
ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98

A
0
f

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Enhancing LiDAR point cloud generation with BRDF-based appearance
modelling
Alfonso López ∗, Carlos J. Ogayar , Rafael J. Segura , Juan C. Casas-Rosa
Department of Computer Science, University of Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain

A R T I C L E I N F O

Keywords:
LiDAR simulation
Virtual laser scanner
Bidirectional reflectance distribution function
Graphics processing unit

A B S T R A C T

This work presents an approach to generating LiDAR point clouds with empirical intensity data on a massively
parallel scale. Our primary aim is to complement existing real-world LiDAR datasets by simulating a wide
spectrum of attributes, ensuring our generated data can be directly compared to real point clouds. However,
our emphasis lies in intensity data, which conventionally has been generated using non-photorealistic shading
functions. In contrast, we represent surfaces with Bidirectional Reflectance Distribution Functions (BRDF)
obtained through goniophotometer measurements. We also incorporate refractivity indices derived from prior
research. Beyond this, we simulate other attributes commonly found in LiDAR datasets, including RGB values,
normal vectors, GPS timestamps, semantic labels, instance IDs, and return data. Our simulations extend beyond
terrestrial scenarios; we encompass mobile and aerial scans as well. Our results demonstrate the efficiency of
our solution compared to other state-of-the-art simulators, achieving an average decrease in simulation time
of 85.62%. Notably, our approach introduces greater variability in the generated intensity data, accounting for
material properties and variations caused by the incident and viewing vectors. The source code is available
on GitHub (https://github.com/AlfonsoLRz/LiDAR_BRDF).
1. Introduction

LiDAR (Light Detection and Ranging) point clouds have become
increasingly popular in various applications such as autonomous driv-
ing (Manivasagam et al., 2020), land mapping and urban planning
(Zhou et al., 2022). Current trends in these applications involve train-
ing Machine Learning (ML) models using large point cloud datasets.
However, successfully training these networks often requires additional
data, particularly in supervised learning scenarios. Semantic labels, in-
stance numbers (Rozenberszki et al., 2024), and intensity (Díaz-Medina
et al., 2023) are crucial. From these, only semantic labels are available
in the most used datasets (see Table 1). Although manual annotation
as well as unsupervised and supervised ML models can infer attributes
such as semantic labels, these approaches may introduce erroneous data
that can mislead the algorithms trained with this information. These
limitations highlight the importance of virtual laser scanners (VLS),
which is the primary focus of this work.

A plethora of repositories gathers LiDAR point clouds, offering
valuable insights into this field (Cai et al., 2022). However, many of
these repositories primarily focus on urban scenarios for autonomous
driving applications. Despite LiDAR remaining a powerful sensing tech-
nology, photogrammetry is a cost-efficient alternative. Nevertheless, it
comes with some trade-offs, including the generation of lower-quality

∗ Corresponding author.
E-mail address: allopezr@ujaen.es (A. López).

point clouds and increased susceptibility to geometrical errors. More-
over, the pixel-level features derived from photogrammetry differ from
those obtained through LiDAR sensing. Still, both approaches share
some common challenges: the time-consuming processes of collecting,
cleaning, and augmenting the data, which typically requires human
supervision. In addition, publicly available datasets may not suffix
specific application requirements regarding data density, attributes,
kinds of scenes, recording platforms, etc. For example, most of the
airborne datasets are collected by governmental institutions for land
inventorying, using mid-altitude sensors that record only a few points
per squared metre (U.S. Geological Survey, 2012; Instituto Geográfico
de Información Geográfica, 2023). Instead, synthetic datasets created
from realistic scenarios emulating real-world conditions offer a more
reasonable alternative. Unlike real-world objects, synthetic models lack
uncertainty and can be associated with semantic labels and materials,
among other features attached to 3D points via VLS.

In recent years, simulators have gained interest as time and cost-
effective tools for generating large datasets that enable trainable models
to seek patterns in various scene perception tasks such as semantic
segmentation, instance segmentation and classification applied over
indoor and outdoor scenarios. Most of them emulate LiDAR and Radar
https://doi.org/10.1016/j.isprsjprs.2025.02.010
Received 27 October 2023; Received in revised form 9 February 2025; Accepted 9
vailable online 27 February 2025
924-2716/© 2025 International Society for Photogrammetry and Remote Sensing, I
or text and data mining, AI training, and similar technologies.
February 2025

nc. (ISPRS). Published by Elsevier B.V. All rights are reserved, including those

https://www.elsevier.com/locate/isprsjprs
https://www.elsevier.com/locate/isprsjprs
https://orcid.org/0000-0003-1423-9496
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0002-3075-6963
https://orcid.org/0000-0002-4744-8123
https://github.com/AlfonsoLRz/LiDAR_BRDF
mailto:allopezr@ujaen.es
https://doi.org/10.1016/j.isprsjprs.2025.02.010
https://doi.org/10.1016/j.isprsjprs.2025.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2025.02.010&domain=pdf

A. López et al.

e

b
s

s

r

a
r

ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Table 1
Comparison of features provided by the most frequently used LiDAR datasets, LiDAR simulators (*), and our study.+ implies it can be computed in post-processing.

Dataset/Software tool*

Attribute Ours SemanticKITTI nuScenes SemanticPOSS Toronto-3D Semantic3D DALES HELIOS++ *
x, y, z ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

r, g, b ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

Intensity ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Return number ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Number of returns ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Scan angle rank+ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

GPS time ✓(Normalized) ✗ ✗ ✗ ✓ ✗ ✗ ✓

Normal vector ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Custom semantic label ✓ ✓(28) ✓(23) ✓(14) ✗(8) ✓(8) ✓(8) ✓

LAS semantic label ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Instance ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Sensor platform Static/Mobile/Aerial Mobile Mobile Mobile Mobile Static Aerial Static/Mobile/Aerial
i

p
i

p
t
p

s

e

sensors to acquire information on surfaces, objects and phenomena,
using a wide variety of sensors regarding the platform they are mounted
on (static or mobile), manufacturers and capabilities (data acquisition
speed, number of channels, maximum distance, field of view, precision,
tc.) (Poux, 2019). Among the available platforms, terrestrial, airborne

and mobile LiDAR scanning are the most frequently simulated, mainly
addressing the geometric features of resulting point clouds. However,
other features relevant to the classification of LiDAR point clouds, such
as intensity and return number (ordered id of the return within a pulse),
are not as frequently simulated.

This study presents a GPU-based (Graphics Processing Unit) LiDAR
simulator that enables the generation of large-scale point cloud datasets
y operating on highly detailed static and procedural scenes. The
imulator encompasses terrestrial and airborne scans and various scan

deflectors to replicate the two most prevalent types of LiDAR point
clouds. Simulations can be conducted in a single location or following
a path. For airborne scenarios, automated path computation ensures
coverage with the necessary overlapping. The efficiency of the proposed
simulator is particularly noteworthy when it comes to larger missions
involving multiple locations. To achieve this, the simulator utilizes
tate-of-the-art spatial indexing data structures for efficient ray tracing.

In addition to providing semantic labels and instance numbers, the
simulator integrates models with materials characterized by reflectance
and refractivity signatures across a wide spectral range. These material
signatures are derived from prior research focused on measuring the
light scattering of different materials. In this manner, the simulator
benefits from a solid foundation and enhances the realism of the
generated point clouds. It is important to highlight that this simulator
epresents an advancement over the previous work described in López

et al. (2022). The predecessor faced significant time bottlenecks gen-
erating LiDAR beams and did not emulate intensity using empirical
Bidirectional Reflectance Distribution Functions (BRDF). This work
ddresses these limitations, improving efficiency and a more accurate
epresentation of LiDAR intensity values through BRDFs.

In summary, this GPU-based LiDAR simulator offers a solution for
generating large-scale point cloud datasets with a wide number of
features, including spatial coordinates, RGB shading, intensity, return
number, number of returns, scan rank, normal vector, semantic labels
and instances’ id. Some of these features are not provided by real
datasets, e.g., normal vectors. On the other hand, the availability of
the rest of the features is inconsistent across most used LiDAR datasets,
as reported in Table 1.

2. Previous work

Previous work regarding LiDAR simulation will be discussed accord-
ing to the following five factors: (1) input scenarios, (2) spatial indexing
of scenarios, (3) simulation of the Time of Flight (ToF) principle, (4)
simulation of intensity and (5) efficiency.
 t

80
2.1. Input data and sampling

Input scenarios. The versatility of the proposed LiDAR simulator in
adapting to different digital models and generating procedural scenar-
ios opens up the possibility of producing extensive datasets, regardless
of the simulation process itself. It is important to note that the majority
of previous works have primarily focused on ad-hoc environments that
lack realism (Winiwarter et al., 2022; Bechtold and Höfle, 2016; Haider
et al., 2022; Dayal et al., 2021; Kukko and Hyyppä, 2009). Amongst
these, procedural forests, urban scenarios and ad-hoc setups with low
level of detail (LOD) are the most frequently found in the literature.
Otherwise, more detailed forestry can be generated from inventory
nformation (Schäfer et al., 2023), and triangle meshes can be modelled

by professionals with a high LOD (Dosovitskiy et al., 2017; Xiao et al.,
2021). Scenarios with lower complexity are easier to traverse and
enable faster simulations at the expense of producing less realistic
oint clouds. On the other hand, working with scenes of higher LOD
s far more time-consuming and they have been previously simplified

to voxels (Winiwarter et al., 2022). In addition, the intersections of rays
and voxels are more efficiently solved (Majercik et al., 2018) than colli-
sions between rays and triangles (Möller and Trumbore, 1997). Another
ossible drawback of input scenarios is the degree of knowledge about
hem. For example, realistic scenarios from videogames have been
reviously used in the generation of LiDAR datasets; however, there is

limited semantic information associated with intersected models (Yue
et al., 2018; Wu et al., 2019). Similarly, combining real scans with
simulated ones introduces limitations in semantic information due to
the uncertainty in real point clouds (Fang et al., 2020; Manivasagam
et al., 2020).

Spatial indexing. Many laser scanning simulators model beams as
rays originating from the sensor’s emitter, bounded by the maximum
range. Therefore, efficient data structures are required to organize the
cenario and enable rapid intersection calculations between rays and

objects. Ray tracers commonly adopt the Boundary Volume Hierarchy
(BVH) as a popular solution for addressing this problem (Riordan
t al., 2021; Chen and Müller, 2022). In this regard, extensive research

has been dedicated to optimizing the construction and traversal of
BVHs. Other not-that-frequent and less efficient data structures are
kd-trees (Winiwarter et al., 2022; Bechtold and Höfle, 2016) and oc-
trees (Weiser et al., 2021). kd-trees and octrees calculate even partitions
of the scenario, while BVHs generate tighter partitions, diminishing the
traversal time.

2.2. LiDAR simulation and computational complexity

Simulation of ToF principle. The earliest LiDAR simulators gen-
erated visually plausible point clouds (Gschwandtner et al., 2011)
by simulating the sensor’s field of view, object occlusion and beam
divergence. To this end, LiDAR beams were represented as rays and
the collisions were solved with ray-casting, also referred to as ray-
racing in the literature. However, ray tracers emulate light interaction

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 1. Overview of the proposed LiDAR simulation. First, semantic labels and materials from a BRDF database are attached to objects from static and procedural scenes. Then, a
virtual LiDAR system recreates the simulation with (1) scanning specifications, (2) from a platform and (3) following a path or placed in a static location. The simulation is split
into two stages: beam generation and Time of Flight (ToF) solver. In the last stage, intensity and other relevant attributes are attached to 3D points.
between surrounding surfaces, which is hard to recreate in real-time.
Modelling each LiDAR pulse with multiple rays is not that frequent,
and instead, beams have been modelled with a single ray if only
the first impact is necessary. If pulses are recreated using a set of
rays, these carry out energy and spread to detect one or multiple
collisions (Zohdi, 2020; Winiwarter et al., 2022; Bechtold and Höfle,
2016). In addition, Winiwarter et al. (2022) normalized the power
weight within the beam cone, hence simulating higher power in the
centre. Primarily, simulated rays spread according to the sensor’s lo-
cation and the scan deflection that indicates the outgoing direction.
Another critical aspect is the beam divergence and radius resulting from
collimated and diverging rays. Scanning patterns, including parallel,
zig-zag and elliptical, hold particular significance in airborne missions.

Full-waveform simulators have also had a notable presence in pre-
vious research. Instead of providing intensity data in a single wave-
length, full-waveform LiDAR sensors record the signature across a
wide spectral range. Well-known full-waveform LiDAR simulators are
HELIOS++ (Winiwarter et al., 2022) and DART (Discrete Anisotropic
Radiative Transfer) (Yang et al., 2022). For instance, HELIOS++ has
been studied in the inventory of forestry areas, helping to determine
the vegetation density at different altitudes (Schäfer et al., 2023). While
their output is notably different, beams are simulated using multiple
subrays.

Sensor imperfections resulting from systematic and random errors
are crucial in LiDAR simulation. Multiple effects can be covered and
even tailored to specific sensor models (Haider et al., 2022). Systematic
errors arise from various sources, including laser detector bias, devia-
tions of beams caused by surface shininess and slope, misalignments of
the inertial navigation system (INS), etc. Random errors, on the other
hand, are influenced by various factors such as the electronics accuracy
(including INS and GPS), as well as inherent LiDAR features like laser
beam divergence, wavelength, and object reflectivity. Simulation of
errors related to environmental conditions such as rain, snow, fog and
haze (Zhao et al., 2021; Dosovitskiy et al., 2017; Bechtold and Höfle,
2016; Hanke et al., 2017), the drop-off in intensity (Ahn et al., 2020;
Zhao et al., 2021), sensor noise (López et al., 2022; Haider et al., 2022),
ranging errors (Zhao et al., 2021; López et al., 2022), atmospheric
attenuation (Haider et al., 2022), return losses (Dosovitskiy et al., 2017)
and fast motion scan effect (dSPACE, 2024; Chen and Müller, 2022)
are the most frequent. While physically modelled rays are the primary
approach, errors can also be simulated by perturbing ideal point clouds
with Deep Learning (DL) (Manivasagam et al., 2020; Xiao et al., 2021).
The combination of actual LiDAR data and virtually scanned objects has
also been explored (Manivasagam et al., 2020), although this approach
still faces challenges related to human supervision for real data. De-
spite the relevance of these effects, it is important to note that point
clouds are frequently voxelized in deep learning training pipelines.
This process leads to information loss unless models employ alternative
approaches, such as adapting the data convolution pipeline to handle
sparse point clouds (e.g., sparse convolutions) or transforming the data
81
feeding method (e.g., using raw unstructured point clouds or spherical
frustums (Zheng et al., 2023)).

