
Computers & Graphics 125 (2024) 104104

a
a

b

(

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Generating implicit object fragment datasets for machine learning✩

Alfonso López a ,∗, Antonio J. Rueda a , Rafael J. Segura a , Carlos J. Ogayar a ,
Pablo Navarro b , José M. Fuertes a

a Department of Computer Science, Campus Las Lagunillas s/n, Jaén, 23071, Spain
b Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina

A R T I C L E I N F O

Keywords:
Voxel
Fragmentation
Fracture dataset
Voronoi
GPU programming

A B S T R A C T

One of the primary challenges inherent in utilizing deep learning models is the scarcity and accessibility
hurdles associated with acquiring datasets of sufficient size to facilitate effective training of these networks.
This is particularly significant in object detection, shape completion, and fracture assembly. Instead of scanning
a large number of real-world fragments, it is possible to generate massive datasets with synthetic pieces.
However, realistic fragmentation is computationally intensive in the preparation (e.g., pre-factured models)
and generation. Otherwise, simpler algorithms such as Voronoi diagrams provide faster processing speeds at
the expense of compromising realism. In this context, it is required to balance computational efficiency and
realism. This paper introduces a GPU-based framework for the massive generation of voxelized fragments
derived from high-resolution 3D models, specifically prepared for their utilization as training sets for machine
learning models. This rapid pipeline enables controlling how many pieces are produced, their dispersion and
the appearance of subtle effects such as erosion. We have tested our pipeline with an archaeological dataset,
producing more than 1M fragmented pieces from 1,052 Iberian vessels (Github). Although this work primarily
intends to provide pieces as implicit data represented by voxels, triangle meshes and point clouds can also
be inferred from the initial implicit representation. To underscore the unparalleled benefits of CPU and GPU
acceleration in generating vast datasets, we compared against a realistic fragment generator that highlights
the potential of our approach, both in terms of applicability and processing time. We also demonstrate the
synergies between our pipeline and realistic simulators, which frequently cannot select the number and size
of resulting pieces. To this end, a deep learning model was trained over realistic fragments and our dataset,
showing similar results.
1. Introduction

Numerous applications rely on incomplete views of objects, of-
ten caused by occlusion or fragmentation. When the complete shape
holds crucial significance, fracture assembly and completion emerge
s valuable techniques for inferring the full structure from one or
 few fragments. These applications span diverse domains, including

heritage preservation, archiving, geometry processing, computer vision,
and robotics. Akin to numerous other applications, recent works have
solved these tasks with artificial intelligence models; however, their
training is a significant bottleneck and source of challenges. For in-
stance, acquiring extensive datasets of scanned fragments and their
corresponding ground truth is arduous in terms of material resources
and time. Instead, generating large datasets featuring fragmented rigid
odies holds promise for addressing this gap more effectively.

✩ This article was recommended for publication by Marco Attene.
∗ Corresponding author.
E-mail addresses: allopezr@ujaen.es (A. López), ajrueda@ujaen.es (A.J. Rueda), rsegura@ujaen.es (R.J. Segura), cogayar@ujaen.es (C.J. Ogayar),

pnavarro@cenpat-conicet.gob.ar (P. Navarro), jmf@ujaen.es (J.M. Fuertes).

On the other hand, rigid body fragmentation and deformation have
longstanding challenges in computer graphics and related fields such as
fabrication and mechanics. While mechanics often focuses on accurate
numerical models that reflect reality by integrating continuum dynam-
ics, calculus, and differential geometry [1], the needs of realistic frag-
mentation differ significantly from those of real-world fracture assem-
bly and completion. Moreover, physically based approaches, although
capable of producing realistic results, are computationally expensive.
Consequently, real-time applications like video games frequently com-
promise realism. They typically employ precomputed fracture patterns
that can be dynamically adapted to simulate real-time impacts, yield-
ing visually appealing results. However, pre-computations are time-
consuming, especially for generating large fragment datasets. Addition-
ally, realistic fragmentation processes may produce many fragments of
https://doi.org/10.1016/j.cag.2024.104104
Received 9 May 2024; Received in revised form 30 September 2024; Accepted 4 O
Available online 15 October 2024
0097-8493/© 2024 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
ctober 2024

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.cag.2024.104104
https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2024.104104&domain=pdf
https://orcid.org/0000-0003-1423-9496
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0002-3075-6963
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0003-2180-449X
https://orcid.org/0000-0001-6624-4102
https://alfonsolrz.github.io/VoxelFragmentML
mailto:allopezr@ujaen.es
mailto:ajrueda@ujaen.es
mailto:rsegura@ujaen.es
mailto:cogayar@ujaen.es
mailto:pnavarro@cenpat-conicet.gob.ar
mailto:jmf@ujaen.es
https://doi.org/10.1016/j.cag.2024.104104
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

f
a

b

w
m
f

h
g
a
c

s
m
l
i

o
s
s

s
c
g
v
r
q
M

d
a
b
H
f

f
t
p
a
t
b

v
p

d
d

a

p
m
y
f

k
r
t
t

(

insufficient size for meaningful Machine Learning (ML) training. This
urther prolongs dataset generation until many adequately sized pieces
re available.

This work introduces a simple pipeline for rapidly fracturing rigid
odies to generate huge fracture datasets. These pieces are provided in

a voxel implicit format, though other derived representations can also
be inferred: point clouds and triangle meshes. The Discrete Voronoi
Chain (DVC) [2] is extended to leverage realism and response time

hile simulating other convenient effects. In addition, it is imple-
ented in the Graphics Processing Unit (GPU) and can generate nearly

ive fragments per second. According to this, the main contributions of
this research are the following:

1. We propose a GPU-based fragment generator that outputs im-
plicit pieces in the form of voxels and thus can be directly fed
into ML pipelines.

2. Our method enables configuring the number of fragments and
their distribution, thus complementing physically-based frag-
mentation for generating much larger datasets.

3. Implementation of subtle voxel-level effects, such as erosion and
impacts, that enhance the appearance of our fragments, despite
not being entirely realistic.

4. We provide a detailed analysis of computation time and resource
usage for generating a large dataset, comparing our approach to
state-of-the-art work. Additionally, we integrate our fragments
into an assembly pipeline to demonstrate their applicability.

5. We made available a dataset composed of 1M fragments from
1,052 archaeological artefacts [3], published in Github.

2. Related work

This section is guided by the state-of-the-art on brittle fractures,
ighlighting current trends and limitations. Then, the relevancy of
enerating fracture datasets is evaluated by exploring fracture assembly
nd completion works. Publicly available datasets are also revised for
omparison.

2.1. Fragmentation

Decades of comprehensive research have delved into the fracture
imulation of brittle objects. Unlike elastic and ductile materials, brittle
aterials exhibit a failure or fracture threshold close to their elastic

imits. Consequently, these materials lack deformability. The revision
n this section focuses on these specific materials.

The inception of fracture modelling finds its roots in continuum me-
chanics, employing parameters such as strain, stress, and plastic prop-
erties. In the realm of simulating the fracturing process, mass–spring
methods [4] transform polygonal meshes into tetrahedral volumes.
This category encompasses a diverse array of methods, ranging from
finite element to boundary element techniques (FEM [5] and BEM [6],
respectively), as well as mesh-less approaches. These methodologies are
typically categorized based on their re-meshing requirements, degrees
f freedom (DOF), and the equations they aim to solve. The growing
ignificance of the Material Point Method (MPM) in physically-based
imulations has also extended to the simulation of brittle fractures [7].

Traditional FEM approaches necessitate re-meshing during crack
propagation due to the initial limitations in DOF imposed by the num-
ber of vertices. Although alternatives like the eXtended Finite Element
Method (XFEM) [8] address this issue, FEM-based methods are often
usceptible to instability and challenges in managing bifurcations. In
ontrast, the BEM employs a surface-mesh discretization, formulating
overning equations based on boundary integral forms rather than
olumetric ones. This method can be efficiently streamlined to reduce
esponse time by swiftly estimating stress using level sets, albeit re-
uiring pre-computation of stiffness matrices. Unlike its predecessors,

PM exhibits superior adaptability to topological changes inherent

2

in deformable materials, making it a longstanding choice for fracture
simulations, even in brittle materials [7]. Moreover, MPM is esteemed
for its enhanced numerical stability.

