user interaction in our application while visualizing
18 B points with B = 25 M. To this end, we transition from
closeup to far views, showing no visual cues of real-time data
transfers nor subsampling from the LOD system.
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Fig. 15.
stages.

Breakdown of the average response time across the five rendering

C. Visual Comparison

This paper comprises data transfers between disk, CPU and
GPU, but also diminishes the number of simultaneously ren-
dered points with LoD techniques. The experiment illustrated
in Fig. 16 checks the visual differences between ground-truth
images (without LoD and hole-filling) and two other images: 1)
with LoD and no hole-filling and 2) with LoD and hole-filling.
We tested these scenarios over sparser point clouds that better
show the limitations of both components (Alhambra, 100 M
points, and a subsampled version of San Andreas fault, 187 M).
Larger point clouds grow in spatial size and density, thus show-
ing fewer gaps when enabling the LoD. Also, disabling LoD is
impossible for larger point clouds since the maximum size of
SSBOs is 2 GB, i.e., 187 M points. We used a bucket size,
B, of 187 M to render the ground truth, and B < 50M for
testing the LoD system. Images were rendered at a resolution of
1920 x 1080, and two views were proposed for each point cloud
(closeup and far view). The distance was computed as the sum
of errors in red, green and blue channels, and was normalized
according to the maximum error. The Peak Signal To Noise Ratio
(PSNR) is illustrated in the third column to quantify the error.
Remember that the objective is to maximize the PSNR.

The differences in the third column come from representing
pointlets with fewer points, hence not matching the ground-truth
color. In far views, colors slightly vary while gaps are hardly
visible since individual pointlets represent a tiny portion of the
viewport. On the other hand, closer views render fewer pointlets
that are not as undersampled as in far views, but also show gaps
due to point cloud sparsity. The differences in the fifth column
come from undersampled pointlets and filled gaps. In both views,
the rendered gaps are mainly due to the point cloud sparsity and
not due to the LoD system. Therefore, gaps are even visible in
the ground-truth image.

Two main conclusions can be drawn from Fig. 16. First,
closeup views are barely affected by the LoD, and second, the
error from the LoD is significantly more apparent in far views.
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However, it is only noticeable due to the slight color variations
and not due to gaps. Sparser point clouds benefit from the
hole-filling with small radii, though it can be increased at the
expense of worsening the performance.

Another relevant factor in the LoD system is 3, the maximum
number of points rendered in a frame. Fig. 17 illustrates the
PSNR obtained when decreasing 3 for closeup and far views
of a solar plant. As expected, the visual differences are far
more visible with a lower bucket size. Although we picked a
default bucket size of 25M to leverage performance and ren-
dering fidelity, visual differences are partially mitigated with
hole-filling.

V. CONCLUSION AND FUTURE WORK

We have introduced a system capable of rendering huge point
clouds on computers with limited memory capabilities. Our
system dynamically loads points as required, while those no
longer needed are discarded, ensuring a minimal impact on
performance. We have compared our work with three state-of-
the-art methods, remarking how our method keeps a real-time
interaction no matter the point cloud size. The proposal is based
on an architecture that employs pointlets as a fundamental unit
for determining the required points before being stored in the
memory system. We have proposed the usage of Hilbert curves as
an alternative to Morton order in the computation of the pointlets.
To our knowledge, the Hilbert curve has not been used before
in point cloud rendering. Using this approach, the clustering
of points is optimized, thus enabling a more effective frustum
culling and a non-hierarchical LoD system that uniformly sub-
samples the pointlets. Additionally, we have proposed visual
enhancements to remove occluded points and fill gaps derived
from sparse point clouds and LoD subsampling.

In this study, the experiments have been conducted on a
desktop computer; however, the proposed architecture has the
potential to be extendable to rendering large point clouds on
mobile devices. While these devices are currently far from desk-
top GPUs in computing and bandwidth capabilities, high-end
mobile GPUs are expected to make this approach increasingly
viable. On the other hand, low-end mobile devices may en-
counter challenges since computing and bandwidth significantly
lag behind their high-end counterparts. The viability of running
our approach on those devices depends on imposing signif-
icant constraints on both point buckets and memory buffers.
Moreover, the method’s implementation may require using the
Vulkan API, making it incompatible with devices lacking Vulkan
support.

Other pending tasks that could improve this work are data
quantization, as explained in previous work [7], to reduce the
number of data reads in GPU threads, and data compression [8].
In addition, one of the main bottlenecks of our approach is
the large number of concurrent threads dispatched during the
compaction stage whether many pointlets are visible and any of
them have a substantial number of visible points. In this case, a
significant portion of these threads stays idle, so calculating this
number would have a meaningful impact. Finally, reducing the
number of operations performed in the CPU would also lead to
lower data exchanges and higher parallelism.
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