LiDAR scans are typically performed following sequential steps
across a vehicle path. Consequently, the emitter location varies, and the
path can be determined automatically, defined by the user, or random-
ized using a set of navigable roads. However, simulating LiDAR scans
with varying emitter locations and realistic vehicle paths poses certain
challenges. The automatic computation of paths is a more complex
approach, particularly when considering occlusion effects (Bechtold
and Höfle, 2016), and leads to another research field called Planning
for Scanning (P4S). On the other hand, allowing users to define paths
for LiDAR scans has been proposed in previous works (Bechtold and
Höfle, 2016; Winiwarter et al., 2022). This approach provides more
control over the simulated scans, enabling users to define specific
trajectories that align with their requirements. Additionally, the gen-
eration of completely procedural paths has been explored in works
such as Dosovitskiy et al. (2017). This solution can generate paths in
either a synchronous or asynchronous manner, with the asynchronous
generation being faster as it is not constrained to a real-time simulation.

Simulation of intensity. The intensity simulation has been ad-
dressed in previous works; however, many focus on ad-hoc simulators
designed for specific wavelengths or sensors. For example, Zohdi (2020)
computed relative reflectivity without considering material proper-
ties. In some studies, analytic BRDFs have been employed to com-
pute the returned reflectance using different models, including Lam-
bertian, Oren-Nayar, and Blinn-Phong reflectance models (Chen and
Müller, 2022; Gschwandtner et al., 2011). These are simplifications
intended to emulate specific surfaces and do not consider the operat-
ing wavelength. Similarly, the earliest BRDF databases only recorded
RGB values (Serrano et al., 2016), whereas the most recent collect a
wider spectral interval. Still, RGB values are relevant for recording
data similar to cameras coupled to LiDAR systems, despite not being
directly integrated into scanners. More recently, Winiwarter et al.
(2022) calculated received power based on factors such as incidence
angle, beam divergence and sensor properties. They used the BRDFs
of Meerdink et al. (2019), covering a wide range of wavelengths,
but they are not dependent on the viewing and outgoing vectors.
Even though the viewing and outgoing vectors are parallel in Li-
DAR systems, real-world BRDFs vary the scattered light based on the
viewing/outgoing vector. Nonetheless, Winiwarter et al. (2022) incor-
porated full-waveform signatures besides discrete returns. In contrast,
the DART simulator (Yang et al., 2022) comprises a physically-based
radiative model that can process the BRDF hemispheres with custom
angular resolution. However, they can only handle one wavelength
in the input data, whereas our work can trivially adapt to sensors
operating in a different wavelength. Although DART provides the most
sophisticated radiative model, Winiwarter et al. (2022) proved their
simulator produced similar results in full-waveform-based LiDAR sim-
ulations. Accordingly, we have utilized HELIOS++ as the reference
work in our experiments due to its recent development and ease of

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
replication.
Materials have also been modelled using a reflectivity percent-

age (Zhao et al., 2021). For instance, Haider et al. (2022) conducted ex-
periments with 5% reflective point scatter targets. More recent studies
have incorporated diffuse, specular, and transmissive factors obtained
from commercial frameworks like CarMaker (Haider et al., 2022).
Finally, another approach is to estimate intensity with DL from LiDAR
point clouds projected into images (Vacek et al., 2022; Xiao et al.,
2021). However, it is important to note that these models are condi-
tioned by the available training data, including lighting conditions and
materials observed during training.

Efficiency. Simulating LiDAR point clouds can be time-consuming,
particularly when applied to complex scenarios or scanning sessions
across paths. While efficient data structures are commonly used to im-
prove performance, evaluating the overall efficiency of the simulation
goes beyond data structures. Previous works have employed different
frameworks and techniques to improve simulation efficiency. Peinecke
et al. (2008) utilized OpenGL’s shaders to recreate a LiDAR sen-
sor, while Riordan et al. (2021) and Chen and Müller (2022) em-
ployed the Nvidia OptiX ray-tracing framework. Among these, only
the work of Chen and Müller (2022) demonstrated real-time perfor-
mance, achieving simulation times ranging from 19 ms/scan to 200
ms/scan. In another approach, Su et al. (2019) simulated a LiDAR
sensor using OpenGL’s fragment shaders to emulate the ToF principle.
They projected geometry into an image and estimated distances from
the depth information, thus enabling the direct use of DL models.
However, this approach may lack precision due to the limited geometric
and radiometric resolution. The work of Winiwarter et al. (2022)
was presented as an improvement over their predecessor (Bechtold
and Höfle, 2016), and reported their performance over three different
scenes. The simulation time ranged from less than 1 s to several dozens
of seconds in more complex scenarios.

2.3. LiDAR datasets

The vast majority of LiDAR datasets focus on autonomous driving
and perception tasks such as classification, semantic segmentation,
instance segmentation and tracking of mobile objects (Chen et al.,
2022), using geometrical (Behley et al., 2021) and intensity informa-
tion (Tan et al., 2020). Most of them record metropolitan environments
from a mobile vehicle coupled with a LiDAR, including visible and
infrared cameras in a few case studies (Choi et al., 2018). Recently,
LiDAR datasets have been released with video and audio feed (Piadyk
et al., 2023). On the other hand, aerial LiDAR datasets covering large
portions of the Earth’s surface are frequently published by governmen-
tal institutions at land inventorying portals. Since these are intended
to cover large areas, they are acquired from mid-altitude platforms
with a density of a few points per squared metre (approximately 10
points/m2 on average in the fourth Dutch airborne laser scanning
campaign (Gao et al., 2024)). Otherwise, there are denser airborne
LiDAR datasets (Varney et al., 2020).

Both kinds of datasets must be annotated to train DL networks.
Previously revised datasets are recorded by real sensors, and the clas-
sification is performed manually (Behley et al., 2021; Pan et al., 2020;
Tan et al., 2020) or using models trained with limited data (Wu et al.,
2019). Manual labelling induces errors, but another shortcoming is the
lack of LOD. In this regard, these are the number of semantic labels
of some widespread real datasets (Cai et al., 2022): SemanticKITTI
(28 labels) (Behley et al., 2021), nuScenes (23) (Caesar et al., 2019),
SemanticPOSS (14) (Pan et al., 2020), Toronto-3D (8) (Tan et al.,
2020) and Semantic3D (8) (Hackel et al., 2017). Available datasets also
present considerable differences regarding (1) the recorded scenario,
(2) the recording device and (3) the path planning. Therefore, these dif-
ferences have their impact on the available features, shown in Table 1,
as well as in the dimensionality and density of the captured point
clouds. These gaps harden the training of DL networks over multiple
82
Fig. 2. Semantic labelling of a CAD scenario with 8 and 6 tags, respectively.

datasets, whereas VLS helps to alleviate this problem by emulating the
recording conditions of one dataset to increase its size.

This paper extends our previous work (López et al., 2022) by
efficiently simulating radiometric data in 3D point clouds obtained
from models linked to semantic labels and materials. These features
are intended to build more complete synthetic LiDAR datasets that can
be leveraged with real-world datasets in training pipelines. Scenarios
modelled by professionals and procedural environments, together with
GPU-based scanning, enable the generation of large datasets with se-
mantic and radiometric data. In addition, the pipeline has been adapted
to lower the simulation time by minimizing the data transfers between
CPU and GPU.

3. Methodology

This section describes the components of the system, depicted in
Fig. 1, and provides an overview of the simulator. The methodology is
split as follows: (1) the use of synthetic environments, (2) the indexing
of virtual scenes in an efficient spatial data structure, and (3) the scan
simulation over virtual environments in the GPU.

3.1. Virtual scenarios

Virtual scans can be performed over indoor and outdoor scenarios.
This work uses indoor scenarios derived from Computer-Aided Design
(CAD) models and procedurally generated outdoor scenarios. Although
the latter falls outside the primary focus of this study, it enables a
diverse array of scenarios. In contrast, CAD scenarios such as those
published by McGuire (2017) are static and only enable collecting
a few point clouds. Instead of manually labelling large LiDAR point
clouds, human operators are required to annotate the digital models
with semantic labels. In this manner, scenarios are rapidly labelled
by looking for a pattern in the names of models or materials. Names
of objects are primarily used; otherwise, the procedure falls back on
the names of the materials. A name is considered not representative if
it collides with the names of other digital models (e.g., Mesh.001).
The links between semantic labels and names are provided as an XML
together with the 3D digital model, reaching any LOD (see Fig. 2). In
this work, virtual models are annotated with (1) labels with a custom
LOD and (2) standard labels from the LAS (LASer) file format (American
Society for Photogrammetry and Remote Sensing (ASPRS), 2019). Be-
sides labels, models are linked to materials that help to compute the
returned intensity in Section Surface modelling.

The LiDAR returns are estimated by ray-casting from the sensor
towards the virtual geometry. To efficiently solve intersections between
millions of rays and triangles, scenarios are organized into a BVH
constructed in the GPU as described by Meister and Bittner (2018).
This binary tree comprises leaf nodes containing polygons bounded

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 3. Overview of TLS and ALS simulations. Aerial scans are depicted with two different scan deflectors: zigzag and ellipsoidal.
by their Axis-Aligned Bounding Box (AABB). Intermediate nodes are
created by collapsing AABBs from the bottom up. Once constructed,
multiple threads can work in parallel to traverse the scene for each ray,
starting from the root and descending into the leaves. Ray-AABB and
ray-triangle intersection tests are efficiently solved with Majercik et al.
(2018) and Möller and Trumbore (1997) algorithms, respectively.

3.2. Simulation

The implementation and rendering of the proposed GPU-based Li-
DAR system are explained in this section, covering the scan principles
and platforms. This simulation offers physically-based intensity for ALS
and TLS over medium and large-scale datasets. This section is organized
as follows: first, the structure of LiDAR beams is described, and then,
the workflow of the GPU-based scan is explained.

3.2.1. Pulse modelling
LiDAR pulses are modelled as rays produced from the sensor’s emit-

ter, spreading towards uniformly sampled points from a unit sphere.
It is assumed that the sensor emitter and receiver occupy the same
location since this will simplify this process and later stages. Eq. (1)
shows how ToF LiDAR systems work. First, the distance of the surface
that returned the backscattered energy, 𝑅, is calculated according to
the time delay, 𝑡𝑠, and the speed of light, 𝑐.

𝑅 = 1
2
⋅ 𝑐 ⋅ 𝑡𝑠 (1)

Furthermore, LiDAR pulses have a footprint that must be considered
for simulating multiple returns. Therefore, pulses are better simulated
with multiple rays (Zohdi, 2020; Winiwarter et al., 2022), as depicted
in Fig. 4, that spreads within a radius in a parallel (collimated beams) or
diverging manner. Rays from the same pulse are computed using an or-
thonormal basis composed by the ray direction, 𝑟𝑑 , an up vector, 𝑢𝑝, and
a vector 𝑢̂ that is orthogonal to the previous two. The randomization in
this work follows a uniform distribution in [−1, 1] that, however, can
be trivially transformed into other distributions (e.g., Gaussian) (see
Fig. 5). This is possible since a large buffer comprising random values
is generated to be accessed by individual threads. The overall size is
a multiple of the number of subrays, albeit generally much smaller
than the number of rays (hence, threads access circularly using the
module operator). Also, the same random buffer can be applied to other
randomized stages.

Then, 𝑢̂ and 𝑢𝑝 are randomly scaled to generate points within a
circumference of radius 𝑝𝑟. In TLS simulations, the space subdivision is
mainly guided by the vertical and horizontal resolution, with the first
being related to the number of channels. Also, the field of view (FOV)
does not always cover 360°× 90°; indeed, it is frequent to have a very
narrow vertical FOV.

Accordingly, the horizontal FOV covers from 𝜚𝑜𝑟𝑖𝑔𝑥𝑦 to 𝜚𝑜𝑟𝑖𝑔𝑥𝑦 + 𝜚𝑥𝑦,
with 𝜚𝑜𝑟𝑖𝑔𝑥𝑦 being the starting angle and 𝜚𝑥𝑦 the covered horizontal
angle, with 𝜚 ∈ [0, 360[. The vertical FOV is calculated similarly.
𝑥𝑦

83
Fig. 4. Collimated rays simulating a pulse. The right side shows the scheme of (a)
collimated and (b) diverging rays.

Fig. 5. Random buffer for generating subrays in a LiDAR pulse. The distribution can
be adjusted to represent the behaviour of LiDAR pulses, e.g., by focusing rays on the
centre as in Winiwarter et al. (2022). It is depicted as a matrix, while the underlying
form is a linear buffer that can be used for other randomized processes.

A. López et al.

f
s

i
t

C

i
m
c
s
o
m
a
l
o
e
o

s
c

q

c
a
t
c
T
v
t
a

w

S

a

ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Nonetheless, equidistant sampling leads to a visually unpleasant alias-
ing effect due to an insufficient sampling rate, hence not meeting the
Nyquist criterion. Visually, this is frequently handled by jittering the
rays’ target (Akenine-Möller et al., 2018), a technique that proves useful
or emulating pulse jittering and minor inaccuracies observed in real
ensors (McManamon, 2019).