Completely renouncing realism, Velić et al. [2] introduced Voronoi
iagrams applied to polygonal meshes, aligning with geometry-based
pproaches. This algorithm incorporates Voronoi regions either as
oundaries during region growth or as initial points for expansion.
owever, this stochastic method tends to yield regular and convex

ragments that differ from realistic outcomes [9]. Similarly, Müller
et al. [10] projected Voronoi diagrams into convex hulls of meshes
or real-time destruction. They were able to recursively fragments
o simulate impact points. However, they handle better meshes of
olygons rather than only triangles, since the first are easier to cut. This
pproach is similar to the Cell Fracture plugin in Blender [9], although
he latter does not project the Voronoi diagram over the convex hull,
ut on the bounding box. To mitigate this lack of realism, Oh et al.

[11] introduced noise to the fragmented geometry. While this may
sacrifice realism, it proves beneficial for efficiently simulating diverse
scenarios using Voronoi cells as cutting planes [12]. Another avenue in-
olves the application of Boolean operations to achieve fragmentation,
arametrized by primitive shapes and their quantities [13]. Introducing

more irregular patterns is feasible by employing primitives with noisy
geometry [14] or incorporating level sets [15]. The latter approach is
particularly effective over volumetric representations, enhancing crack
details when voxel size is significantly reduced. Although categorized as
non-physical, this category of methods is faster in generating extensive
datasets.

In addressing the time-consuming nature of real-time fractures, an
alternative strategy involves pre-computing fracture patterns that can
ynamically adapt to real-time collisions. The activation of fractures
uring a specific impact often relies on criteria such as Euclidean

distance or learning from examples, as demonstrated by Schvartzman
nd Otaduy [16]. Introducing a novel and advanced method, Sellán

et al. [17] extends a linear subspace into which impacts can be pro-
jected. Employing an optimizer, this method identifies points prone
to separating first into fragments. The process involves simplifying
olygon meshes into a set of tetrahedrons, with pre-computed fracture
odes. While it entails a substantial preparation phase, this approach

ields rapid real-time fragmentation. The variability in the generated
ragments is contingent on the number of pre-computed modes.

2.2. Shape assembly and completion

Shape assembly and completion problems address the incomplete
nowledge of 3D shapes that may come from occlusion and insufficient
esolution during its acquisition by scanning, or directly from parts
hat have been lost. Current state-of-the-art works approach these
asks using GAN, Encoder-Decoder architectures [18–20] as well as

auto-decoders [13] and transformers [21]. For point cloud datasets,
optimization is also possible by ensuring the final shape fits in the
depictions of multiple views [22].

Polygonal meshes are not frequently used as input in ML mod-
els; instead, several alternative representations have been used, each
having advantages and disadvantages. The most straightforward is
the voxel model [19,23]. Over these, convolutional networks can be
directly used, though dimensionality is a huge problem which limits
the voxel space resolution. Point clouds are another common represen-
tation in the literature [20,21]. Otherwise, signed distance functions
SDFs) [24], signed directional distance functions (SDDFs) [25] and

unsigned distance functions [26] are inferred from triangle meshes and
point clouds.

Regarding the availability of quality datasets for training and testing
the different solutions, the vast majority of previous studies use partial
views of ShapeNet [27], ModelNet [19], BuildingNet [27], cultural
heritage models [28], scanned objects [29], 3D vehicles [30] and
SemanticKITTI [19,31]. Note that datasets such as SemanticKITTI also

https://alfonsolrz.github.io/VoxelFragmentML


A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

s

l

m

s
a

f
s
h
a
d
o

Fig. 1. Overview of the proposed dataset generation. High-res triangle meshes are voxelized, fragmented, eroded and optionally converted to point cloud and triangle mesh. The
starting high-res mesh can be stored in the same formats. The number of points is illustrated as 𝑇 , triangles as 𝑓 , vertices as 𝑣 and the voxelization size as ,, .
o
v
a
r
c
d

a
f
h
m
c
c

provide pose data and are highly suitable for multi-view completion.
Besides this, completion can be further guided by text feed [27,32].
Other works have constructed their datasets. For example, Lamb et al.
[13] build their fractures over ShapeNet and Greek pottery from Kout-
oudis et al. [33]. To this end, input models were modified by applying

Boolean operations with regular shapes such as icospheres and cubes.
These regular primitives may have some noise to provide more irregu-
ar cuts, and even be combined to create more realistic fractures [14].

More recently, Sellán et al. [34] built a dataset based on their fracturing
ethod [17].

3. Methodology

This section explains the details of the fragmentation pipeline de-
picted in Fig. 1. The inputs of our pipeline are rigid bodies given
by triangle meshes of any number of vertices and triangles. No pre-
processing is required besides merging repeated vertices. The primary
output is a voxel-based fragmentation, while others such as point clouds
and triangle meshes can be optionally calculated from voxels.

3.1. Voxelization

We simulate mesh fracturing in voxel space since it provides a
impler data structure where fragments can be calculated by trivially
ccessing surrounding voxels. In addition, this data can be directly

used to feed models [23] and enable simulating subtle effects, such as
erosion. Other common representations in ML, such as distance func-
tions, are derived from voxels and polygonal meshes. In comparison,
tetrahedralization also requires a high resolution and provides hard
boundaries unless these are subdivided and smoothed. The voxelization
is performed as proposed by Ogayar-Anguita et al. [35] since it is a
ast, simple and reliable method that also voxelizes the interior of the
olid, unlike other studies that only voxelize the surface [36]. This work
as its theoretical foundation in the point-in-tetrahedron inclusion test,
nd it is resolved using plane-sweeping in the geometry shader. Further
etails can be found in Ogayar-Anguita et al. [35], though a brief
verview of this method is shown in Fig. 2.

The dimensionality of the voxel space, 𝑉 ×× , is obtained by
applying a fixed multiplier, 𝜂 (voxel/metric unit), to the axis-aligned
bounding box (AABB) of the mesh, rather than being a square, to lower
the CPU/GPU memory footprint. However, it can be later padded to 3

on disk storage, with  ← max,, . The matrix is filled with free,
a yet-to-determine value, or empty voxels that will never be occupied.
 t

3

Fig. 2. Voxelization results obtained using the method of Ogayar-Anguita et al. [35]
over (a) a solid mesh and (b) a mesh whose surface has some thickness. Red-coloured
slices indicate that there is an even number of overlapping triangles, whereas green
colouring indicates that there is an odd number. Hence, red-coloured areas do not have
active voxels.

3.2. Fragmentation

The implemented fragmentation is based on the Discrete Voronoi
Chain (DVC) [2]. It generates a list of Voronoi region centres, from now
n referred to as seeds, that expand to their neighbourhood until every
oxel belongs to a region. Note that, seeds are internally represented
s 3D indices within the voxelization. Flooding in the limits between
egions may lead to an incorrect Voronoi diagram, therefore distance
hecks to the region centres are required. However, disabling the
istance checks also enables disrupting the Voronoi diagram to create

concavities.
The first matter of discussion is how to sparse seeds. Trivially, they

should be evenly distributed over free voxels. Despite Monte-Carlo
samplers behaving more uniformly, we found the Mersenne Twister
pseudo-random generator fair enough to sparse seeds. As a result, a
set  composed of seeds is extracted, with 𝑠𝑖 ∈  being a vector such
as {𝑠𝑖𝑥 , 𝑠𝑖𝑦 , 𝑠𝑖𝑧}.

In the straightforward DVC approach, each free voxel from  is
ssigned the fragment ID 𝑖 of the nearest seed 𝑠𝑖. Various distance
unctions can be implemented, from Euclidean or Chebyshev to Man-
attan, ultimately leading to different fracture patterns. However, the
ain drawback of this method is that voxels are flooded without

hecking their connectivity to seeds. For instance, vessel handles are
haracterized by an inter-leaved, empty space, which is omitted during
his procedure. A better solution is to assign each voxel by propagating



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

N
c

v
i

i
b
i
f
s
s
r
f

f
f

v

i
O

s

p

s

p
b
p
t
f

t
a
b
l
t
e
e

Fig. 3. Voronoi regions expanded after ten iterations using Moore (left) and Von
Neumann neighbourhoods.

the fragment ID of each seed using a growing-region approach. Albeit
slightly slower in the GPU, this procedure intrinsically tackles the
previous connectivity drawback.