In contrast to TLS, ALS simulations always follow a path. The FOV
s typically more narrowed to avoid capturing atmospheric returns, and
he jittering affects the emitted rays and the height of the mobile plat-

form. The resolution is determined by the number of scans and pulses
per second. Instead of exclusively performing parallel scans over the
environment, other patterns help to optimize the point cloud coverage.
Fig. 3 shows zigzag and elliptical patterns as described by Dong and

hen (2018), together with some of the configurable parameters.
The computational demands of these simulations are substantial for

scans with high resolution or extended durations. Therefore, beams
can be massively generated in the GPU, with the primary challenge
being the limited GPU memory. In this regard, OpenGL buffers can
expand up to a few gigabytes regardless of the GPU VRAM (Video
Random Access Memory). Consequently, long scans must be completed
n several iterations, working over buffers allocated only once. The
aximum number of rays that can be simultaneously operated is

omputed according to the maximum capacity of an OpenGL buffer, the
ize of the information comprised in a ray (in bytes) and the number
f subrays simulating a pulse, 𝑛𝑟. The overall number of rays must be a
ultiple of 𝑛𝑟 since subrays behave synchronously and cannot be split

cross different executions. Unlike modern programming languages and
ibraries, OpenGL’s compute shaders do not provide a built-in generator
f pseudorandom numbers. Therefore, we lighten this computational
ffort by using the previous random buffer. It is generated in the CPU
nce, transferred to the GPU and accessed by threads.

3.2.2. Path design
Another key in mobile simulations is the design of paths. TLS

imulations can be performed by following a user-defined route at a
onstant height (e.g., the height at which a LiDAR sensor is mounted

on the roof of a vehicle). On the other hand, the path of ALS simulations
can be automatically calculated, with parallel lines whose distance is
computed with the extent of the scenario, the sensor’s FOV and the re-
uired overlapping. Otherwise, the path can be designed over a canvas

(the rendering surface of our application). Similarly to TLS, the height
is constant, though it can vary with noise of configurable magnitude.
One shortcoming of paths designed in a canvas is that they are captured
in every screen frame, leading to many similar and noisy points. We
oped with this by simplifying the path using the Douglas–Peucker
lgorithm (Douglas and Peucker, 1973) with a variable threshold, and
hen, these points were used as control points for a Catmull–Rom spline
urve that will be later sampled according to the scanning resolution.
his routine is easily integrated into the LiDAR solver as it simply in-
olves changing the sensor’s location and propagating beams according
o the platform navigation. Manual and automatically generated paths
re subsampled in the CPU and transferred to a GPU buffer, where paths

composed of multiple lines are transferred as different buffers to avoid
miscalculating the platform direction.

The path design enables the simulation of different mobile sensors,
including ALS, MLS and TLS coupled on vehicles. A few examples of
this are illustrated in Fig. 6. Similarly, Winiwarter et al. (2022) support
trajectories which are later interpolated during simulation; however,

e facilitate this by providing a canvas where they can be designed.

3.2.3. ToF solver
Propagated TLS and ALS rays interact with geometry to construct

dense point clouds with augmented data (semantic, instances, etc.).
Rays are processed by following the set of synchronous stages de-
picted in Fig. 7, regardless of the scanning platform. Particularities
of TLS and ALS are addressed using shader subroutines instead of
84
different pipelines. The GPU-based stages manipulate and share the
SBO (Shader Storage Buffer Object) buffers to avoid CPU data trans-

fers, with an explicit barrier preventing different stages from working
synchronously.

According to the illustrated stages, the virtual LiDAR system be-
haves as follows:

1. The energy carried out by each ray within a pulse is calculated,
which will affect the measured intensity. The id of the return is
set to zero.

2. Each ray finds the nearest intersected surface and polygon, if
any. Ray-AABB and ray-triangle intersection tests are used while
traversing the BVH.

3. Following, rays within a pulse behave synchronously. This is
especially relevant to simulate multiple returns in scenarios such
as forests, where rays that do not terminate early penetrate high
and low vegetation, and therefore, are more likely to reach the
ground surface. Although multiple, disparate, collisions can be
detected, only the nearest one is valid in each iteration. Thus,
threads that impacted the same piece of surface or did not
collide are terminated, whereas the rest still propagate. Several
collisions are considered to impact the same piece whether they
belong to surrounding polygons, bounded by a distance of 2 ⋅ 𝑑 ⋅
𝑝𝑟(2 − 𝑛̂ ⋅ 𝑟̂𝑑), with 𝑑 being the distance to the sensor’s origin, 𝑝𝑟
the pulse radius and 𝑛̂, ̂𝑟𝑑 the surface normal and ray direction,
respectively. Note that the amount of collided rays determines
the returned intensity.
The detected collisions are discarded if they exceed the sensor’s
maximum range. It is randomized with a user-defined magnitude
to avoid sharp boundaries. Surface slope also influences the
distortion of returned collisions, both on vertical and horizontal
axes (Deems et al., 2013). The magnitude of these errors is
highly dependent on sensor distance, and therefore, this error
mainly affects aerial surveys (Hodgson and Bresnahan, 2004).
Finally, a significant number of material errors are derived
from shiny, highly reflective surfaces, that were described in a
previous work.

4. Next, radiometric intensity data is computed for objects whose
reflectance is modelled with the so-called BRDF. The intensity
values are influenced by several factors, defined in the LiDAR
equation which will be presented below. Therefore, this stage
depends on the collision metadata as well as the sensor ca-
pabilities. For example, LiDAR sensors can operate at multiple
wavelengths, which notably conditions the outcomes. An exam-
ple is the bathymetric LiDAR (532 nm), which can capture points
from shallow underwater surfaces.

5. Outliers simulate errors caused by environmental conditions,
including temperature, atmospheric pressure variations, dust or
steam (Boehler and Marbs, 2018). To this end, a variable part
of the recorded collisions is translated using the ray parametric
form (𝑝 = 𝑟𝑜 + 𝑟𝑑 ⋅ 𝑡) and a random value assigned to the
distance 𝑡, which is particularly relevant to determine the spatial
distribution of outliers.

6. Finally, returns within a pulse are sorted to assign the return id,
from 1 to 𝑛𝑟𝑒𝑡𝑢𝑟𝑛𝑠, by following the pointer between consecutive
impacts. This feature is relevant for filtering out returns but the
last one from each pulse, thus extracting the ground points to
build Digital Elevation Models (DEM). This can be done using
the factor calculated from 𝑖𝑑𝑟𝑒𝑡𝑢𝑟𝑛∕𝑛𝑟𝑒𝑡𝑢𝑟𝑛𝑠.

3.3. Surface modelling

In this work, synthetic models are associated with materials and
semantic labels at different LODs. The materials include reflectance and
refractivity signatures. Reflectance models the ratio between incoming
and outgoing radiance across the wavelength spectrum and is obtained

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 6. Four different path-driven simulations. (a) ALS conducted with a manually sketched path, (b) ALS performed across a computer-generated path, (c) TLS operating at a
height of 2 m in an urban context and (d) MLS following a manually sketched path in an indoor scenario.
Fig. 7. Overview of LiDAR workflow. GPU and CPU stages do not overlap to avoid
data transfers.

from a material database that Dupuy and Jakob (2018) collected using
a goniophotometer. This database, though not densely populated, dis-
cretizes the hemispheres for each material with a variable number of
samples, typically fewer than 360 × 90 for materials such as anisotropic
ones. Note that 360 × 90 samples imply an angular resolution of 1◦ in
both azimuth (𝜃) and elevation (𝜙). Despite not always achieving this
resolution, we assume the hemispheres are discretized with 360 × 90
samples for simplicity. This sampling is replicated for every possible
incoming (𝑤⃗) and outgoing (𝑤) direction.
𝑖 𝑜

85
A few samples from this database are illustrated in Fig. 8. Unlike an-
alytic BRDFs, data from a goniophotometer results in a larger memory
footprint (360 × 90)2. However, we mitigate this by assuming the sensor’s
emitter and receiver position are equal (𝑤⃗𝑖 = 𝑤𝑜 = 𝑤⃗), reducing the
storage requirement to 360 × 90 samples per material. Consequently,
the memory footprint of this approach is limited to 62 × 360 × 90 × 195
floating-point values, totalling 1.45 G B, where 62 is the number of
materials and 195 is the number of wavelengths collected, ranging
from 358 nm to 1001 nm. Since LiDAR sensors operate at a specific
wavelength, the footprint is further reduced to 7.66 MB on the GPU
when using a single wavelength. To achieve this, the spectral signatures
of materials are fitted to a spline curve, retrieving the reflectance for
specific wavelengths that may not be directly available in the database.

This database is queried across the hemisphere of every material
with vectors such as (cos𝜙,− sin𝜙, sin 𝜃). Note that available BRDFs
are cosine-weighted, and the raw reflectance must be extracted by
unweighting the collected data with the cosine of the angled enclosed
by the surface normal and a vector determined by 𝜃. Once in the GPU,
the 𝜃 and 𝜙 angles for each return are calculated as shown in Eq. (2),
where 𝑛̂ is the normal vector of the surface at an arbitrary point 𝑝𝑖
and 𝑟𝑜 is the position of the sensor’s emitter and receiver components.
Remark that sampled BRDFs work under a local coordinate system
which must be replicated for every return. This coordinate system is
built with 𝑝𝑖 being the origin of the new coordinate system, and 𝑛̂ the
𝑍-axis. Accordingly, the ray direction, 𝑟𝑑 , must be reformulated relative
to 𝑛̂.
𝜃 = | − 𝑟𝑑 ⋅ 𝑛̂| ⋅ 𝜋

2

𝜙 = 2
(

ar ct an −𝑟𝑑𝑧
−𝑟𝑑𝑥

+ 𝜋
2

) (2)

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 8. Sample of BRDFs published by Dupuy and Jakob (2018). On the left side, the grid displays some of the materials and the spectral signature for random incoming vectors
(𝑤⃗𝑖), with incoming vectors parallel to outgoing ones (i.e., 𝑤⃗𝑖 = 𝑤𝑜). There are considerable variations whether 𝑤⃗𝑖 and 𝑤𝑜 vary, with lower elevation obtaining signatures of
smaller magnitude. On the right side, the scheme of reflections is depicted (the energy coming from 𝑤⃗𝑖 is observed at the direction 𝑤𝑜).
As previously mentioned, the BRDF database has low resolution,
whereas LiDAR returns require data with higher angular resolution.
Therefore, intermediate values must be computed by interpolating the
database samples. In this work, we used linear interpolations and
Hermite splines. The first has a simple logic as it interpolates from two
values. On the other hand, Hermite polynomials are harder to construct
in real-time as they require finding the polynomial coefficients from
their derivatives, and their complexity grows for polynomials with a
higher degree. An efficient solution is to pre-calculate the coefficient
matrix and transfer it to the GPU in an SSBO. Accordingly, the logic of
Hermite interpolations is simplified as in Eq. (3) whether four points
are used to interpolate the reflectance. The Listing 2 shows the shader
logic for smoothing the goniophotometer-based BRDF with Hermite
interpolation, in contrast to the linear interpolation in Listing 1.

⎛

⎜

⎜

⎜

⎜

⎝

𝐴
𝐵
𝐶
𝐷

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑥0,0 𝑥0,1 ⋯ 𝑥0,3
𝑥1,0 𝑥1,1 ⋯ 𝑥1,3
⋮ ⋮ ⋱ ⋮

𝑥3,0 𝑥2,1 ⋯ 𝑥3,3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑓𝑟0
𝑓𝑟1
𝑓𝑟2
𝑓𝑟3

⎞

⎟

⎟

⎟

⎟

⎠

𝐻(𝑡,) = 𝐴𝑡3 + 𝐵 𝑡2 + 𝐶 𝑡 +𝐷 , 𝑡 ∈ [0, 1]

(3)

Another relevant factor for a LiDAR system is the refractivity of
materials. It also varies through the spectrum, as can be observed in
the refractivity database from Polyanskiy (2022) (Fig. 9). We have
primarily applied this feature for the refractions coming from shallow
underwater surfaces in bathymetric surveys. Also, note that these sig-
natures are considerably more sparse than reflectance signatures, and
the spline curve is not as well approximated.

Using the previous data, the returned energy is computed from
the estimated reflectance, which depends on the emitter and receiver
components and is expressed as shown in Eq. (4). There are multiple
formulae in the literature to calculate the LiDAR intensity, though most
are analogous (Höfle and Pfeifer, 2007; Bolkas and Martinez, 2018;
Dong and Chen, 2018). 𝐼 is the emitted energy, 𝐷2

𝑟 is the receiver diam-
eter (m), 𝜂𝑎𝑡𝑚, 𝜂𝑠𝑦𝑠 are atmospheric and system transmission factors, 𝜌 is
the target reflectance, 𝐴𝑡 is the target area, 𝑅 is the distance to receiver
in m, 𝛽 is the transmit beam width (r ad) and 𝛺 is the scattering solid
angle (sr). 𝜋 controls the amount of energy in a specific point since it
86
Fig. 9. Database of refractivity signatures collected by Polyanskiy (2022). The top
chart grid shows the refractivity of different materials, with two frequent LiDAR
wavelengths annotated as guidelines. The bottom image shows the reflection and
refraction phenomena for two media with different refractivity.

spreads in every possible direction within a hemisphere.

𝜎 =
4𝜋 𝜌𝐴𝑡
𝛺

𝐴𝑡 =
𝜋 𝑅2𝛽2𝑡

4

𝑃𝑟 =
𝐼 𝐷2

𝑟 𝜂𝑎𝑡𝑚𝜂𝑠𝑦𝑠𝜎

4𝜋 𝑅4
=

4𝜋2𝐼 𝐷2
𝑟 𝜂𝑎𝑡𝑚𝜂𝑠𝑦𝑠𝜌

4𝛺 𝑅2𝛽2𝑡

(4)

From here, the scattering solid angle is computed as 𝐴𝑡∕𝑅2, there-
fore it can also be expressed as 𝛺 = 𝜋 𝑅2∕𝑅2 = 𝜋. The attenuation
factor 𝜂 is a system-dependent factor that varies over time and with
𝑠𝑦𝑠

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
different systems. Hence, it is 1 by default. 𝜂𝑎𝑡𝑚 also stands for a
transmission factor, although it depends on atmospheric conditions. As
described by Höfle and Pfeifer (2007), the attenuation factor of hori-
zontal and vertical propagation differs, and we included the attenuation
factors measured by such work, ranging from clear to haze conditions.
Additionally, 𝜂𝑎𝑡𝑚 is also influenced by the distance and is frequently
approximated as 10−2⋅𝑅⋅𝜈𝑎𝑡𝑚 , provided that 𝜈𝑎𝑡𝑚 is the atmospheric at-
tenuation factor. With these assumptions, Eq. (4) is simplified as shown
in Eq. (5).