The growing procedure is implemented with a stack that is itera-
tively updated. In the GPU, two stacks with a length of  ×  × 
are required; while one is updated during an iteration, the other is
checked and emptied. For each voxel of a stack, its free neighbours
(yet to flood but inside the mesh) are set to the ID of the current
voxel. Then, they are appended to the stack of the following iteration.

eighbourhoods may have different shapes; for instance, the two most
ommon are Von Neumann (six faces, as in a cube) and Moore, which

also integrates the corners (twenty-six voxels). They can be easily
integrated into the GPU as buffers containing a variable number of 3D
ectors. The aftermath of different flooding neighbourhoods is depicted
n Fig. 3.

3.2.1. Additional seeds
Although real-world fragments are predominantly convex, they also

nclude more intricate cuts leading to concave shapes. This feature can
e smoothly incorporated into our fragmentation pipeline by generat-
ng additional seeds. These are intended to push the fragment limits
rom several points, thus creating more complex shapes. Note that, new
eeds are not assigned different IDs, but the value of the closest initial
eed using a distance function such as Chebyshev. This new seed set is
epresented as 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑘} with 𝑚𝑖 belonging to any region
rom 𝑆.

A drawback of this approach is that it can create isolated regions
if two seeds are too far and the growing regions cannot merge before
the region-growing procedure stalls. Therefore, these isolated regions
must be identified and removed (i.e., their voxels must be reset to
ree) to allow a new assignment by region growing from neighbouring

ragments. Notice that isolated fragments could be attached to a sur-
rounding fragment; however, the implemented approach leads to more
isually appealing pieces.

A simple solution to detect isolated fragments is to use disjoint sets
(see Fig. 4). In this approach, a set of voxels is considered isolated
f its ID matches the ID of another set with which it is disconnected.
ur GPU implementation of this test is mainly supported by the voxel

data type: uint16_t. This amount of bits can be split into two parts
to save (1) the seed ID in the most significant 16 bits (identifier of
the random point that flooded a voxel) and (2) the fragment ID in
the least significant bits. That is, additional seeds have different IDs
but share their fragment ID. Then, the flooding procedure is repeated
by exchanging the seed ID with surrounding voxels from the same
fragment ID, hence storing the minimum seed ID. As a result, the
same voxel could be processed more than once if a lower seed ID is
encountered. In practice, the voxels to be processed are handled using
one buffer for reading and another for writing. With this approach,
disjoint sets are groups of voxels whose seed ID is not the minimum
possible ID for their fragment, i.e., zero. Once detected, their voxels

are freed and the fragmentation process is restarted.

4

Fig. 4. Fragmentation procedure, during which isolated regions are checked. On the
top side, the Armadillo model is displayed with isolated regions (left) and fixed (right).

3.2.2. Biased seeds
Another benefit of randomly sampling the voxelization is that it

can be trivially biased towards specific parts to obtain more fragments.
This can be viewed as a specific case of additional seeds. Rather than
placing seeds uniformly, we can bias them towards one or more specific
locations. Moreover, any alternative random distribution generating
values in [0, 1] can be used, leading to different volume histograms,
as illustrated in Fig. 5. Biased seeds emulate impacts focused on a
urface point (high bias) or a dispersed fragmentation that could rather

correspond to squashing (spread over a larger area). Other tools such
as Cell Fracture [9] emulate this effect by recursively subdividing
revious fragments. In our work, biased seeds are implemented through

Gaussian random distributions configured with a bias factor, 𝑆. The
higher the bias, the less the seeds are scattered.

Fig. 5 illustrate the differences between additional seeds, which
are uniformly sparsed to create more intricate shapes, and biased
eeds, which concentrate new seeds in a few surrounding voxels to

recreate collisions. This feature holds particular relevance to simulating
fracture patterns guided by strained points. For instance, it can sim-
ulate interactive impacts (Fig. 6) by scattering seeds over an impact
oint. Simulating incomplete findings lacking small fragments could
e even advantageous, as occurs in archaeology. Nevertheless, biased
ieces tend to be smaller, thus more likely to be discarded according
o their volume. Hence, this feature is more relevant for interactive
ragmentation than for generating datasets.

3.2.3. Erosion
Previous voxelized fragments have a perfect fit, i.e., joining all of

hem produces the starting voxelization. However, the breakage of
rtefacts can result in tiny shards detaching, often going unnoticed or
eing discarded during excavations. In addition to small fragments,
arger shards may also remain unrecovered, as shown in Fig. 8. Fur-
hermore, we can also find fragments with smoothed edges due to
rosion or abrasion caused by contact with soil, especially in wet
nvironments [37]. The loss of larger shards can be simulated using

the previous bias seeds, while the erosion of details and the loss of
tiny shards can be replicated with erosion techniques. These factors
contribute to misfitting shards, making it difficult to fully reconstruct
the original artefact.



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

e
c

i
c
e
t
k

p

e
m

v
t
t
G
f
b
f
3
e
𝑛
v
t
i
v

t
v
p
t
e

Fig. 5. On the left side, ten regions grow with no bias using two different random
distributions, resulting in larger pieces. In the right image, eight regions grow with
two bias points (circled) emulated with different numbers of seeds and spreading (S).

Fig. 6. Initial fragmentation and on the right side, the fragmentation produced by an
impact interactively selected over the dragon’s head.

In this regard, voxelization helps to integrate erosion through 3D
rosion kernels. Different convolutions (𝐶3), from squares, circles or
rosses, can be utilized for sampling the neighbourhood of a voxel. Fol-

lowing this procedure, voxels are eroded (discarded and set to free)
whether the summed convolution is not equal to the number of voxels
activated in 𝐶3. In practice, this is hard to control and parametrize as
voxels not in the fragment boundaries may also be eroded. To tackle
this, boundary voxels (in contact with a free voxel) are detected from
each fragment to create a list of erasable voxels. We define a boundary
voxel as one with direct connectivity with at least one free voxel. We
emphasize this as this principle will also be used later.

The erosion is further parametrized by establishing the number of
iterations during which the voxelization is eroded. In addition, it is
possible to relax or harden the erosion by requiring less activations
from a given convolution. We also introduced random checks to avoid
smoothed boundaries; instead, voxels are convoluted with a probability
n [0, 1]. If the probability is one, every voxel is convoluted. It is
onfigured with a threshold, where a lower value results in gentler
rosion. Fig. 8 shows the erosion results in triangle meshes, compared
o another set of non-eroded shards, whereas Fig. 7 displays the erosion
ernels.
5

Fig. 7. Three erosion kernels and their effects. Voxels were convoluted and freed if
less than 50% of the expected voxels were active.

Fig. 8. Comparison of eroded (left) and fitting fragments (right) on the top side. Fitting
ieces are obtained by weighting the Laplacian operator to zero in the boundary voxels.

Below, two real-world vessels are compared: (1) an incomplete vessel with notable
rosion cues, and (2) an incomplete vessel artificially reconstructed by replicating
issing pieces.

3.3. Mesh generation

The primary aim of this work is to simulate fragmentation within
oxel space. However, additional representations can be derived from
his, including triangle meshes, point clouds, and SDFs. We generated
riangle meshes by implementing the marching cubes algorithm in the
PU. The main bottleneck is to transfer large triangle meshes back

rom VRAM (Virtual Random Access Memory), with [5, 12] triangles
eing returned per voxel. This drawback is partially suffocated by
using duplicated vertices in the GPU. First, points are encoded as
D Morton codes of 30 bits (10 bits per coordinate) which can be
fficiently sorted with the Radix sort algorithm ((𝑛𝑘) complexity, with
being the number of points and 𝑘 = 30 bits). Once sorted, contiguous
alues which satisfy distance(𝑝1, 𝑝2) < 𝜖 are merged. In the GPU, this
est is implemented by finding the indices of the first points that are
dentical to the following points. This also involves reallocating points
ia prefix-scan and modifying the triangle indices.