𝑃𝑟 =
𝐼 𝐷2

𝑟𝜌 ⋅ 10
−2⋅𝑑⋅𝜈𝑎𝑡𝑚𝜂𝑠𝑦𝑠
4𝑅2

(5)

Similar to these formulas, other variations for bathymetric LiDAR
surveys can be found in the literature (Narayanan et al., 2009). Given
that alternative forms of Eq. (4) are designed for simulating spe-
cific scenarios, we have applied it exclusively to the simulation of
bathymetry for shallow underwater surfaces. We adhere to Eq. (5) for
other scenarios where refractivity also plays a role.

3.3.1. Tone mapping
Previously computed intensity, driven by the pulse energy, among

other factors such as the reflectivity of the target surface and atmo-
spheric conditions, comprises values in a wide interval. Accordingly,
the rendering of intensity data is frequently intricate due to showing
values in a wide range. This shortcoming hardens the observation of
subtle changes due to materials and observation angle. Therefore, it
is impractical to normalize intensity in [0, 1]. Otherwise, the ampli-
tude is sometimes provided as an exponential function covering the
dynamic range of the instrument (RIEGL Laser Measurement Systems
GmbH, 2017). However, improving shading tones is a prevalent topic
in Computer Graphics and has been thoughtfully treated for rendering.
More advanced solutions use tone-mapping function (Akenine-Möller
et al., 2018) that helps to emphasize changes, especially in values far
from zero. Tone-mapping functions such as the one in Hable (2010) can
be modelled as flexible and efficient curves, parameterized by exposure
(𝜆) and gamma (𝛾) factors. It is important to adjust 𝜆 and 𝛾 according
to the specific screen. Fig. 10 compares the rendering of the point cloud
replicated from an Ultra-Puck LiDAR with lower peak power (𝐼 , in W
units), and its improved visualization using 𝜆 ← 2.2 and 𝛾 ← 1.

3.3.2. Analytic BRDFs
In contrast to real-world BRDFs, surfaces can also be modelled

with analytic BRDFs, i.e., functions intended to fake a physically-based
shading to humans in real time. However, these functions do not
change according to wavelengths; instead, surfaces are modelled with
RGB-based components, such as the albedo and specular components.

A notable list of proposed analytic BRDFs can be found in related
reviews (Guarnera et al., 2016). We implemented six BRDFs that help
to emulate different kinds of materials; from anisotropic surfaces to
dull-like, nearly Lambertian objects. These BRDFs are showcased in
Fig. 11 in two ways. First, analytic BRDFs were used to shade the
dragon model. Then, using an incoming vector, 𝑤𝑖, and an outgoing
vector, 𝑤𝑜, the analytic BRDF helps to shape a hemisphere to show how
energy spreads at every possible normal vector. Accordingly, the Lam-
bertian model distributes the same energy across all normal vectors,
regardless of the incoming radiance or viewing direction. In contrast,
the Cook-Torrance, Blinn-Phong, and Ward-anisotropic models feature
more complex specular lobes that depend on the viewing direction.

Analytic BRDFs also get considerably simplified whether 𝑤𝑖 =
𝑤𝑜 = 𝑤, as in a LiDAR system. In this regard, the formulae for the
implemented BRDFs are listed below, where 𝜌𝑑 and 𝜌𝑠 are diffuse and
specular colours of the material, 𝛼𝑚 is the roughness factor and ℎ is
the halfway vector (𝑤̂𝑖 + 𝑤̂𝑜 = 2 ⋅ 𝑤̂). Further insight into the following
BRDFs can be found in Guarnera et al. (2016).
87
Fig. 10. Simulation of HDL-64E LiDAR with 60 W, and rendering of the resulting point
cloud (1) without and (2) with tone-mapping.

(i) Lambertian:

𝜌 =
𝜌𝑑
𝜋

(6)

(ii) Oren-Nayar:
𝜌 =

𝜌𝑑
𝜋
(𝐾 + 𝐽) sin 𝜃𝑤 t an 𝜃𝑤

𝐾 = 1 − 0.5 𝛼2𝑚
𝛼𝑚2 + 0.33

𝐽 = 0.45 𝛼2𝑚
𝛼𝑚2 + 0.09

(7)

(iii) Minnaert:

𝜌 =
𝜌𝑑
𝜋
(𝑛̂ ⋅ 𝑤̂)2(𝑘−1) (8)

(iv) Blinn-Phong:

𝜌 = 𝜌𝑠(𝑛̂ ⋅ ℎ̂)𝑘 = 𝜌𝑠(𝑛̂ ⋅ 2𝑤̂)𝑘 (9)

(v) Cook-Torrance:

𝜌 =
𝐹 (𝛽)𝐷(ℎ)𝐺(𝑤⃗)

𝜋(𝑛̂ ⋅ 𝑤̂)2

𝐹 (𝛽) = 𝐹0 + (1 − 𝐹0)(1 − 𝑛̂ ⋅ 𝑤̂)5

𝐷(ℎ) = 1
𝛼2𝑚(ℎ̂ ⋅ 𝑛̂)4

exp
(ℎ̂ ⋅ 𝑛̂)2 − 1
𝛼2𝑚(ℎ̂ ⋅ 𝑛̂)4

𝐺(𝑤⃗) = min
(

1,
4(𝑛̂ ⋅ 𝑤̂)2

ℎ̂ ⋅ 𝑤̂

)

(10)

where 𝐹 (𝛽) is the Schlick approximation described in Akenine-
Möller et al. (2018), 𝐷(ℎ) is the Beckmann distribution
(Montes Soldado and Ureña Almagro, 2012; Guarnera et al.,
2016) and 𝐺(ℎ) is the geometric attenuation factor. Also, note

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 11. BRDFs depicted (1) by shading a 3D model and (2) by distorting a hemisphere
with the estimated intensity. 𝑓𝑟(𝑤⃗) is represented by the distance from each vertex of
the distorted hemisphere to the origin, [0, 0, 0]. From left to right, and from top to
bottom: (a) Lambertian, (b) Oren-Nayar with 𝛼𝑚 = 0.5, (c) Minnaert with a darkening
factor (𝑘) of 1.47, whereas 𝜌𝑑 is increased by a factor of A = 2.6, (d) Blinn-Phong with
𝛼 = 11, (e) Cook-Torrance with 𝛼 = 0.685 and 𝐹0 = 0.40, and (f) Ward anisotropic
with 𝛼𝑥 = 0.15 and 𝛼𝑦 = 0.75. 𝜌𝑑 = 1 for all the illustrations.

that 𝐹0 is the external reflection under normal incidence casu-
istic (𝑤⃗ = 𝑛), therefore the rest of the values are approximated
through interpolation between 𝐹0 and 1.

(vi) Ward anisotropic:

𝜌 =

𝜌𝑠 exp

⎛

⎜

⎜

⎜

⎝

−

(

ℎ⋅𝑥
𝛼𝑥

)2
+
(

ℎ⋅𝑦
𝛼𝑦

)2

(ℎ̂⋅𝑛̂)2

⎞

⎟

⎟

⎟

⎠

4𝜋 𝛼𝑥𝛼𝑦(𝑛̂ ⋅ 𝑤̂)

(11)

3.4. Return losses

LiDAR returns are also affected by the surface roughness. In this
regard, surfaces with lower roughness are more likely to cause the
’time-walk’ effect, which makes returns appear more distant, or even
not be captured by the receiver component (Ullrich and Pfennigbauer,
2019). Although BRDF databases provide the scattered light in a spe-
cific direction, there is no trivial manner to decompose these values
into the terms that led to it, including roughness. To overcome this,
materials are also linked to a roughness factor, between zero and one,
that, together with a global loss function, helps to model return losses
as depicted in Fig. 12.

The custom function, 𝑙(𝛼𝑚), has an exponential shape based on
roughness 𝛼𝑚, and is parameterized according to 𝑎, 𝑏, 𝑐 , 𝑝 factors and
a threshold 𝑚, as shown in Eq. (12). Accordingly, returns can be
discarded whether their roughness, plus a random factor, is above 𝑚.
Whether an intersection is not discarded but belongs to a glossy surface,
the simulated distance is higher due to the cited ’time-walk’ effect.
The additional distance is emulated considering (1) a random factor
belonging to the object and (2) a random factor linked to the polygon.
These considerations help to randomize the ’time-walk’ effect while
preserving the object shape. Both factors can be adjusted, and 𝑎, 𝑏, 𝑐
and 𝑝 should be adapted to fit a specific LiDAR sensor.

𝑙(𝑘𝑠) =
{

𝑐 + 𝑎(𝑘𝑠 + 𝑏)𝑝 𝛼𝑚 > 𝑚
𝑐 𝛼𝑚 ≤ 𝑚

(12)

where 𝑐 introduces some randomness even for diffuse materials (it is
zero by default).
88
Fig. 12. Configuration of the loss function over three different materials. The depicted
functions are represented in terms of 𝑥 = 𝛼𝑚, from zero to one, and 𝑦 = 𝑙(𝛼𝑚). This
way, we get the probability of a return being lost for a given roughness value. The gold
material is the one with lower roughness and therefore is more likely to lose returns.
The first exponential function, Lossy 1, is more strict and provokes more return losses.
The colour encoding represents the recorded intensity.

3.5. RGB shading

RGB cameras are frequently integrated into scanning systems, and
as a post-processing stage, LiDAR point clouds can be enhanced with
RGB data. This enhancement is more informative than intensity alone
because it represents three wavelengths, making it more intuitive for
human inspection. Therefore, RGB data was simulated by coupling
a camera and adding it as an additional step after the LiDAR sim-
ulation. While previous empirical BRDFs are realistic, the database
is incomplete and lacks a wide variety of RGB colours. In contrast,
available scenarios often utilize materials defined by albedo, metallic,
and roughness factors in the Physically-based Rendering (PBR) theory.
Additionally, one or several light sources can be defined in the GUI,
with at least one acting as a shadowing source. We implemented this
post-processing shading using traditional rendering techniques (vertex
shader followed by fragment shader), although it can also be achieved
using compute shaders.

Fig. 13 shows the followed pipeline. The RGB shading is performed
for each model since only one material was provided simultaneously.
The fragment shader stage is required for shadowing the scenario since
it provides smoothing operators that enable accessing surrounding
pixels and avoiding artefacts from shadow mapping. On the other hand,
most of the calculations are performed per point (vertex shader) for
efficiency (the number of points is much lower than the number of
pixels on the screen). During rendering, the camera is placed at the

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 13. Overview of procedure for calculating the RGB shading after the main
simulation.

Fig. 14. RGB shading of LiDAR point clouds from the conference room and a car
model.

position of the light source to generate the shadow map. To obtain
the final rendering points do not necessarily get projected into the
screen, but can be processed offline to calculate the point-wise RGB
colour. Nonetheless, other factors such as specularity, influenced by
the viewing angle, must be computed according to the LiDAR location
rather than the lighting source. The results of shading the conference
room and a car model are illustrated in Fig. 14.

4. Results and discussion

The proposed simulation is evaluated by (1) measuring the overhead
of intensity calculations, (2) comparing the simulation time and inten-
sity returned by our simulator against other notable VLS, (3) showing
89
the outcomes of different commercial sensors in terms of intensity, (4)
analysing the similarity of class-wise histograms in comparison with
a real-world point cloud of an urban scenario and (5) varying the
LiDAR wavelength across a significant spectral interval. To this end,
different scenarios will be used across this section: a conference room
(330k triangles), a bedroom (1.5M triangles), the San Miguel scene
(5.6M triangles) (McGuire, 2017) and an urban scenario (4M triangles)
that can be scanned following a path. Also, analytic BRDFs will be
compared to real-world BRDF data by measuring the simulation time
of each approach and rendering the outcome of each one, in contrast to
real-world point clouds. For the sake of simplicity, these experiments
will be mainly carried out using TLS simulations. The parameteri-
zation of the proposed LiDAR enables simulating a vast number of
commercial sensors. In our experiments, we used the following sensors:
Velodyne HDL-64E (Velodyne, 2018a), Pandar64 (Hesai, 2020), HDL-
32E (Velodyne, 2019b), Puck (Velodyne, 2019c), Puck Lite (Velodyne,
2018c), Puck Hi-Res (Velodyne, 2018b), Ultra Puck (Velodyne, 2019d),
Alpha Prime (Velodyne, 2019a) and Zenmuse L1 (ALS) (DJI, 2021).

Measurements were performed on a PC with AMD Ryzen Thread-
ripper 3970X 3.6 GHz, 256 GB RAM, Nvidia RTX A6000 GPU and
Windows 10 OS. The proposed methodology is implemented in C++
20 and OpenGL (Open Graphics Library). Massively parallel imple-
mentations were developed in GLSL (OpenGL Shading Language) using
general-purpose compute shaders and OpenMP for the multi-core CPU
approach. The reported values concerning simulation time are obtained
by averaging five different results.

4.1. Computational cost from calculating intensity

After the LiDAR collisions are detected, we attach data to them,
either coming from the intersected surface or calculated from available
data. The following experiments measure the computational cost from
calculating intensity over three scenes and six LiDAR scanners. This
setup helps to shed light on the stability of intensity calculations, even
with larger scenarios. These tests do not only show the overhead of
intensity calculations but also compare the response time obtained
from (1) using analytic (ABRDF) and empirical BRDFs (PBRDF), as
well as (2) different interpolation methods (naive, linear and Hermite
interpolations). The naive method selects the value from the nearest
spherical point, without interpolating. Table 3 compares the perfor-
mance of using PBRDF and ABRDF, whereas Table 2 compares the
computational cost of different interpolations. Fig. 15 summarizes the
results of both tables visually. From this figure, it can be concluded that
PBRDFs are less time-consuming, at the expense of slightly increasing
the use of VRAM. On the other hand, using one interpolation or another
has no relevant effects on the response time. Indeed, the measured time
fluctuates from one test to another at the level of ms. Still, the Hermite
interpolation seems to be more unstable according to the reported
variance. However, it must be noted that the overhead introduced
by calculating intensity is irrelevant when compared with the overall
simulation, which is analysed below.