Another drawback arises from the staggered appearance of resulting
meshes. This is particularly evident in the curved surfaces of ceramic
vessels. To alleviate this, we perform several iterations of the Laplacian
operator, as depicted in Fig. 10. However, as a side effect, this also
removes the sharp details at the edges of the fragments. We handled
his by weighting the smoothing operator in faces within boundary
oxels with a lower factor, even zero. Note that border voxels were
reviously identified for erosion and this information is still present in
his stage. Finally, meshes can be optionally decimated with quadric
rror metrics [38] to reduce the storage footprint, as illustrated in

Fig. 9.



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

t
b

s
m

i
f
W
t
t
u
p
l

a

i

I

i
p
(
a
v

q
i
H

i

e

r
w
b
g
t
f
c
f

i

g

Fig. 9. Marching cubes over a fragment of the armadillo. The mesh was iteratively
simplified with quadric decimation.

Fig. 10. Triangle meshes obtained by using different Laplacian smoothing factors. On
he top side, the number of iterations varied from 0.01 ⋅max (,,) to 0.08. On the
ottom side, the weight factor goes from 0.1 to 0.6.

Fig. 11. Sampling of the Armadillo mesh using the Mersenne Twister pseudo-random
ampler (left) and Halton sampling (right). On the left point cloud, the right ear of the
odel is missing.

3.4. Point cloud generation

Point clouds are another successful representation in DL that can be
nferred from triangle meshes. They are composed of 𝑘 points sampled
rom triangles according to their area and the overall summed-area.

e considered that at least one point was to be extracted from every
riangle. Then, the generated points are shuffled and subsampled if
he number of points is higher than 𝑘. Unlike seed instancing, where
niformity is not required, the random distribution in this step holds
articular significance, as it could potentially omit relevant parts with
ow 𝑘. Fig. 11 compares the sampling with the Mersenne Twister

pseudo-random generator and a Halton sampler.
6

4. Experimentation and results

The experiments are focused on measuring the memory footprint
nd efficiency of the parallel fragment generation in the form of vox-

els, meshes and point clouds. Firstly, it is compared against Break-
ng Good [17], a realistic fragmentation method which was recently

published. It is based on pre-fractured modes that do not provide
direct control over the number of fragments; instead, fragments are
determined by the projected impact. We have also integrated the
Cell Fracturer plugin from Blender [9], which utilizes Voronoi dia-
grams as in [10,15]. Measurements were performed on a PC with
ntel®Xeon®Silver 4210R (2.4GHz), 176 GB RAM, GeForce RTX 3070

GPU with 8 GB VRAM, and Windows 10 OS. The proposed pipeline
s implemented in C++23 using OpenMP (Open Multi-Processing) for
arallel processing. We use OpenGL 4.6 for rendering and GPGPU
general-purpose computing on GPU). Note that OpenGL storage buffers
re limited to 2 GB regardless of the VRAM capacity. Our work employs
oxelizations with low resolution since these are appropriate for con-

volutional operations, and besides this, the footprint is diminished by
uantization (with the data type being uint16_t). Still, the VRAM
s rapidly outgrown by buffers allocated for solving marching cubes.
ence, our experimentation will be clamped to 1283 voxels.

Overall, we have considered two ways the fragments can be fed
into the network: (1) storing the whole dataset in an out-of-core fash-
on, and (2) generating batches consumed by the model in the GPU.

However, the second approach has not been annotated in the following
xperiments since it has no storage footprint.

4.1. Dataset preparation

The generation of fragment datasets has three results: voxels, trian-
gle meshes and point clouds. Additionally, the resulting dataset should
have a similar number of samples for each number of pieces. To
this end, we fragmented every item in [2, 10] pieces during a number
of iterations interpolated from [15, 5]. We tested our pipeline over a
dataset of 1,052 artefacts comprising different kinds of Iberian ceramic
vessels [3]. These were generated as surfaces of revolution from profiles
econstructed by archaeologists. Other parts, such as their handles,
ere later included under their supervision. These models oscillate
etween 500k and 3M vertices, and between 200k and 1.6M trian-
les. The dimensionality of voxelizations was downscaled according
o the object’s bounding box. In this manner, the triangles obtained
rom marching cubes have a similar scale to the starting mesh. Point
louds were generated by sampling 1000 points, similar to previous
racture assembly works [34], and triangle meshes were stored with

no quadric decimation when possible. The pieces were smoothed using
the Laplacian operator: the boundary voxels were smoothed with a
weight of 0.2, whereas the rest were smoothed with a weight of 0.9. It
was prolonged during 0.048 ⋅ 𝑘 iterations, with 𝑘 being the maximum
dimension of the voxelization. In this manner, the number of iterations
grows as voxelizations get larger.

The instructions to download our fragment dataset are published
online. The details of the dataset are shown in Table 3 for two different
voxel resolutions: 64 (for comparisons) and 128 (released version). Two
variants of our dataset have been released: (1) 1M pieces of 1,052
artefacts in every possible binary file format, and (2) 200K pieces from
only 200 artefacts, stored as plain .obj and .ply (∼25 GB). The latter
s released to offer an overview of our dataset.

4.2. Computational resources

Besides the storage footprint addressed in Section 4.4, we investi-
ated the computational resources used during the dataset generation,

in contrast to Breaking Good. They released their code in Python and
we adapted it to behave similarly to our fragmentation (grid of size
128, simplification to 5,000 tetrahedra, 20 fracture modes and stops

https://alfonsolrz.github.io/VoxelFragmentML


A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

s

C

t
i
r
t
o
t
a
v
o
r
s
i

d
h
c
p

Fig. 12. Usage of CPU, RAM and VRAM resources while generating a dataset with Breaking Good fragmentation and our method. On the left side, the results are obtained by
fragmenting 20 random vessels, while the results on the right side were extracted from 200 artefacts of the Thingi10K dataset.
V
f
c
i
m
c
d

for every model when 1000 fragments are generated). Their results are
written as compressed binary files (.npy). On the other hand, the Cell
Fracture plugin was not included in this experiment since it stalled with
ome of the meshes in Thingi10K. However, it managed to fragment the

twenty vessels in 1.91 h (slightly better than the performance of Sellán
et al. [17]). The performance on this small dataset also showed minimal

PU usage and no utilization of the GPU.
Fig. 12 illustrates the overall response time and resource utilization

over two mesh collections: a small subset of 20 vessels from our dataset
and 200 artefacts from the Thingi10K dataset. Our approach not only
exhibits parallelism in the GPU but also in the CPU, optimizing resource
utilization across both components. Additionally, we minimize virtual
memory usage and optimize performance by reusing GPU buffers in-
stead of allocating new ones for each step. The data type of GPU and
CPU buffers was also adapted to have a reduced footprint while keeping
he required capabilities (e.g., using voxels of 16 bits that still enabled
nstancing up to 28 seeds). It is important to note that our approach may
esult in a slightly higher RAM footprint due to the mapping of VRAM
o RAM for data transfers. This mapping conceptually resembles an
pen stream connecting the GPU and CPU. Finally, we must highlight
hat the pipeline is notably optimized for dataset generation, as buffers
re allocated only once per mesh, and the same applies to stages like
oxelization. Note that the larger dataset also had a higher variability
f voxelization dimensions, leading to higher usage of computational
esources. As the meshes get more detailed, such as in Thingi10K (right
ide), the compared work seems to struggle even when computing
mpacts.

Fig. 13 groups the measured response time by events, showing the
fracturing and impact projection stages are far more time-consuming
than our core events. Yet, reads notably impact the time measured
from Sellán et al. [17]. For this reason, load and storage stages are
ashed and omitted in the summed time below. The second summation,
owever, includes these stages. Furthermore, we omitted the data type
onversion stage since it transforms voxels into triangle meshes and
oint clouds, which are not required for implicit datasets.
7

4.3. Convexity

Although realism is difficult to quantify, an overabundance of con-
vex pieces is a common indicator of unrealistic shapes, as seen in

oronoi diagrams. However, measuring convexity in 3D is not straight-
orward. For instance, shards from Voronoi diagrams are not perfectly
onvex due to hollowed objects and complex shapes, but their convex-
ty is expected to be closer to one. To assess fragment convexity, we
easured the distance of mesh vertices from the convex hull. Rays were

ast from each vertex along the surface orientation, and the collision
istances were averaged across all vertices.

This test was conducted on 10,000 fragments from the three ap-
proaches being compared, using Thingi10K artefacts. As shown in
Fig. 14, fragments generated by Cell Fracture were the most convex, as
expected, followed by Breaking Bad and our method. We also evaluated
several configurations of our dataset, including varying numbers of ad-
ditional seeds. As the number of seeds decreases, the fragments become
more convex. Additionally, the total number of fragments significantly
impacts convexity. It tends to increase as the fragment count rises, as
fragments become more similar to their convex hull, with less space
for complex shapes and hollowness. However, there is a noticeable
gap between Breaking Bad and our dataset when the fragment count
is lower. We hypothesize this is due to Sellán et al. [17] showing a
higher level of detail on fracture boundaries, which are relatively close
to the convex hull. As the number of vertices per fragment decreases
(i.e., with more fragments), the difference in this metric diminishes. It
is also worth noting that, even with fewer seeds, our results remain
far from those of Voronoi diagrams. This is because we modified DVC
to allow multiple fragments to push boundaries without considering
proximity to seed locations. As a result, the outcome is not a Voronoi
diagram even without additional seeds.

4.4. Compression

Large datasets can scale up to a few TB if not properly handled.
Hence, different file formats were checked to minimize the storage
footprint. Notice that a few have a lower footprint at the expense of
requiring some preprocessing when loading. Experimentation has been



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

d

h
f

(
a
s
g

A

Fig. 13. Response time reported in every pipeline step. Steps are vertically ordered according to the response time. Global time depicts summed time without accumulating dashed
steps (light grey), and including them (dark grey).
(
a
p
(
t
(
a
a
o
R
t
a
b

Fig. 14. Average convexity of the fragments produced by the three compared ap-
proaches, based on the number of splits. The number of seeds was set according to the
number of required fragments (×1, ×2). The size of the circles represents the standard
eviation.

narrowed to [64, 128] voxels since formats such as .vox are notably
eavier and therefore are not recommended for dataset generation. The
ollowing formats have been contemplated:

• Point clouds: PLY (binary), XYZ (human-readable) and com-
pressed binary (compression with the Point Cloud Library (PCL)
package, 1 mm3 resolution).

• Voxel: raw binary (uncompressed), Run-Length Encoding (RLE)
binary [39], quad-stacks binary [40] and MagicaVoxel.

• Mesh: STL, OBJ and binary mesh (using the internal format of our
program).

Table 1 shows the footprint if files are in their original format
in parentheses) or zipped. Formats such as the quad-stack binary
re lighter when uncompressed, presumably because they present a
ignificant compaction of the raw data. However, other simpler al-
orithms such as RLE have a lower footprint when compressed as

zipping contemplates repeated data not addressed by the algorithm.
ccording to this, the dataset was stored using RLE (voxel), binary PCL

compression (point cloud) and binary mesh formats.

4.5. Evaluation of applicability

One of the main concerns during the data type transformation is
whether significant changes in the geometry could worsen the perfor-
mance of trainable models. Factors such as the voxelization LOD have
8

Table 1
Storage footprint of 200 vessel models broken into [2, 10] fragments, using 15 iterations
for 2 fragments and 5 for 10 fragments. The footprint after and before zipping files is
reported out and in parentheses, respectively.

64 128

Binary raw grid 0.09 GB (8.59 GB) 0.57 GB (68.75 GB)
MagicaVoxel 5.09 GB (17.19 GB) 44.88 GB (137.52 GB)
RLE 0.08 GB (1.99 GB) 0.32 GB (8.10 GB)
QuadStack 0.21 GB (0.92 GB) 0.65 GB (2.94 GB)

PLY 4.34 GB (8.22 GB) 4.38 GB (8.22 GB)
XYZ 3.93 GB (9.13 GB) 3.96 GB (9.12 GB)
Comp. binary 0.97 GB (0.98 GB) 1.00 GB (1.04 GB)

OBJ 4.98 GB (13.89 GB) 5.80 GB (16.42 GB)
STL 17.37 GB (79.82 GB) 16.40 GB (94.61 GB)
Binary 4.23 GB (16.92 GB) 4.85 GB (19.84 GB)

their weight in the loss of precision, as do the Laplacian smoothing
factors. Yet, adequately trained models should be able to generalize de-
spite fragments having small changes in their geometry, thus attending
to global features rather than local features. The voxel models from this
pipeline were used in a previous shape completion work [23], whereas
point clouds and polygonal meshes were not yet checked. We used
multiple datasets, including (1) the artefact dataset of Breaking Bad
200 artefacts, 74,698 pieces), (2) a subset of our vessel dataset (200
rtefacts, 70,000 pieces) and (3) a mix of both (200 artefacts, 71,632
ieces). The latter was generated by removing half of the artefacts from
1) and including half of (2) while maintaining the test set (25% of
he available meshes). All these datasets were tested using the DGL
Dynamic Graph Learning) [41] fracture assembly model. Fragments
re processed before training by sampling them, zeroing their location
nd randomly rotating them. On the other hand, the performance
f DGL was measured by annotating (1) the translation and rotation
oot Mean Square Error (RMSE) and Mean Absolute Error (MAE), (2)

he Chamfer distance between the starting point clouds and (3) part
ccuracy, i.e., the percentage of fragments whose Chamfer distance is
elow 𝜍 = 0.01.

We used the Breaking Bad dataset as a baseline for comparison,
as realistic fragments are hypothesized to be optimal for training ma-
chine learning models. While we believe that larger datasets would
benefit the training process, this experiment was designed to assess
whether our generated fragments negatively impact assembly metrics.
Therefore, we did not test larger datasets but instead worked with one
comparable in size to the Breaking Bad dataset.



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

o

f

i

A
i
t
s

t

i

m
s
t
S

a
p
r
w
i
o

c
f
t

f
u
f
d

Table 2
Metrics obtained by training the DGL fracture assembly model over the artefact dataset
and our fragmented vessels.

Breaking Bad Ours Breaking Bad & Ours

T. MAE (×10−2) 12.26 15.82 13.31
R. MAE (◦) 75.36 68.39 73.04
T. RMSE (×10−2) 14.71 18.88 15.84
R. RMSE (◦) 86.58 77.56 84.15
Chamfer d. (×10−3) 25.78 11.38 22.60
Part accuracy (%) 4.05 4.19 5.32

Table 3
Details of the released fragment dataset (up to 128 voxels in any dimension), and
another version with a lower number of voxels (64). # is used to abbreviate ‘number
f’.

Up to 643 Up to 1283

#Voxel files 187,257 (0.77 GB) 187,257 (2.86 GB)
#Triangle mesh files 1,040,428 (115.55 GB) 1,040,428 (432.35 GB)
#Point cloud files 1,040,428 (4.32 GB) 1,040,428 (4.32 GB)

#Models 1,052

Response time 0.90 days 2.42 days

#Fragments/s 13.33 4.96

Average #vertices 4,490 17,933
Average #faces 9,084 36,703

As reported in Table 2, both models are far from producing perfectly
fitted fragments, though our dataset obtained similar results to those
rom the Breaking Bad fragments. Even when both datasets are fused,

the majority of metrics are similar to the baseline Breaking bad training.
Therefore, incorporating our fragments does not seem to disrupt the
training of the model. However, the results show that there is still room
for improvement in models that work with partial views of objects. It is
important to note that DGL was originally released as a model trained
on semantic parts from PartNet, rather than on fractured objects.

4.6. Visual comparison

Fig. 15 illustrates fractures produced by the methods under compar-
son, including Cell Fracture. Notably, the code released by Sellán et al.