4.2. Overall computational cost

The following experiments highlight the efficiency of this sys-
tem relative to our previous work and HELIOS++. Our previous ver-
sion (López et al., 2022) involved computing the entire buffer of rays on
the GPU, transferring them to the CPU, and iteratively uploading them
back to the GPU to perform the simulation. In contrast, our current
pipeline computes the rays during the simulation itself, eliminating the
need for this separate preprocessing stage.

In these experiments, our work and HELIOS++ were evaluated
in four different scenarios using specifications of commercial LiDAR
sensors. Similarly to our solution, pulses were simulated using nineteen
rays, equivalent to 3 subcircles in HELIOS++ (1 + 6 + 12) (coined as
beam sample quality in HELIOS++). Table 4 provides further insight

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 15. Response time in ms measured by calculating intensity with PBRDFs (Hermite) and ABRDFs, on the top chart, and using different interpolation operators, on the bottom
chart.
Fig. 16. Simulation time, in seconds, measured in four scenarios scanned by seven LiDAR scanners. Three approaches are compared: the one explained in this manuscript, our
previous work, and HELIOS++.
into the measured time, and Fig. 16 summarizes it. The improvement
in the simulation time of our VLS against HELIOS++ ranged from
77.79% (suburb) to 91.5% (conference room), whereas it goes from
51.14% (suburb) to 71.89% (bedroom) in comparison with the previous
version of our VLS. On average, the simulation time was improved by
85.62% relative to HELIOS++ and 65.93% w.r.t. our previous work. We
hypothesize that the simulation time of HELIOS++ is notably higher
due to solving the spatial searches in the CPU. The improvement
relative to our previous work comes from diminishing data transfers
between CPU and GPU, and from immediately operating over calcu-
lated data (such as the rays) instead of downloading and uploading it
later. Still, data transfers represent a notable bottleneck, although the
GPU does not stall as much as in our previous approach. Furthermore,
this workflow helps to conduct large LiDAR scans, either in a mobile
90
platform or guided by measuring time, by splitting LiDAR surveys into
many iterations. Note that this number depends on the number of
maximum returns and the size of a single ray object in the GPU.

4.3. Relevant factors in intensity calculation

The distribution of intensity data was analysed in the conference
room by changing the operating device and location. Accordingly,
Fig. 17 shows how intensity histograms vary with four different config-
urations. First, HDL-64E and UltraPuck devices are emulated using the
same location (experiments (a) and (b)), leading to similar histograms.
However, the peak power of the HDL-64E sensor is considerably higher
than in UltraPuck, and so is the magnitude in the horizontal axis of

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 17. Intensity histograms for different sensors and locations. From top to bottom, HDL-64E and UltraPuck are simulated in the same location ((a) and (b)), and then, the same
sensors are simulated in another position ((c) and (d)).
the depicted histograms. Then, the last tests, (c) and (d), replicate this
experiment with a different location and height. They produce more
disparate point clouds due to the field of view covered by both sensors;
while the HDL-64E goes from −24.8°to 2°, UltraPuck covers 40°starting
from −25°. One of the main variations is on the board material,
corresponding to panels in the walls, from which the UltraPuck sensor
produced more points. In addition, these points were found with an
incident vector close to the normal vector of the walls, hence returning
higher intensity.

4.4. Intensity measurement

The following experiment compares the graphical results of in-
tensity simulation. First, the analytic BRDFs are used as traditionally
proposed. The material’s albedo colour is weighted according to a
shading function such as Oren-Nayar and Cook-Torrance. Otherwise,
materials are linked to BRDFs from the goniophotometer database, thus
getting rid of albedo colour. Fig. 18 compares the graphical results of
ABRDF and PBRDF, and the resulting histograms for every material.
Note that ABRDFs tend to obtain a decreasing function identical for
all the materials, despite having disparate intensity intervals. On the
other hand, PBRDFs offer a wider variety of distribution shapes, as
real-world BRDFs are typically more complex and less uniform than
traditional rendering techniques. Fig. 19 shows the histograms of four
point clouds recorded by real-world LiDAR scans. Unlike the steadily
decreasing functions observed in ABRDFs, these histograms do not
exhibit a clear pattern, even between point clouds recorded by the same
sensor in similar scenarios. This lack of consistency underscores the
complexity and unpredictability of BRDFs compared to ABRDFs due
to the numerous parameters influencing the results. These parameters
include recording height, material appearance, distance, positioning,
and orientation of surfaces. Consequently, these factors complicate
the comparison between simulated and real-world scans, making it
challenging to achieve accurate simulations.
91
We have also compared our work against HELIOS++, which origi-
nally used empirical BRDFs from Meerdink et al. (2019). These BRDFs
collect values from a wide wavelength interval, but they are not depen-
dent on the ongoing and outgoing vectors. Instead of using the BRDFs
from Meerdink et al. (2019), we translated the database of Dupuy and
Jakob (2018) into their format. We only considered the returned light
when the incident vector is the surface’s normal vector. The percentage
of returned light for every wavelength was obtained by summing values
for every 𝑤𝑜 while fixing 𝑤𝑖.

The intensity and semantic maps of the scene are depicted in
Fig. 20. The intensity recorded by HELIOS++ is mainly affected by the
distance and the incident angle (cosine factor from ̂−𝑤𝑖𝑛̂). By contrast,
our solution demonstrates greater intensity variability among differ-
ent materials, including intricate intensity responses from anisotropic
materials like fabric. The latter BRDF was used to model the curtains
on the left side of the conference room. In Fig. 20, the bottom figures
compare fabric and cardboard (Lambertian-like) materials, highlighting
the complexity of the first.

4.5. Path recording

Designing paths helps to solve scans extended over time according
to the vehicle speed. In this regard, we conducted two experiments
showing the recorded intensity through terrestrial and airborne sur-
veys. Fig. 22 depicts the mean intensity across a path composed of
232 locations (TLS; HDL-64E) over the urban scenario previously used.
The ALS path was automatically calculated and the simulation was
performed using a DJI Zenmuse L1 sensor flying at 40 m. The class
with the higher number of occurrences is depicted every ten frames,
and its average intensity is shown as a red line. The overall average
intensity is, on the other hand, represented as a blue line.

The average intensity in ALS is notably higher due to objects being
captured with incident vectors similar to the normal vector. Since it
was recorded over a procedural scenario, the most frequent labels
are high vegetation, low vegetation and water, with ground barely

A. López et al.

Fig. 18. (a) Intensity obtained from a Velodyne HDL-64E coupled on a vehicle, using analytic BRDFs. (b) Same configuration as (a), though intensity calculation is performed
with empirical BRDFs.

Fig. 19. Intensity histograms of the five most frequent labels found in four point clouds in the Toronto-3D dataset (Tan et al., 2020). Note that, even in point clouds captured by
the same sensor and similar scenarios, there are notable changes in the recorded intensity data.

ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98

92

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 20. Semantic and intensity maps obtained from HELIOS++ and our solution.
Zoom-ins show details concerning an anisotropic material that cannot be represented
in HELIOS++, and another part of the scene where materials are notably similar due
to the Lambertian behaviour. Below, (a) fabric and (b) cardboard BRDFs are compared
using the same incident angle, illustrated in Tekari (Dupuy and Jakob, 2018).

appearing. Due to the FOV, the number of points belonging to each
class is considerably imbalanced. Hence, the majority of points per
scan belong to the depicted class, while others are barely observed and
contribute to lowering the average intensity. Note that the latter are
typically recorded with incidence vectors far from the nadir vector.

On the other hand, individual TLS scans are given by 360°scans
of an urban scenario. In this simulation, the appearance of different
labels is much more balanced. Although buildings and high vegetation
are the most frequent, with BRDFs similar to Lambertian, these are
commonly mixed with other BRDFs of higher intensity, such as metallic
ones found in cars. Since the scenario is not too large and has some
visible boundaries, the ground was the most frequent label in at least
one scan. Note that in these, the average intensity is considerably lower
since barely any other labels are found and if so, the returned intensity
is low due to distance and incidence angle.

4.6. Operating wavelength

LiDAR sensors are widely used for various applications and operate
over several wavelengths. In non-scientific applications, the focus is
typically on the 600–1000 nm wavelength range. Still, several com-
monly used LiDAR sensors operate at wavelengths such as 532 nm
(bathymetric), 905 nm, 1064 nm, and 1550 nm. The choice of wave-
length depends on the target objects and whether the sensor needs
to be eye-safe. An experiment was conducted in the conference room
93
Fig. 21. Average intensity obtained for six materials by scanning them within a
wavelength interval in [400, 1000] nm. The BRDFs linked to each material are depicted
on the right side of every chart.

to study the effects of different wavelengths on LiDAR measurements.
The active wavelength was shifted from 400 nm to 1000 nm, and the
LiDAR sensor was configured as an HDL-64E device. Fig. 21 illustrates
the average intensity obtained for different materials, including wood,
acrylic, board, metal, plastic, and fabric. Each material is associated
with its corresponding BRDF, annotated on the right side of the figure.

While most of the objects used in this experiment had corresponding
materials in the BRDF database, having complete coverage is not always
possible. The average intensity of the LiDAR returns exhibited uneven
variations for the set of materials tested. Some materials displayed a
steady increase in intensity as the wavelength increased, while others
presented a notable number of intensity peaks or crests. This ex-
periment highlights the significance of simulating LiDAR systems at
different wavelengths. Understanding how different materials respond
to varying wavelengths can aid in the development of effective LiDAR
systems and improve the interpretation of LiDAR data for a wide range
of applications.

4.7. Completeness of LiDAR features

Finally, VLS offers a distinct advantage in its ability to flawlessly
simulate an extensive array of features derived from synthetic models.
All the refined datasets encompass a subset of the myriad possible
features, and as such, VLS empowers the integration of novel features
that would be otherwise challenging to incorporate. An illustrative
example is the inclusion of normal vectors, a task considerably more
intricate for human operators. When calculated automatically, these

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 22. Frame-wise average intensity during airborne (top) and terrestrial (bottom) simulations. The label with the highest number of returns is depicted every eight frames.
Fig. 23. Rendering of features obtained by scanning the bedroom scenario with an Ultra Puck sensor. The gaps below the scanning location are derived from the limited FOV.
The scenario lacks albedo colours and therefore, RGB shading was omitted in this figure.
vectors often rely on Deep Learning or geometric algorithms that may
introduce erroneous data. In contrast, synthetic models reliably provide
data such as normal vectors, instance IDs, GPS timestamps, semantic
labels at any LOD, scanning rank, intensity, and more.

Fig. 23 provides a visual representation of the features achievable
by our work. We evaluated its performance using a bedroom scene con-
sisting of 1.5 million vertices. GPS timestamps have been normalized
in [0, 1], while scan ranks are scaled within the interval [0, 𝜋2]. Notice
that the laser pulse direction does not refer to the scan direction flag
94
in the LAS standard. It represents the vectors going from the sensor
position to the captured points. It is worth noting that LAS labels are
typically not well-suited for indoor scenes. Consequently, we have only
employed two labels (Building and Created).

5. Conclusions and future work

This paper introduces a GPU-based LiDAR simulator to generate
comprehensive point clouds with diverse attributes, including point

A. López et al.

1
1

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

2

2

2

2
3

3

3

3

3
3
3

ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Fig. 24. Road marks visible in the Toronto-3D dataset.

coordinates, return number, number of returns, semantic labels, and
GPS time, and other less common but crucial attributes such as normal
vectors, intensity values, scan rank, laser pulse direction, and individual
instances. While many published LiDAR datasets touch upon semantics,
they are often limited to a limited number of classes, and may even
contain erroneous data. In contrast, our work offers the flexibility
to simulate semantics with any LOD. Moreover, we employ BRDFs
involving both radiometric and spatial dimensions to compute intensity
values, as opposed to prior approaches relying on shading-based BRDFs
like Phong or Cook-Torrance or BRDFs neglecting the incidence angle of
energy. To this end, we leverage a recent BRDF database acquired from
a goniophotometer for accurate intensity computation. Additionally,
our VLS introduces dynamic simulations, allowing platforms to undergo
translation by specifying a set of control points through a user-friendly
GUI. This facilitates the design of custom paths, whether for TLS, ALS,
or MLS. While other VLS systems have addressed this capability to some
extent, they often lack intuitive tools for path design.

The complete simulation procedure was implemented on a GPU and
benchmarked against another state-of-the-art VLS system incorporating
semantic and intensity data. The conducted experiments demonstrated
the superior performance of our approach, decreasing the simulation
time on an average of 85.62% in comparison to Winiwarter et al.
(2022). Furthermore, our sensor parameterization framework empow-
ers the simulation of a wide spectrum of LiDAR sensors and platforms.
This versatility can serve dual purposes: firstly, optimization for future
inspection methodologies, and secondly, the generation of datasets that
mimic currently published real-world datasets, effectively augmenting
their scale.

Nevertheless, LiDAR simulations pose significant challenges while
still having certain drawbacks and limitations, which warrant attention
in future research. A key deficiency is the level of detail within a single
model, as illustrated in Fig. 24. The pavement is commonly modelled
as a plane, thus overlooking the presence of different materials, such as
acrylic for crosswalks. Furthermore, another problem in 3D modelling
is the labelling of objects. Although semantic labelling is achieved
through regular expressions applied to object and material names, there
remain instances where proper naming conventions are lacking. For
instance, the bedroom scene comprises objects with generic labels like
Mesh001 that fail to represent the semantics of 3D scenes. Therefore,
the integration of semantic segmentation techniques holds promise for
naming scenarios within publicly available datasets where conventional
semantics may fall short.