[17] lacks control over the number of resulting fragments, resulting in
a lower count. This does not necessarily translate to larger fragments,
as evidenced by the plate artefact broken into a few thin pieces.
Conversely, our methodology tends to generate fragments that, while
geometrically intricate, are not completely realistic. Thus, there is a
potential synergy between both approaches for training ML models.

dditionally, Sellán et al. [17] introduces rough boundaries by dec-
mating the edges of the fragments. In contrast, our technique leads
o fragments with smoother edges, due to utilizing marching cubes,
moothing operators and erosion, as illustrated in the bottom images of

Fig. 15. Finally, Cell Fracture produces notably convex pieces. Although
the Blender implementation is not as efficient, this method could be po-
entially more rapid than previously compared approaches. However,

some subtle effects are harder to integrate, such as erosion. Therefore,
our work is halfway between a simple Voronoi diagram and realistic
fragmentation.

5. Conclusions and future work

In this paper, we have presented an efficient pipeline for fragment-
ing 3D meshes and generating huge voxel datasets. It is implemented
n the GPU operating volumetric models to rapidly fragment models

based on the Discrete Voronoi Chain. We improved this unrealistic
ethod to introduce effects such as erosion, concavities and impact

imulations. Over this method, we generated a large dataset of more
han 1M fragments (∼450 GB) from 1,052 archaeological artefacts.
ince it is implemented in the GPU, the resulting pieces can even
9

be used on the fly to feed ML models without intermediate storage.
We tested our pipeline by (1) comparing resource usage and response
time with previous work, (2) testing the convexity of our fragments
gainst those of a simple Voronoi diagram, (3) evaluating metrics of
opular ML models for fracture assembly and (4) comparing visual
esults. Our method was proven more efficient, and the released dataset
as successfully used for fracture assembly tasks. Despite successfully

ntegrating our data into DL tasks, we emphasize the synergy between
ur method and realistic approaches, such as Sellán et al. [17], for

generating larger fragment datasets.
While this work primarily focuses on voxel-based fragments, other

common data representations have been derived from them. However,
these representations exhibit greater geometric inaccuracies due to
converting from voxel to mesh. Therefore, we present these optional
representations to trivially integrate them into other assembly and
completion solutions based on triangle meshes and point clouds.

As a future work, the efficiency of the pipeline could be substan-
tially enhanced by exploring alternatives to marching cubes, which
urrently represent the primary bottleneck in terms of both storage
ootprint and response time. Moreover, thorough assessments regarding
he impact of various factors on the trained models should be con-

ducted, including but not limited to the number of fragments, degree
of convexity/concavity and voxel resolution.

CRediT authorship contribution statement

Alfonso López: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Methodol-
ogy, Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization. Antonio J. Rueda: Writing – review & editing, Vi-
sualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Rafael J. Segura: Writing
– review & editing, Visualization, Validation, Supervision, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Carlos J. Oga-
yar: Writing – review & editing, Validation, Supervision, Resources,
Project administration, Methodology, Investigation, Formal analysis,
Conceptualization. Pablo Navarro: Writing – review & editing, Valida-
tion. José M. Fuertes: Writing – review & editing, Validation, Funding
acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This result has been partially supported by the Spanish Ministry of
Science, Innovation and Universities via a doctoral grant to the first
author (FPU19/00100).

Appendix

Dataset details

Fig. 17 illustrates the distribution of fragments regarding the num-
ber of triangles and vertices. In this manner, we can observe that
ragments obtained by breaking artefacts into ten fragments have vol-
mes above 10%, which is a frequently used threshold to filter out
ragments that are otherwise difficult to classify and hardly relevant
uring training. For instance, the compared fragmentation work [34]

firstly tested the deep learning models over every piece, whereas a later
released version was decimated by removing those pieces whose nor-
malized volume felt under 2.5%. Finally, Fig. 16 provides an overview
of our triangle mesh dataset.



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

e

w
f

7
w
t
s
t
t

Fig. 15. At the top: front, back and top view of fragments generated by the Cell Fracture plugin, Sellán et al. [17] and our method. On the bottom side, the fragments of a single
vessel are displayed.
Fig. 16. Overview of sixteen fragmented vessels.

Fracture assembly: training details

Fig. 17 shows that triangle meshes are large, especially when arte-
facts are broken into less fragments. Therefore, training deep learning
models over these kinds of meshes is time-consuming. A widespread
approach to save RAM and VRAM is to sample meshes on the fly to
xtract another data representation (e.g., point clouds). However, this

is a particularly intensive task for large triangle meshes. For this reason,
e implemented the quadric decimation that narrows the number of

aces and vertices. Sellán et al. [17] provide a low-resolution dataset of
74,698 pieces over which we trained in barely ∼1 day using an NVIDIA
A600 GPU. In comparison, our dataset comprises 200 artefacts and
0,000 pieces with up to 10,000 faces. The training over both datasets
as prolonged for approximately one day using 200 epochs, and the

op-1 checkpoint was used to assemble the pieces in the test dataset, as
hown in Fig. 18. It shows that the current state-of-the-art is far from
he ideal assembly, and therefore, we hope our dataset contributes to
his challenging problem.
10
Fig. 17. Distribution of the number of faces and vertices in our fragment dataset.

Fig. 18. Pieces assembled with the DGL network.



A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104
Data availability

The data is already shared in the manuscript.

References

[1] Muguercia L, Bosch C, Patow G. Fracture modeling in computer graphics. Comput
Graph 2014;45:86–100. http://dx.doi.org/10.1016/j.cag.2014.08.006, URL https:
//www.sciencedirect.com/science/article/pii/S0097849314000806.

[2] Velić M, May D, Moresi L. A fast robust algorithm for computing discrete
voronoi diagrams. J Math Model Algorithms 2009;8(3):343–55. http://dx.doi.
org/10.1007/s10852-008-9097-6.

[3] Lucena M, Fuertes JM, Martínez-Carrillo AL, Ruiz A, Carrascosa F. Classification
of archaeological pottery profiles using modal analysis. Multimedia Tools Appl
2017;76(20):21565–77. http://dx.doi.org/10.1007/s11042-016-4076-9.

[4] O’Brien JF, Bargteil AW, Hodgins JK. Graphical modeling and animation of duc-
tile fracture. ACM Trans Graph 2002;21(3):291–4. http://dx.doi.org/10.1145/
566654.566579, URL https://dl.acm.org/doi/10.1145/566654.566579.

[5] Koschier D, Lipponer S, Bender J. Adaptive tetrahedral meshes for brittle fracture
simulation. The Eurographics Association; 2014, http://dx.doi.org/10.2312/sca.
20141123.057-066, URL https://diglib.eg.org:443/xmlui/handle/10.2312/sca.
20141123.057-066. Accepted: 2014-12-16T07:33:42Z ISSN: 1727-5288.

[6] Hahn D, Wojtan C. Fast approximations for boundary element based brittle
fracture simulation. ACM Trans Graph 2016;35(4):104:1–104:11. http://dx.doi.
org/10.1145/2897824.2925902, URL https://dl.acm.org/doi/10.1145/2897824.
2925902.

[7] Fan L, Chitalu FM, Komura T. Simulating brittle fracture with material points.
ACM Trans Graph 2022;41(5):177:1–20. http://dx.doi.org/10.1145/3522573,
URL https://dl.acm.org/doi/10.1145/3522573.

[8] Chitalu FM, Miao Q, Subr K, Komura T. Displacement-Correlated XFEM for sim-
ulating brittle fracture. Comput Graph Forum 2020;39(2):569–83. http://dx.doi.
org/10.1111/cgf.13953, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13953. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953.

[9] Blender. Cell fracture: Blender 4.1 manual. 2024, URL https://docs.blender.org/
manual/en/latest/addons/object/cell_fracture.html.

[10] Müller M, Chentanez N, Kim T-Y. Real time dynamic fracture with volumetric
approximate convex decompositions. ACM Trans Graph 2013;32(4):115:1–
115:10. http://dx.doi.org/10.1145/2461912.2461934, URL https://dl.acm.org/
doi/10.1145/2461912.2461934.

[11] Oh S, Shin S, Jun H. Practical simulation of hierarchical brittle fracture. Comput.
Animat. Virtual Worlds 2012;23. http://dx.doi.org/10.1002/cav.1443.

[12] Zafar NB, Stephens D, Larsson Ma, Sakaguchi R, Clive M, Sampath R, Museth K,
Blakey D, Gazdik B, Thomas R. Destroying LA for "2012". In: ACM SIGGRAPH
2010 talks. SIGGRAPH ’10, New York, NY, USA: Association for Computing
Machinery; 2010, p. 1. http://dx.doi.org/10.1145/1837026.1837059, URL https:
//dl.acm.org/doi/10.1145/1837026.1837059.

[13] Lamb N, Banerjee S, Banerjee NK. MendNet: Restoration of fractured shapes using
learned occupancy functions. Comput Graph Forum 2022;41(5):65–78. http://
dx.doi.org/10.1111/cgf.14603, URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14603. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14603.

[14] Gregor R, Bauer D, Sipiran I, Perakis P, Schreck T. Automatic 3D object fracturing
for evaluation of partial retrieval and object restoration tasks - benchmark
and application to 3D cultural heritage data. In: Pratikakis I, Theoharis T,
Spagnuolo M, Gool LV, Veltkamp RC, Godil A, editors. 3DOR. Eurographics
Association; 2015, p. 7–14.

[15] Museth K. OPENVDB. In: ACM SIGGRAPH 2021 courses. SIGGRAPH ’21, New
York, NY, USA: Association for Computing Machinery; 2021, p. 1–197. http:
//dx.doi.org/10.1145/3450508.3464577, URL https://dl.acm.org/doi/10.1145/
3450508.3464577.

[16] Schvartzman SC, Otaduy MA. Fracture animation based on high-dimensional
Voronoi diagrams. In: Proceedings of the 18th meeting of the ACM SIGGRAPH
symposium on interactive 3D graphics and games. i3D ’14, New York, NY,
USA: Association for Computing Machinery; 2014, p. 15–22. http://dx.doi.
org/10.1145/2556700.2556713, URL https://dl.acm.org/doi/10.1145/2556700.
2556713.

[17] Sellán S, Chen Y-C, Wu Z, Garg A, Jacobson A. Breaking Bad: A dataset
for geometric fracture and reassembly. 2022, http://dx.doi.org/10.48550/arXiv.
2210.11463, URL http://arxiv.org/abs/2210.11463. arXiv:2210.11463 [cs].

[18] Gu J, Ma W-C, Manivasagam S, Zeng W, Wang Z, Xiong Y, Su H, Urtasun R.
Weakly-supervised 3D shape completion in the wild. In: Vedaldi A, Bischof H,
Brox T, Frahm J-M, editors. Computer vision – ECCV 2020. Lecture notes in
computer science, Cham: Springer International Publishing; 2020, p. 283–99.
http://dx.doi.org/10.1007/978-3-030-58558-7_17.
11
[19] Stutz D, Geiger A. Learning 3D shape completion under weak supervision. Int J
Comput Vis 2020;128(5):1162–81. http://dx.doi.org/10.1007/s11263-018-1126-
y.

[20] Deng Z, Jiang J, Chen Z, Zhang W, Yao Q, Song C, Sun Y, Yang Z, Yan S,
Huang Q, Bajaj C. TAssembly: Data-driven fractured object assembly using
a linear template model. Comput Graph 2023;113:102–12. http://dx.doi.org/
10.1016/j.cag.2023.05.003, URL https://www.sciencedirect.com/science/article/
pii/S0097849323000560.

[21] Yu X, Rao Y, Wang Z, Liu Z, Lu J, Zhou J. PoinTr: Diverse point cloud completion
with geometry-aware transformers. In: ICCV. 2021, p. 12498–507.

[22] Kerbl B, Kopanas G, Leimkühler T, Drettakis G. 3D Gaussian splatting for
real-time radiance field rendering. ACM Trans Graph (SIGGRAPH Conf Proc)
2023;42(4). URL http://www-sop.inria.fr/reves/Basilic/2023/KKLD23.

[23] Navarro P, Cintas C, Lucena M, Fuertes JM, Rueda A, Segura R, Ogayar-
Anguita C, González-José R, Delrieux C. IberianVoxel: Automatic completion
of iberian ceramics for cultural heritage studies. In: Thirty-second international
joint conference on artificial intelligence. Vol. 6, 2023, p. 5833–41. http:
//dx.doi.org/10.24963/ijcai.2023/647, URL https://www.ijcai.org/proceedings/
2023/647. ISSN: 1045-0823.

[24] Zheng Z, Yu T, Dai Q, Liu Y. Deep implicit templates for 3D shape representation.
2021, http://dx.doi.org/10.48550/arXiv.2011.14565, URL http://arxiv.org/abs/
2011.14565. arXiv:2011.14565 [cs].

[25] Zobeidi E, Atanasov N. A deep signed directional distance function for object
shape representation. 2021, http://dx.doi.org/10.48550/arXiv.2107.11024, URL
http://arxiv.org/abs/2107.11024. arXiv:2107.11024 [cs].

[26] Tang J, Lei J, Xu D, Ma F, Jia K, Zhang L. SA-ConvONet: Sign-agnostic
optimization of convolutional occupancy networks. In: 2021 IEEE/CVF In-
ternational Conference on Computer Vision. ICCV, 2021, p. 6484–93. http:
//dx.doi.org/10.1109/ICCV48922.2021.00644, URL https://ieeexplore.ieee.org/
document/9710632/. Conference Name: 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV) ISBN: 9781665428125 Place: Montreal, QC,
Canada Publisher: IEEE.

[27] Cheng Y-C, Lee H-Y, Tulyakov S, Schwing AG, Gui L-Y. SDFusion: Multimodal
3D shape completion, reconstruction, and generation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2023, p.
4456–65, URL https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_
SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_
CVPR_2023_paper.html.

[28] Payne A, Limp F. Virtual hampson museum project.
[29] Choi S, Zhou Q-Y, Miller S, Koltun V. A large dataset of object scans. 2016,

arXiv:1602.02481.
[30] Manivasagam S, Wang S, Wong K, Zeng W, Sazanovich M, Tan S, Yang B,

Ma W-C, Urtasun R. LiDARsim: Realistic LiDAR simulation by leveraging the
real world. In: 2020 IEEE/CVF conference on computer vision and pattern
recognition. CVPR, IEEE Computer Society; 2020, p. 11164–73. http://dx.
doi.org/10.1109/CVPR42600.2020.01118, URL https://www.computer.org/csdl/
proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k.

[31] Behley J, Garbade M, Milioto A, Quenzel J, Behnke S, Stachniss C, Gall J.
SemanticKITTI: A dataset for semantic scene understanding of lidar sequences.
In: 2019 IEEE/CVF international conference on computer vision (ICCV). 2019, p.
9296–306. http://dx.doi.org/10.1109/ICCV.2019.00939, URL https://ieeexplore.
ieee.org/document/9010727. ISSN: 2380-7504.

[32] Chen K, Choy CB, Savva M, Chang AX, Funkhouser T, Savarese S. Text2Shape:
Generating shapes from natural language by learning joint embeddings. 2018,
arXiv preprint arXiv:1803.08495.

[33] Koutsoudis A, Pavlidis G, Arnaoutoglou F, Tsiafakis D, Chamzas C. Qp: A
tool for generating 3D models of ancient Greek pottery. J. Cult. Herit.
2009;10(2):281–95. http://dx.doi.org/10.1016/j.culher.2008.07.012, URL https:
//www.sciencedirect.com/science/article/pii/S1296207409000326.

[34] Sellán S, Luong J, Mattos Da Silva L, Ramakrishnan A, Yang Y, Jacob-
son A. Breaking good: Fracture modes for realtime destruction. ACM Trans
Graph 2023;42(1):10:1–10:12. http://dx.doi.org/10.1145/3549540, URL https:
//dl.acm.org/doi/10.1145/3549540.