Although empirical BRDFs have been included, the intensity mod-
elling is much more complex, as observed in the DART simulator (Yang
et al., 2022). Therefore, this system ought to be extended to include
many more phenomena affecting real LiDAR scans. Moreover, the
refinement of this methodology could benefit from incorporating full-
waveform and single-photon LiDAR systems (Tachella et al., 2019), as
well as other non-included technologies. In Deep Learning, a more in-
depth investigation is crucial to elucidate the advantages of employing
VLS over procedural environments for generating extensive datasets
spanning natural and urban scenarios.
95
CRediT authorship contribution statement

Alfonso López: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investiga-
tion, Funding acquisition, Formal analysis, Data curation, Conceptual-
ization. Carlos J. Ogayar: Writing – review & editing, Methodology,
Formal analysis. Rafael J. Segura: Writing – review & editing, Project
administration, Investigation, Formal analysis, Conceptualization. Juan
C. Casas-Rosa: Writing – review & editing, Validation, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This result has been partially supported by the Spanish Ministry of
Science, Innovation and Universities via a predoctoral grant
(FPU19/00100) and a postdoctoral grant (JDC2023-051785-I) to the
first author.

Code listings

1 float x_i, y_i, x_f = modf(x, x_i), y_f = modf(y, y_i)
2 int x0 = int(x_i), y0 = int(y_i), x1 = (x0 + 1) % 360, y1 = clamp(

y0 + 1, 0, 90)
3
4 float reflectance = brdfData[materialID * 32760 + x0 * 91 + y0]
5 * (1.0f - x_f) * (1.0f - y_f) +
6 brdfData[materialID * 32760 + x1 * 91 + y0]
7 * x_f * (1.0f - y_f) +
8 brdfData[materialID * 32760 + x0 * 91 + y1]
9 * (1.0f - x_f) * y_f +
0 brdfData[materialID * 32760 + x1 * 91 + y1]
1 * x_f * y_f

Listing 1: Linear interpolation of BRDF data.

1 L = normalize(ray.origin - collision);
2
3 y = (PI / 2.0f - abs(asin(clamp(L.y, -1.0f, 1.0)))) * 2.0f * 90.0f

/ PI
4 x = (atan(L.z, L.x) + PI) * 2.0f * 90.0f / PI
5 x_f = modf(x, x_i)
6 y_f = modf(y, y_i)
7 x0 = int(x_i) % 360
8 x1 = (x0 + 1)
9 x2 = (x1 + 1) % 360
0 x3 = (x2 + 1) % 360
1 y0 = clamp(int(y_i), 0, 90)
2 y1 = clamp(y0 + 1, 0, 90)
3 y2 = clamp(y1 + 1, 0, 90)
4 y3 = clamp(y2 + 1, 0, 90)
5
6 rx0 = brdfData[materialID * 32760 + x0 * 91 + y0]
7 rx1 = brdfData[materialID * 32760 + x1 * 91 + y0]
8 rx2 = brdfData[materialID * 32760 + x2 * 91 + y0]
9 rx3 = brdfData[materialID * 32760 + x3 * 91 + y0]
0 ry0 = brdfData[materialID * 32760 + x0 * 91 + y0]
1 ry1 = brdfData[materialID * 32760 + x0 * 91 + y1]
2 ry2 = brdfData[materialID * 32760 + x0 * 91 + y2]
3 ry3 = brdfData[materialID * 32760 + x0 * 91 + y3];
4
5 ax = rx0 * hermiteTensor[0] + rx1 * hermiteTensor[1] + rx2 *

hermiteTensor[2] + rx3 * hermiteTensor[3]
6 bx = rx0 * hermiteTensor[4] + rx1 * hermiteTensor[5] + rx2 *

hermiteTensor[6] + rx3 * hermiteTensor[7]
7 cx = rx0 * hermiteTensor[8] + rx1 * hermiteTensor[9] + rx2 *

hermiteTensor[10] + rx3 * hermiteTensor[11]
8 dx = rx0 * hermiteTensor[12] + rx1 * hermiteTensor[13] + rx2 *

hermiteTensor[14] + rx3 * hermiteTensor[15]
9
0 ay = ry0 * hermiteTensor[0] + ry1 * hermiteTensor[1] + ry2 *

hermiteTensor[2] + ry3 * hermiteTensor[3]
1 by = ry0 * hermiteTensor[4] + ry1 * hermiteTensor[5] + ry2 *

hermiteTensor[6] + ry3 * hermiteTensor[7]
2 cy = ry0 * hermiteTensor[8] + ry1 * hermiteTensor[9] + ry2 *

hermiteTensor[10] + ry3 * hermiteTensor[11]
3 dy = ry0 * hermiteTensor[12] + ry1 * hermiteTensor[13] + ry2 *

hermiteTensor[14] + ry3 * hermiteTensor[15]
4
5 return (x_f * (x_f * (x_f * ax + bx) + cx) + dx) + (y_f * (y_f *
6 (y_f * ay + by) + cy) + dy)
Listing 2: Hermite interpolation of BRDF data, with coefficients being
accessed from a GPU buffer, instead of calculating them.

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Table 2
Overhead introduced by the intensity calculation stage using different interpolation approaches.

Sensor/Approach Scenario

Conference San Miguel Urbana

331k triangles 5.6 m triangles 4.1 m triangles

Naive Linear Hermite Naive Linear Hermite Naive Linear Hermite

HDL-64E (2.880 m rays) 2.033 ± 0.144 ms 2.044 ± 0.106 ms 2.226 ± 0.219 ms 2.303 ± 0.153 ms 2.243 ± 0.233 ms 2.327 ± 0.119 ms 2.240 ± 0.252 ms 2.472 ± 0.353 ms 2.305 ± 0.265 ms
Pandar64 (1.334 m rays) 1.080 ± 0.175 ms 0.963 ± 0.079 ms 1.200 ± 0.132 ms 1.419 ± 0.260 ms 1.474 ± 0.121 ms 1.463 ± 0.319 ms 1.171 ± 0.137 ms 1.231 ± 0.163 ms 1.243 ± 0.247 ms
HDL-32E (446.4k rays) 0.863 ± 0.267 ms 0.778 ± 0.060 ms 0.880 ± 0.142 ms 1.278 ± 0.157 ms 1.220 ± 0.173 ms 1.118 ± 0.046 ms 0.922 ± 0.113 ms 1.002 ± 0.177 ms 1.135 ± 0.360 ms
Puck Lite (216k rays) 0.737 ± 0.106 ms 1.150 ± 0.540 ms 0.642 ± 0.123 ms 0.766 ± 0.128 ms 0.908 ± 0.141 ms 0.955 ± 0.239 ms 0.582 ± 0.133 ms 0.588 ± 0.136 ms 0.581 ± 0.128 ms
Puck Hi-Res (216k rays) 0.674 ± 0.133 ms 0.617 ± 0.101 ms 0.968 ± 0.436 ms 0.808 ± 0.056 ms 0.851 ± 0.094 ms 0.703 ± 0.074 ms 0.649 ± 0.229 ms 0.599 ± 0.965 ms 0.604 ± 0.144 ms
Ultra Puck (1.756 m rays) 2.708 ± 0.171 ms 2.906 ± 0.289 ms 4.091 ± 0.359 ms 2.973 ± 0.258 ms 3.000 ± 0.206 ms 2.943 ± 0.082 ms 3.382 ± 0.431 ms 3.394 ± 0.437 ms 3.059 ± 0.059 ms
Alpha Prime (5.241 m rays) 8.071 ± 0.268 ms 8.592 ± 0.223 ms 8.704 ± 0.415 ms 8.522 ± 0.424 ms 8.955 ± 0.399 ms 10.296 ± 1.293 ms 3.059 ± 0.116 ms 3.112 ± 0.119 ms 3.139 ± 0.247 ms

a LiDAR simulations over the urban scenario are not conducted with a single scan, but following a path.
Table 3
Overhead introduced by the intensity calculation stage using PBRDFs and ABRDFs. Response time is reported as a global metric and normalized based on the number of rays.

Sensor/Approach Scenario

Conference San Miguel Urban
331k triangles 5.6 m triangles 4.1 m triangles

PBRDF ABRF PBRDF ABRF PBRDF ABRF

HDL-64E (2.880 m rays) 2.226 ms 0.77 ns/ray 3.588 ms 1.24 ns/ray 2.327 ms 0.80 ns/ray 3.432 ms 2.64 ns/ray 3.691 ms 1.28 ns/ray 4.351 ms 1.51 ns/ray
Pandar64 (1.334 m rays) 1.200 ms 0.89 ns/ray 1.535 ms 1.15 ns/ray 1.463 ms 1.09 ns/ray 3.999 ms 2.99 ns/ray 1.243 ms 0.93 ns/ray 1.949 ms 1.46 ns/ray
HDL-32E (446.4k rays) 0.880 ms 1.97 ns/ray 0.789 ms 1.76 ns/ray 1.118 ms 2.50 ns/ray 1.764 ms 3.95 ns/ray 1.135 ms 2.54 ns/ray 0.669 ms 1.49 ns/ray
Puck Lite (216k rays) 0.642 ms 2.97 ns/ray 0.565 ms 2.61 ns/ray 0.955 ms 4.42 ns/ray 0.952 ms 4.40 ns/ray 0.581 ms 2.68 ns/ray 0.734 ms 3.39 ns/ray
Puck Hi-Res (216k rays) 0.968 ms 4.48 ns/ray 0.557 ms 2.57 ns/ray 0.703 ms 3.25 ns/ray 1.270 ms 5.87 ns/ray 0.604 ms 2.79 ns/ray 0.714 ms 3.30 ns/ray
Ultra Puck (1.756 m rays) 4.091 ms 2.32 ns/ray 2.203 ms 1.25 ns/ray 2.943 ms 1.67 ns/ray 4.958 ms 2.82 ns/ray 3.059 ms 1.74 ns/ray 2.484 ms 1.41 ns/ray
Alpha Prime (5.241 m rays) 8.704 ms 1.66 ns/ray 5.507 ms 1.05 ns/ray 10.296 ms 1.96 ns/ray 12.308 ms 2.34 ns/ray 3.139 ms 0.59 ns/ray 8.702 ms 1.66 ns/ray
Table 4
Simulation time in seconds of three different VLS tested over four scenarios and seven LiDAR devices.

LiDAR Approach Simulation time (seconds)

HDL-64E
GPUnew 0.3781 ± 0.050 s 0.3559 ± 0.008 s 0.4931 ± 0.008 s 0.7008 ± 0.061 s
GPUold 1.9561 ± 0.027 s 1.8456 ± 0.021 s 2.1220 ± 0.046 s 2.6589 ± 0.045 s
HELIOS++ 4.0919 ± 0.2028 s 3.0243 ± 0.0969 s 3.7222 ± 0.3522 s 3.2765 ± 0.2138 s

Pandar64
GPUnew 0.1426 ± 0.007 s 0.1426 ± 0.008 s 0.1962 ± 0.008 s 0.4432 ± 0.032 s
GPUold 0.7894 ± 0.004 s 0.8584 ± 0.025 s 0.9632 ± 0.016 s 1.1060 ± 0.026 s
HELIOS++ 1.7133 ± 0.0634 s 0.9489 ± 0.0194 s 1.6594 ± 0.2481 s 1.5708 ± 0.1868 s

HDL-32E
GPUnew 0.1492 ± 0.008 s 0.1413 ± 0.008 s 0.2042 ± 0.008 s 0.3252 ± 0.027 s
GPUold 0.7830 ± 0.006 s 0.8543 ± 0.012 s 0.8611 ± 0.012 s 0.8321 ± 0.015 s
HELIOS++ 1.6054 ± 0.1012 s 0.8987 ± 0.0666 s 1.6207 ± 0.1148 s 1.6127 ± 0.0751 s

Puck Lite
GPUnew 0.0529 ± 0.006 s 0.0538 ± 0.005 s 0.0776 ± 0.005 s 0.1536 ± 0.013 s
GPUold 0.7211 ± 0.007 s 0.6888 ± 0.013 s 0.7531 ± 0.011 s 0.7832 ± 0.011 s
HELIOS++ 0.8302 ± 0.0397 s 0.5217 ± 0.0440 s 0.9388 ± 0.1150 s 1.0754 ± 0.1012 s

Puck Hi-Res
GPUnew 0.0523 ± 0.005 s 0.0523 ± 0.005 s 0.0807 ± 0.006 s 0.1711 ± 0.014 s
GPUold 0.7189 ± 0.010 s 0.6756 ± 0.011 s 0.7435 ± 0.013 s 0.7784 ± 0.009 s
HELIOS++ 0.9598 ± 0.0518 s 0.7314 ± 0.0410 s 1.0005 ± 0.1703 s 1.0318 ± 0.1309 s

UltraPuck
GPUnew 0.5362 ± 0.008 s 0.5446 ± 0.008 s 0.7341 ± 0.007 s 1.0370 ± 0.029 s
GPUold 1.6101 ± 0.051 s 1.7780 ± 0.017 s 2.1071 ± 0.034 s 1.8437 ± 0.056 s
HELIOS++ 6.3608 ± 0.2083 s 3.5286 ± 0.1044 s 5.7765 ± 0.6631 s 4.5759 ± 0.3793 s

Alpha Prime
GPUnew 1.5987 ± 0.008 s 1.6260 ± 0.008 s 2.1919 ± 0.006 s 3.2030 ± 0.235 s
GPUold 3.4567 ± 0.035 s 3.6781 ± 0.008 s 5.577 ± 0.084 s 4.3485 ± 0.041 s
HELIOS++ 18.6971 ± 0.5502 s 10.4146 ± 0.1541 s 17.6918 ± 0.2321 s 14.0254 ± 0.8954 s
Simulation time

See Tables 2–4.
96
References

Ahn, N., Höfer, A., Herrmann, M., Donn, C., 2020. Real-time simulation of physical
multi-sensor setups. ATZelectronics Worldw. 15 (6), 8–11. http://dx.doi.org/10.
1007/s38314-020-0207-1.

Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., Hillaire, S., 2018.
Real-Time Rendering 4th Edition. A K Peters/CRC Press, Boca Raton, FL, USA.

http://dx.doi.org/10.1007/s38314-020-0207-1
http://dx.doi.org/10.1007/s38314-020-0207-1
http://dx.doi.org/10.1007/s38314-020-0207-1
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb2
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb2
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb2

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
American Society for Photogrammetry and Remote Sensing (ASPRS), 2019. LASer (LAS)
file format exchange activities – ASPRS. URL: https://www.asprs.org/divisions-
committees/lidar-division/laser-las-file-format-exchange-activities.

Bechtold, S., Höfle, B., 2016. Helios: a multi-purpose LIDAR simulation framework
for research, planning and training of laser scanning operations with airborne,
ground-based mobile and stationary platforms. ISPRS Ann. Photogramm. Remote.
Sens. Spat. Inf. Sci. III3, 161–168. http://dx.doi.org/10.5194/isprs-annals-III-3-
161-2016, ADS Bibcode: 2016ISPAnIII3..161B.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Gall, J., Stachniss, C.,
2021. Towards 3D LiDAR-based semantic scene understanding of 3D point cloud
sequences: The SemanticKITTI dataset. Int. J. Robot. Res. 40 (8–9), 959–967.
http://dx.doi.org/10.1177/02783649211006735.

Boehler, W., Marbs, M.B.V., 2018. Investigating LASER Scanner Accuracy. Technical
Report, i3mainz, Institute for Spatial Information and Surveying Technology, FH
Mainz, Holzstrasse 36, 55116 Mainz, Germany.

Bolkas, D., Martinez, A., 2018. Effect of target color and scanning geometry on
terrestrial LiDAR point-cloud noise and plane fitting. J. Appl. Geod. 12 (1),
109–127. http://dx.doi.org/10.1515/jag-2017-0034, Publisher: Walter de Gruyter
GmbH.

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., Beijbom, O., 2019. nuScenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027.

Cai, J., Deng, W., Guang, H., Wang, Y., Li, J., Ding, J., 2022. A survey on data-driven
scenario generation for automated vehicle testing. Machines 10 (11), 1101. http:
//dx.doi.org/10.3390/machines10111101, Number: 11 Publisher: Multidisciplinary
Digital Publishing Institute.

Chen, X., Mersch, B., Nunes, L., Marcuzzi, R., Vizzo, I., Behley, J., Stachniss, C., 2022.
Automatic labeling to generate training data for online LiDAR-based moving object
segmentation. IEEE Robot. Autom. Lett. 7 (3), 6107–6114. http://dx.doi.org/10.
1109/LRA.2022.3166544, Conference Name: IEEE Robotics and Automation Letters.

Chen, H., Müller, S., 2022. Analysis of real-time lidar sensor simulation for testing
automated driving functions on a vehicle-in-the-loop testbench. In: 2022 IEEE
Intelligent Vehicles Symposium. IV, pp. 1605–1614. http://dx.doi.org/10.1109/
IV51971.2022.9827048.

Choi, Y., Kim, N., Hwang, S., Park, K., Yoon, J.S., An, K., Kweon, I.S., 2018.
KAIST multi-spectral day/Night data set for autonomous and assisted driving.
IEEE Trans. Intell. Transp. Syst. 19 (3), 934–948. http://dx.doi.org/10.1109/TITS.
2018.2791533, Conference Name: IEEE Transactions on Intelligent Transportation
Systems.

Dayal, S., Goel, S., Lohani, B., Mittal, N., Mishra, R.K., 2021. Comprehensive air-
borne laser scanning (ALS) simulation. J. the Indian Soc. Remote. Sens. 49 (7),
1603–1622. http://dx.doi.org/10.1007/s12524-021-01334-5.

Deems, J.S., Painter, T.H., Finnegan, D.C., 2013. Lidar measurement of snow depth: a
review. J. Glaciol. 59 (215), 467–479. http://dx.doi.org/10.3189/2013jog12j154,
Publisher: International Glaciological Society.

Díaz-Medina, M., Fuertes, J.M., Segura-Sánchez, R.J., Lucena, M., Ogayar-Anguita, C.J.,
2023. LiDAR attribute based point cloud labeling using CNNs with 3D convolution
layers. Comput. Geosci. 105453. http://dx.doi.org/10.1016/j.cageo.2023.105453.

DJI, 2021. Zenmuse L1. URL: https://enterprise.dji.com/es/zenmuse-l1/photo.
Dong, P., Chen, Q., 2018. LiDAR Remote Sensing and Applications. CRC Press, http:

//dx.doi.org/10.4324/9781351233354.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. CARLA: An open

urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. PMLR, pp. 1–16, ISSN: 2640-3498.

Douglas, D.H., Peucker, T.K., 1973. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: Int.
J. Geogr. Inf. Geovisualization 10 (2), 112–122. http://dx.doi.org/10.3138/FM57-
6770-U75U-7727, Publisher: University of Toronto Press.

dSPACE, 2024. AURELION, URL: https://www.dspace.com/en/pub/home/products/sw/
experimentandvisualization/aurelion_sensor-realistic_sim.cfm.

Dupuy, J., Jakob, W., 2018. An adaptive parameterization for efficient material
acquisition and rendering. ACM Trans. Graph. 37 (6), 274:1–274:14. http://dx.
doi.org/10.1145/3272127.3275059.

Fang, J., Zhou, D., Yan, F., Zhao, T., Zhang, F., Ma, Y., Wang, L., Yang, R., 2020.
Augmented LiDAR simulator for autonomous driving. IEEE Robot. Autom. Lett. 5
(2), 1931–1938. http://dx.doi.org/10.1109/LRA.2020.2969927.

Gao, W., Peters, R., Stoter, J., 2024. Building-PCC: Building point cloud completion
benchmarks. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. X-4/W5-2024,
179–186. http://dx.doi.org/10.5194/isprs-annals-X-4-W5-2024-179-2024.

Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W., 2011. BlenSor: Blender sensor simulation
toolbox. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K.,
Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (Eds.), Advances
in Visual Computing. In: Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, pp. 199–208. http://dx.doi.org/10.1007/978-3-642-24031-7_20.

Guarnera, D., Guarnera, G., Ghosh, A., Denk, C., Glencross, M., 2016. BRDF repre-
sentation and acquisition. Comput. Graph. Forum 35 (2), 625–650. http://dx.doi.
org/10.1111/cgf.12867, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
cgf.12867.

Hable, J., 2010. Uncharted 2: HDR lighting.
97
Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M., 2017.
SEMANTIC3D: A new large-scale point cloud classification benchmark. In: ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
IV-1-W1, pp. 91–98.

Haider, A., Pigniczki, M., Köhler, M.H., Fink, M., Schardt, M., Cichy, Y., Zeh, T.,
Haas, L., Poguntke, T., Jakobi, M., Koch, A.W., 2022. Development of high-
fidelity automotive LiDAR sensor model with standardized interfaces. Sensors
22 (19), 7556. http://dx.doi.org/10.3390/s22197556, Number: 19 Publisher:
Multidisciplinary Digital Publishing Institute.

Hanke, T., Schaermann, A., Geiger, M., Weiler, K., Hirsenkorn, N., Rauch, A., Schnei-
der, S.-A., Biebl, E., 2017. Generation and validation of virtual point cloud data
for automated driving systems. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems. ITSC, pp. 1–6. http://dx.doi.org/10.1109/ITSC.
2017.8317864, ISSN: 2153-0017.

Hesai, 2020. Pandar64 user’s manual.pdf. URL: https://hesaiweb2019.blob.core.
chinacloudapi.cn/uploads/Pandar64_User’s_Manual.pdf.

Hodgson, M.E., Bresnahan, P., 2004. Accuracy of airborne lidar-derived elevation.
Photogramm. Eng. Remote Sens. 70 (3), 331–339. http://dx.doi.org/10.14358/pers.
70.3.331, Publisher: American Society for Photogrammetry and Remote Sensing.

Höfle, B., Pfeifer, N., 2007. Correction of laser scanning intensity data: Data and
model-driven approaches. ISPRS J. Photogramm. Remote Sens. 62 (6), 415–433.
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008, Publisher: Elsevier BV.

Instituto Geográfico de Información Geográfica, 2023. PNOA lidar. URL: https://pnoa.
ign.es/.

Kukko, A., Hyyppä, J., 2009. Small-footprint laser scanning simulator for system val-
idation, error assessment, and algorithm development. Photogramm. Eng. Remote
Sens. 75 (10), 1177–1189. http://dx.doi.org/10.14358/PERS.75.10.1177.

López, A., Ogayar, C.J., Jurado, J.M., Feito, F.R., 2022. A GPU-accelerated framework
for simulating lidar scanning. IEEE Trans. Geosci. Remote Sens. 60, 1–18. http:
//dx.doi.org/10.1109/TGRS.2022.3165746, Conference Name: IEEE Transactions
on Geoscience and Remote Sensing.

Majercik, A., Crassin, C., Shirley, P., McGuire, M., 2018. A ray-box intersection
algorithm and efficient dynamic voxel rendering. J. Comput. Graph. Tech. (JCGT)
7 (3), 66–81.

Manivasagam, S., Wang, S., Wong, K., Zeng, W., Sazanovich, M., Tan, S., Yang, B.,
Ma, W.-C., Urtasun, R., 2020. LiDARsim: Realistic lidar simulation by leveraging
the real world. In: CVPR 2020. IEEE, pp. 11164–11173. http://dx.doi.org/10.1109/
cvpr42600.2020.01118.

McGuire, M., 2017. Computer graphics archive.
McManamon, P., 2019. LiDAR Technologies and Systems. SPIE Press, http://dx.doi.org/

10.1117/3.2518254.
Meerdink, S.K., Hook, S.J., Roberts, D.A., Abbott, E.A., 2019. The ECOSTRESS spectral

library version 1.0. Remote Sens. Environ. 230, 111196. http://dx.doi.org/10.1016/
j.rse.2019.05.015.

Meister, D., Bittner, J., 2018. Parallel locally-ordered clustering for bounding volume
hierarchy construction. IEEE Trans. Vis. Comput. Graphics 24 (3), 1345–1353.
http://dx.doi.org/10.1109/tvcg.2017.2669983, Publisher: Institute of Electrical and
Electronics Engineers (IEEE).

Möller, T., Trumbore, B., 1997. Fast, minimum storage ray-triangle intersection. J.
Graph. Tools 2 (1), 21–28. http://dx.doi.org/10.1080/10867651.1997.10487468,
Publisher: Informa UK Limited.

Montes Soldado, R., Ureña Almagro, C., 2012. An Overview of BRDF Models. Technical
Report, University of Granada, Granada, URL: http://hdl.handle.net/10481/19751.

Narayanan, R., Kim, H.B., Sohn, G., 2009. Classification of SHOALS 3000 bathymetric
lidar signals using decision tree and ensemble techniques. In: 2009 IEEE Toronto
International Conference Science and Technology for Humanity. TIC-STH, pp.
462–467. http://dx.doi.org/10.1109/TIC-STH.2009.5444456.

Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., Zhao, H., 2020. SemanticPOSS: A point cloud
dataset with large quantity of dynamic instances. _eprint: 2002.09147.

Peinecke, N., Lueken, T., Korn, B.R., 2008. Lidar simulation using graphics hardware
acceleration. In: 2008 IEEE/AIAA 27th Digital Avionics Systems Conference. IEEE,
pp. 4.D.4–1–4.D.4–8. http://dx.doi.org/10.1109/dasc.2008.4702838.

Piadyk, Y., Rulff, J., Brewer, E., Hosseini, M., Ozbay, K., Sankaradas, M., Chakrad-
har, S., Silva, C., 2023. StreetAware: A high-resolution synchronized multimodal
urban scene dataset. Sensors 23 (7), 3710. http://dx.doi.org/10.3390/s23073710,
Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.

Polyanskiy, M.N., 2022. Refractive index database. URL: https://refractiveindex.info.
Poux, F., 2019. The Smart Point Cloud: Structuring 3D Intelligent Point Data (Ph.D.

thesis). Université de Liège, Liège, Belgique.
RIEGL Laser Measurement Systems GmbH, 2017. LAS Extrabytes Implementation in

RIEGL Software. Technical Report, RIEGL Laser Measurement Systems GmbH, Horn,
URL: https://data.4tu.nl/file/1aac46fb-7900-4d4c-a099-d2ce354811d2/7ade80c4-
aa45-4e87-b887-ee8478c96181.

Riordan, J., Manduhu, M., Black, J., Dow, A., Dooly, G., Matalonga, S., 2021.
LiDAR simulation for performance evaluation of UAS detect and avoid. In: 2021
International Conference on Unmanned Aircraft Systems. ICUAS, pp. 1355–1363.
http://dx.doi.org/10.1109/ICUAS51884.2021.9476817.

Rozenberszki, D., Litany, O., Dai, A., 2024. UnScene3D: Unsupervised 3D instance
segmentation for indoor scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 19957–19967.