[35] Ogayar-Anguita CJ, Rueda-Ruiz AJ, Segura-Sánchez RJ, Díaz-Medina M, García-
Fernández AL. A GPU-based framework for generating implicit datasets of
voxelized polygonal models for the training of 3D convolutional neural
networks. IEEE Access 2020;8:12675–87. http://dx.doi.org/10.1109/ACCESS.
2020.2965624, URL https://ieeexplore.ieee.org/document/8955843. Conference
Name: IEEE Access.

[36] Zhang Y, Garcia S, Xu W, Shao T, Yang Y. Efficient voxelization using pro-
jected optimal scanline. Graph Models 2018;100:61–70. http://dx.doi.org/10.
1016/j.gmod.2017.06.004, URL https://www.sciencedirect.com/science/article/
pii/S152407031730053X.

[37] Skibo JM, Schiffer MB. The effects of water on processes of ce-
ramic abrasion. J Archaeol Sci 1987;14(1):83–96. http://dx.doi.org/10.1016/
S0305-4403(87)80008-0, URL https://www.sciencedirect.com/science/article/
pii/S0305440387800080.

http://dx.doi.org/10.1016/j.cag.2014.08.006
https://www.sciencedirect.com/science/article/pii/S0097849314000806
https://www.sciencedirect.com/science/article/pii/S0097849314000806
https://www.sciencedirect.com/science/article/pii/S0097849314000806
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s11042-016-4076-9
http://dx.doi.org/10.1145/566654.566579
http://dx.doi.org/10.1145/566654.566579
http://dx.doi.org/10.1145/566654.566579
https://dl.acm.org/doi/10.1145/566654.566579
http://dx.doi.org/10.2312/sca.20141123.057-066
http://dx.doi.org/10.2312/sca.20141123.057-066
http://dx.doi.org/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
http://dx.doi.org/10.1145/2897824.2925902
http://dx.doi.org/10.1145/2897824.2925902
http://dx.doi.org/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
http://dx.doi.org/10.1145/3522573
https://dl.acm.org/doi/10.1145/3522573
http://dx.doi.org/10.1111/cgf.13953
http://dx.doi.org/10.1111/cgf.13953
http://dx.doi.org/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
http://dx.doi.org/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
http://dx.doi.org/10.1002/cav.1443
http://dx.doi.org/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
http://dx.doi.org/10.1111/cgf.14603
http://dx.doi.org/10.1111/cgf.14603
http://dx.doi.org/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://dx.doi.org/10.1145/3450508.3464577
http://dx.doi.org/10.1145/3450508.3464577
http://dx.doi.org/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
http://dx.doi.org/10.1145/2556700.2556713
http://dx.doi.org/10.1145/2556700.2556713
http://dx.doi.org/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
http://dx.doi.org/10.48550/arXiv.2210.11463
http://dx.doi.org/10.48550/arXiv.2210.11463
http://dx.doi.org/10.48550/arXiv.2210.11463
http://arxiv.org/abs/2210.11463
http://arxiv.org/abs/2210.11463
http://dx.doi.org/10.1007/978-3-030-58558-7_17
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1016/j.cag.2023.05.003
http://dx.doi.org/10.1016/j.cag.2023.05.003
http://dx.doi.org/10.1016/j.cag.2023.05.003
https://www.sciencedirect.com/science/article/pii/S0097849323000560
https://www.sciencedirect.com/science/article/pii/S0097849323000560
https://www.sciencedirect.com/science/article/pii/S0097849323000560
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://www-sop.inria.fr/reves/Basilic/2023/KKLD23
http://dx.doi.org/10.24963/ijcai.2023/647
http://dx.doi.org/10.24963/ijcai.2023/647
http://dx.doi.org/10.24963/ijcai.2023/647
https://www.ijcai.org/proceedings/2023/647
https://www.ijcai.org/proceedings/2023/647
https://www.ijcai.org/proceedings/2023/647
http://dx.doi.org/10.48550/arXiv.2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://dx.doi.org/10.48550/arXiv.2107.11024
http://arxiv.org/abs/2107.11024
http://arxiv.org/abs/2107.11024
http://dx.doi.org/10.1109/ICCV48922.2021.00644
http://dx.doi.org/10.1109/ICCV48922.2021.00644
http://dx.doi.org/10.1109/ICCV48922.2021.00644
https://ieeexplore.ieee.org/document/9710632/
https://ieeexplore.ieee.org/document/9710632/
https://ieeexplore.ieee.org/document/9710632/
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
http://arxiv.org/abs/1602.02481
http://dx.doi.org/10.1109/CVPR42600.2020.01118
http://dx.doi.org/10.1109/CVPR42600.2020.01118
http://dx.doi.org/10.1109/CVPR42600.2020.01118
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
http://dx.doi.org/10.1109/ICCV.2019.00939
https://ieeexplore.ieee.org/document/9010727
https://ieeexplore.ieee.org/document/9010727
https://ieeexplore.ieee.org/document/9010727
http://arxiv.org/abs/1803.08495
http://dx.doi.org/10.1016/j.culher.2008.07.012
https://www.sciencedirect.com/science/article/pii/S1296207409000326
https://www.sciencedirect.com/science/article/pii/S1296207409000326
https://www.sciencedirect.com/science/article/pii/S1296207409000326
http://dx.doi.org/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
http://dx.doi.org/10.1109/ACCESS.2020.2965624
http://dx.doi.org/10.1109/ACCESS.2020.2965624
http://dx.doi.org/10.1109/ACCESS.2020.2965624
https://ieeexplore.ieee.org/document/8955843
http://dx.doi.org/10.1016/j.gmod.2017.06.004
http://dx.doi.org/10.1016/j.gmod.2017.06.004
http://dx.doi.org/10.1016/j.gmod.2017.06.004
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://www.sciencedirect.com/science/article/pii/S152407031730053X
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
https://www.sciencedirect.com/science/article/pii/S0305440387800080
https://www.sciencedirect.com/science/article/pii/S0305440387800080
https://www.sciencedirect.com/science/article/pii/S0305440387800080


A. López, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104
[38] Garland M, Heckbert PS. Surface simplification using quadric error metrics. In:
Proceedings of the 24th annual conference on computer graphics and interactive
techniques. SIGGRAPH ’97, USA: ACM Press/Addison-Wesley Publishing Co.;
1997, p. 209–16. http://dx.doi.org/10.1145/258734.258849, URL https://dl.
acm.org/doi/10.1145/258734.258849.

[39] Tsukiyama T, Kondo Y, Kakuse K, Saba S, Ozaki S, Itoh K. Method and system for
data compression and restoration. 1986, URL https://patents.google.com/patent/
US4586027A/en.
12
[40] Graciano A, Rueda AJ, Pospíšil A, Bittner J, Benes B. QuadStack: An efficient
representation and direct rendering of layered datasets. IEEE Trans Vis Comput
Graphics 2021;27(9):3733–44. http://dx.doi.org/10.1109/TVCG.2020.2981565,
URL https://ieeexplore.ieee.org/document/9040672. Conference Name: IEEE
Transactions on Visualization and Computer Graphics.

[41] Huang J, Zhan G, Fan Q, Mo K, Shao L, Chen B, Guibas L, Dong H. Generative
3D part assembly via dynamic graph learning. In: The IEEE conference on neural
information processing systems. neurIPS, 2020, p. 1–12.

http://dx.doi.org/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://patents.google.com/patent/US4586027A/en
https://patents.google.com/patent/US4586027A/en
https://patents.google.com/patent/US4586027A/en
http://dx.doi.org/10.1109/TVCG.2020.2981565
https://ieeexplore.ieee.org/document/9040672
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41

	Generating implicit object fragment datasets for machine learning
	Introduction
	Related work
	Fragmentation
	Shape assembly and completion

	Methodology
	Voxelization
	Fragmentation
	Additional seeds
	Biased seeds
	Erosion

	Mesh generation
	Point cloud generation

	Experimentation and results
	Dataset preparation
	Computational resources
	Convexity
	Compression
	Evaluation of applicability
	Visual comparison

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	
	Appendix
	Dataset details
	Fracture assembly: training details
	Data availability
	Appendix . Data availability
	References