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
http://dx.doi.org/10.5194/isprs-annals-III-3-161-2016
http://dx.doi.org/10.5194/isprs-annals-III-3-161-2016
http://dx.doi.org/10.5194/isprs-annals-III-3-161-2016
http://dx.doi.org/10.1177/02783649211006735
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb6
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb6
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb6
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb6
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb6
http://dx.doi.org/10.1515/jag-2017-0034
http://arxiv.org/abs/1903.11027
http://dx.doi.org/10.3390/machines10111101
http://dx.doi.org/10.3390/machines10111101
http://dx.doi.org/10.3390/machines10111101
http://dx.doi.org/10.1109/LRA.2022.3166544
http://dx.doi.org/10.1109/LRA.2022.3166544
http://dx.doi.org/10.1109/LRA.2022.3166544
http://dx.doi.org/10.1109/IV51971.2022.9827048
http://dx.doi.org/10.1109/IV51971.2022.9827048
http://dx.doi.org/10.1109/IV51971.2022.9827048
http://dx.doi.org/10.1109/TITS.2018.2791533
http://dx.doi.org/10.1109/TITS.2018.2791533
http://dx.doi.org/10.1109/TITS.2018.2791533
http://dx.doi.org/10.1007/s12524-021-01334-5
http://dx.doi.org/10.3189/2013jog12j154
http://dx.doi.org/10.1016/j.cageo.2023.105453
https://enterprise.dji.com/es/zenmuse-l1/photo
http://dx.doi.org/10.4324/9781351233354
http://dx.doi.org/10.4324/9781351233354
http://dx.doi.org/10.4324/9781351233354
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb18
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb18
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb18
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb18
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb18
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/aurelion_sensor-realistic_sim.cfm
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/aurelion_sensor-realistic_sim.cfm
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/aurelion_sensor-realistic_sim.cfm
http://dx.doi.org/10.1145/3272127.3275059
http://dx.doi.org/10.1145/3272127.3275059
http://dx.doi.org/10.1145/3272127.3275059
http://dx.doi.org/10.1109/LRA.2020.2969927
http://dx.doi.org/10.5194/isprs-annals-X-4-W5-2024-179-2024
http://dx.doi.org/10.1007/978-3-642-24031-7_20
http://dx.doi.org/10.1111/cgf.12867
http://dx.doi.org/10.1111/cgf.12867
http://dx.doi.org/10.1111/cgf.12867
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12867
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12867
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12867
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb26
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb27
http://dx.doi.org/10.3390/s22197556
http://dx.doi.org/10.1109/ITSC.2017.8317864
http://dx.doi.org/10.1109/ITSC.2017.8317864
http://dx.doi.org/10.1109/ITSC.2017.8317864
https://hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64_User's_Manual.pdf
https://hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64_User's_Manual.pdf
https://hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64_User's_Manual.pdf
http://dx.doi.org/10.14358/pers.70.3.331
http://dx.doi.org/10.14358/pers.70.3.331
http://dx.doi.org/10.14358/pers.70.3.331
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008
https://pnoa.ign.es/
https://pnoa.ign.es/
https://pnoa.ign.es/
http://dx.doi.org/10.14358/PERS.75.10.1177
http://dx.doi.org/10.1109/TGRS.2022.3165746
http://dx.doi.org/10.1109/TGRS.2022.3165746
http://dx.doi.org/10.1109/TGRS.2022.3165746
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb36
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb36
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb36
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb36
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb36
http://dx.doi.org/10.1109/cvpr42600.2020.01118
http://dx.doi.org/10.1109/cvpr42600.2020.01118
http://dx.doi.org/10.1109/cvpr42600.2020.01118
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb38
http://dx.doi.org/10.1117/3.2518254
http://dx.doi.org/10.1117/3.2518254
http://dx.doi.org/10.1117/3.2518254
http://dx.doi.org/10.1016/j.rse.2019.05.015
http://dx.doi.org/10.1016/j.rse.2019.05.015
http://dx.doi.org/10.1016/j.rse.2019.05.015
http://dx.doi.org/10.1109/tvcg.2017.2669983
http://dx.doi.org/10.1080/10867651.1997.10487468
http://hdl.handle.net/10481/19751
http://dx.doi.org/10.1109/TIC-STH.2009.5444456
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb45
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb45
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb45
http://dx.doi.org/10.1109/dasc.2008.4702838
http://dx.doi.org/10.3390/s23073710
https://refractiveindex.info
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb49
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb49
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb49
https://data.4tu.nl/file/1aac46fb-7900-4d4c-a099-d2ce354811d2/7ade80c4-aa45-4e87-b887-ee8478c96181
https://data.4tu.nl/file/1aac46fb-7900-4d4c-a099-d2ce354811d2/7ade80c4-aa45-4e87-b887-ee8478c96181
https://data.4tu.nl/file/1aac46fb-7900-4d4c-a099-d2ce354811d2/7ade80c4-aa45-4e87-b887-ee8478c96181
http://dx.doi.org/10.1109/ICUAS51884.2021.9476817
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb52
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb52
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb52
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb52
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb52

A. López et al. ISPRS Journal of Photogrammetry and Remote Sensing 222 (2025) 79–98
Schäfer, J., Weiser, H., Winiwarter, L., Höfle, B., Schmidtlein, S., Fassnacht, F.E., 2023.
Generating synthetic laser scanning data of forests by combining forest inventory in-
formation, a tree point cloud database and an open-source laser scanning simulator.
Forestry: An Int. J. For. Res. http://dx.doi.org/10.1093/forestry/cpad006.

Serrano, A., Gutierrez, D., Myszkowski, K., Seidel, H.-P., Masia, B., 2016. An intuitive
control space for material appearance. ACM Trans. Graph. 35 (6), 186:1–186:12.
http://dx.doi.org/10.1145/2980179.2980242.

Su, H., Wang, R., Chen, K., Chen, Y., 2019. A simulation method for LIDAR of
autonomous cars. IOP Conf. Ser.: Earth Environ. Sci. 234, 012055. http://dx.doi.
org/10.1088/1755-1315/234/1/012055, Publisher: IOP Publishing.

Tachella, J., Altmann, Y., Mellado, N., McCarthy, A., Tobin, R., Buller, G.S.,
Tourneret, J.-Y., McLaughlin, S., 2019. Real-time 3D reconstruction from single-
photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 10
(1), 4984. http://dx.doi.org/10.1038/s41467-019-12943-7, Number: 1 Publisher:
Nature Publishing Group.

Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., Li, J., 2020. Toronto-3D:
A large-scale mobile lidar dataset for semantic segmentation of urban roadways.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. pp. 202–203.

Ullrich, A., Pfennigbauer, M., 2019. Advances in lidar point cloud processing. In:
Turner, M.D., Kamerman, G.W. (Eds.), Laser Radar Technology and Applications
XXIV. SPIE, pp. 157–166. http://dx.doi.org/10.1117/12.2518856.

U.S. Geological Survey, 2012. Lidar Base Specification: Collection Requirements.
Techniques and Methods, U.S. Geological Survey, Series: Techniques and Methods.

Vacek, P., Jašek, O., Zimmermann, K., Svoboda, T., 2022. Learning to predict Lidar
intensities. IEEE Trans. Intell. Transp. Syst. 23 (4), 3556–3564. http://dx.doi.org/
10.1109/TITS.2020.3037980, Conference Name: IEEE Transactions on Intelligent
Transportation Systems.

Varney, N., Asari, V.K., Graehling, Q., 2020. DALES: A large-scale aerial lidar data set
for semantic segmentation. http://dx.doi.org/10.48550/arXiv.2004.11985, arXiv:
2004.11985 [cs, stat].

Velodyne, 2018a. Velodyne LiDAR HDL-64E S3. URL: https://www.goetting-agv.com/
dateien/downloads/63-9194_Rev-G_HDL-64E_S3_Spec%20Sheet_Web.pdf.

Velodyne, 2018b. Velodyne LiDAR puck hi-res. URL: https://www.mapix.com/wp-
content/uploads/2018/07/63-9318_Rev-E_Puck-Hi-Res_Datasheet_Web.pdf.

Velodyne, 2018c. Velodyne LiDAR puck lite. URL: https://www.mapix.com/wp-
content/uploads/2018/07/63-9286_Rev-H_Puck-LITE_Datasheet_Web.pdf.

Velodyne, 2019a. Velodyne LiDAR alpha prime. URL: https://www.mapix.com/wp-
content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet.pdf.
98
Velodyne, 2019b. Velodyne LiDAR HDL-32e. URL: https://velodynelidar.com/wp-
content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_
Web.pdf.

Velodyne, 2019c. Velodyne LiDAR puck. URL: https://velodynelidar.com/wp-content/
uploads/2019/12/63-9229_Rev-K_Puck-_Datasheet_Web.pdf.

Velodyne, 2019d. Velodyne LiDAR ultra-puck. URL: https://velodynelidar.com/wp-
content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf.

Weiser, H., Winiwarter, L., Anders, K., Fassnacht, F.E., Höfle, B., 2021. Opaque voxel-
based tree models for virtual laser scanning in forestry applications. Remote Sens.
Environ. 265, 112641. http://dx.doi.org/10.1016/j.rse.2021.112641.

Winiwarter, L., Esmorís Pena, A.M., Weiser, H., Anders, K., Martínez Sánchez, J.,
Searle, M., Höfle, B., 2022. Virtual laser scanning with HELIOS++: A novel take
on ray tracing-based simulation of topographic full-waveform 3D laser scanning.
Remote Sens. Environ. 269, 112772. http://dx.doi.org/10.1016/j.rse.2021.112772.

Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K., 2019. SqueezeSegV2: Improved
model structure and unsupervised domain adaptation for road-object segmentation
from a LiDAR point cloud. In: 2019 International Conference on Robotics and
Automation. ICRA, pp. 4376–4382. http://dx.doi.org/10.1109/ICRA.2019.8793495,
ISSN: 2577-087X.

Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S., 2021. SynLiDAR: Learning from
synthetic lidar sequential point cloud for semantic segmentation. arXiv preprint
arXiv:2107.05399.

Yang, X., Wang, Y., Yin, T., Wang, C., Lauret, N., Regaieg, O., Xi, X., Gastellu-
Etchegorry, J.P., 2022. Comprehensive LiDAR simulation with efficient physically-
based DART-Lux model (I): Theory, novelty, and consistency validation. Remote
Sens. Environ. 272, 112952. http://dx.doi.org/10.1016/j.rse.2022.112952.

Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L., 2018. A lidar
point cloud generator: from a virtual world to autonomous driving. In: ICMR. ACM,
pp. 458–464.

Zhao, J., Li, Y., Zhu, B., Deng, W., Sun, B., 2021. Method and applications of lidar mod-
eling for virtual testing of intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 22
(5), 2990–3000. http://dx.doi.org/10.1109/TITS.2020.2978438, Conference Name:
IEEE Transactions on Intelligent Transportation Systems.

Zheng, Y., Wang, G., Liu, J., Pollefeys, M., Wang, H., 2023. Spherical frustum sparse
convolution network for lidar point cloud semantic segmentation. http://dx.doi.
org/10.48550/arXiv.2311.17491, arXiv:2311.17491 [cs].

Zhou, Y., Han, X., Peng, M., Li, H., Yang, B., Dong, Z., Yang, B., 2022. Street-
view imagery guided street furniture inventory from mobile laser scanning point
clouds. ISPRS J. Photogramm. Remote Sens. 189, 63–77. http://dx.doi.org/10.
1016/j.isprsjprs.2022.04.023.

Zohdi, T.I., 2020. Rapid simulation-based uncertainty quantification of flash-type time-
of-flight and Lidar-based body-scanning processes. Comput. Methods Appl. Mech.
Engrg. 359, 112–386. http://dx.doi.org/10.1016/j.cma.2019.03.056, Publisher:
Elsevier BV.

http://dx.doi.org/10.1093/forestry/cpad006
http://dx.doi.org/10.1145/2980179.2980242
http://dx.doi.org/10.1088/1755-1315/234/1/012055
http://dx.doi.org/10.1088/1755-1315/234/1/012055
http://dx.doi.org/10.1088/1755-1315/234/1/012055
http://dx.doi.org/10.1038/s41467-019-12943-7
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb57
http://dx.doi.org/10.1117/12.2518856
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb59
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb59
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb59
http://dx.doi.org/10.1109/TITS.2020.3037980
http://dx.doi.org/10.1109/TITS.2020.3037980
http://dx.doi.org/10.1109/TITS.2020.3037980
http://dx.doi.org/10.48550/arXiv.2004.11985
http://arxiv.org/abs/2004.11985
http://arxiv.org/abs/2004.11985
http://arxiv.org/abs/2004.11985
https://www.goetting-agv.com/dateien/downloads/63-9194_Rev-G_HDL-64E_S3_Spec%2520Sheet_Web.pdf
https://www.goetting-agv.com/dateien/downloads/63-9194_Rev-G_HDL-64E_S3_Spec%2520Sheet_Web.pdf
https://www.goetting-agv.com/dateien/downloads/63-9194_Rev-G_HDL-64E_S3_Spec%2520Sheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9318_Rev-E_Puck-Hi-Res_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9318_Rev-E_Puck-Hi-Res_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9318_Rev-E_Puck-Hi-Res_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9286_Rev-H_Puck-LITE_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9286_Rev-H_Puck-LITE_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2018/07/63-9286_Rev-H_Puck-LITE_Datasheet_Web.pdf
https://www.mapix.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet.pdf
https://www.mapix.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet.pdf
https://www.mapix.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/97-0038-Rev-N-97-0038-DATASHEETWEBHDL32E_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9229_Rev-K_Puck-_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9229_Rev-K_Puck-_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9229_Rev-K_Puck-_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf
http://dx.doi.org/10.1016/j.rse.2021.112641
http://dx.doi.org/10.1016/j.rse.2021.112772
http://dx.doi.org/10.1109/ICRA.2019.8793495
http://arxiv.org/abs/2107.05399
http://dx.doi.org/10.1016/j.rse.2022.112952
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb74
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb74
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb74
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb74
http://refhub.elsevier.com/S0924-2716(25)00060-7/sb74
http://dx.doi.org/10.1109/TITS.2020.2978438
http://dx.doi.org/10.48550/arXiv.2311.17491
http://dx.doi.org/10.48550/arXiv.2311.17491
http://dx.doi.org/10.48550/arXiv.2311.17491
http://arxiv.org/abs/2311.17491
http://dx.doi.org/10.1016/j.isprsjprs.2022.04.023
http://dx.doi.org/10.1016/j.isprsjprs.2022.04.023
http://dx.doi.org/10.1016/j.isprsjprs.2022.04.023
http://dx.doi.org/10.1016/j.cma.2019.03.056

	Enhancing LiDAR point cloud generation with BRDF-based appearance modelling
	Introduction
	Previous work
	Input data and sampling
	LiDAR simulation and computational complexity
	LiDAR datasets

	Methodology
	Virtual scenarios
	Simulation
	Pulse modelling
	Path design
	ToF solver

	Surface modelling
	Tone mapping
	Analytic BRDFs

	Return losses
	RGB shading

	Results and discussion
	Computational cost from calculating intensity
	Overall computational cost
	Relevant factors in intensity calculation
	Intensity measurement
	Path recording
	Operating wavelength
	Completeness of LiDAR features

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Code listings
	Simulation time
	References

