Computers & Graphics 125 (2024) 104104

Contents lists available at ScienceDirect

Computers
&Graphics

Computers & Graphics € ;

journal homepage: www.elsevier.com/locate/cag

Technical Section

Generating implicit object fragment datasets for machine learning™ N

Check for
Alfonso Lépez®“>", Antonio J. Rueda ", Rafael J. Segura®*"”, Carlos J. Ogayar **“, e
Pablo Navarro *”, José M. Fuertes *
2 Department of Computer Science, Campus Las Lagunillas s/n, Jaén, 23071, Spain
b Instituto Patagdnico de Ciencias Sociales y Humanas, Centro Nacional Patagénico, CONICET, Puerto Madryn, Argentina
ARTICLE INFO ABSTRACT
Keywords: One of the primary challenges inherent in utilizing deep learning models is the scarcity and accessibility
Voxel) hurdles associated with acquiring datasets of sufficient size to facilitate effective training of these networks.
Fragmentation This is particularly significant in object detection, shape completion, and fracture assembly. Instead of scanning

Fracture dataset
Voronoi
GPU programming

a large number of real-world fragments, it is possible to generate massive datasets with synthetic pieces.
However, realistic fragmentation is computationally intensive in the preparation (e.g., pre-factured models)
and generation. Otherwise, simpler algorithms such as Voronoi diagrams provide faster processing speeds at
the expense of compromising realism. In this context, it is required to balance computational efficiency and
realism. This paper introduces a GPU-based framework for the massive generation of voxelized fragments
derived from high-resolution 3D models, specifically prepared for their utilization as training sets for machine
learning models. This rapid pipeline enables controlling how many pieces are produced, their dispersion and
the appearance of subtle effects such as erosion. We have tested our pipeline with an archaeological dataset,
producing more than 1M fragmented pieces from 1,052 Iberian vessels (Github). Although this work primarily
intends to provide pieces as implicit data represented by voxels, triangle meshes and point clouds can also
be inferred from the initial implicit representation. To underscore the unparalleled benefits of CPU and GPU
acceleration in generating vast datasets, we compared against a realistic fragment generator that highlights
the potential of our approach, both in terms of applicability and processing time. We also demonstrate the
synergies between our pipeline and realistic simulators, which frequently cannot select the number and size
of resulting pieces. To this end, a deep learning model was trained over realistic fragments and our dataset,
showing similar results.

1. Introduction On the other hand, rigid body fragmentation and deformation have
longstanding challenges in computer graphics and related fields such as

Numerous applications rely on incomplete views of objects, of- fabrication and mechanics. While mechanics often focuses on accurate
ten caused by occlusion or fragmentation. When the complete shape numerical models that reflect reality by integrating continuum dynam-
holds crucial significance, fracture assembly and completion emerge ics, calculus, and differential geometry [1], the needs of realistic frag-
as valuable techniques for inferring the full structure from one or mentation differ significantly from those of real-world fracture assem-
a few fragments. These applications span diverse domains, including bly and completion. Moreover, physically based approaches, although

heritage preservation, archiving, geometry processing, computer vision,
and robotics. Akin to numerous other applications, recent works have
solved these tasks with artificial intelligence models; however, their
training is a significant bottleneck and source of challenges. For in-
stance, acquiring extensive datasets of scanned fragments and their
corresponding ground truth is arduous in terms of material resources
and time. Instead, generating large datasets featuring fragmented rigid
bodies holds promise for addressing this gap more effectively.

capable of producing realistic results, are computationally expensive.
Consequently, real-time applications like video games frequently com-
promise realism. They typically employ precomputed fracture patterns
that can be dynamically adapted to simulate real-time impacts, yield-
ing visually appealing results. However, pre-computations are time-
consuming, especially for generating large fragment datasets. Addition-
ally, realistic fragmentation processes may produce many fragments of

* This article was recommended for publication by Marco Attene.
* Corresponding author.
E-mail addresses: allopezr@ujaen.es (A. Lopez), ajrueda@ujaen.es (A.J. Rueda), rsegura@ujaen.es (R.J. Segura), cogayar@ujaen.es (C.J. Ogayar),
pnavarro@cenpat-conicet.gob.ar (P. Navarro), jmf@ujaen.es (J.M. Fuertes).

https://doi.org/10.1016/j.cag.2024.104104

Received 9 May 2024; Received in revised form 30 September 2024; Accepted 4 October 2024

Available online 15 October 2024

0097-8493/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cag.2024.104104
https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2024.104104&domain=pdf
https://orcid.org/0000-0003-1423-9496
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0002-3075-6963
https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0003-2180-449X
https://orcid.org/0000-0001-6624-4102
https://alfonsolrz.github.io/VoxelFragmentML
mailto:allopezr@ujaen.es
mailto:ajrueda@ujaen.es
mailto:rsegura@ujaen.es
mailto:cogayar@ujaen.es
mailto:pnavarro@cenpat-conicet.gob.ar
mailto:jmf@ujaen.es
https://doi.org/10.1016/j.cag.2024.104104
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Ldpez, A.J. Rueda, R.J. Segura et al.

insufficient size for meaningful Machine Learning (ML) training. This
further prolongs dataset generation until many adequately sized pieces
are available.

This work introduces a simple pipeline for rapidly fracturing rigid
bodies to generate huge fracture datasets. These pieces are provided in
a voxel implicit format, though other derived representations can also
be inferred: point clouds and triangle meshes. The Discrete Voronoi
Chain (DVC) [2] is extended to leverage realism and response time
while simulating other convenient effects. In addition, it is imple-
mented in the Graphics Processing Unit (GPU) and can generate nearly
five fragments per second. According to this, the main contributions of
this research are the following:

1. We propose a GPU-based fragment generator that outputs im-
plicit pieces in the form of voxels and thus can be directly fed
into ML pipelines.

2. Our method enables configuring the number of fragments and
their distribution, thus complementing physically-based frag-
mentation for generating much larger datasets.

3. Implementation of subtle voxel-level effects, such as erosion and
impacts, that enhance the appearance of our fragments, despite
not being entirely realistic.

4. We provide a detailed analysis of computation time and resource
usage for generating a large dataset, comparing our approach to
state-of-the-art work. Additionally, we integrate our fragments
into an assembly pipeline to demonstrate their applicability.

5. We made available a dataset composed of 1M fragments from
1,052 archaeological artefacts [3], published in Github.

2. Related work

This section is guided by the state-of-the-art on brittle fractures,
highlighting current trends and limitations. Then, the relevancy of
generating fracture datasets is evaluated by exploring fracture assembly
and completion works. Publicly available datasets are also revised for
comparison.

2.1. Fragmentation

Decades of comprehensive research have delved into the fracture
simulation of brittle objects. Unlike elastic and ductile materials, brittle
materials exhibit a failure or fracture threshold close to their elastic
limits. Consequently, these materials lack deformability. The revision
in this section focuses on these specific materials.

The inception of fracture modelling finds its roots in continuum me-
chanics, employing parameters such as strain, stress, and plastic prop-
erties. In the realm of simulating the fracturing process, mass—spring
methods [4] transform polygonal meshes into tetrahedral volumes.
This category encompasses a diverse array of methods, ranging from
finite element to boundary element techniques (FEM [5] and BEM [6],
respectively), as well as mesh-less approaches. These methodologies are
typically categorized based on their re-meshing requirements, degrees
of freedom (DOF), and the equations they aim to solve. The growing
significance of the Material Point Method (MPM) in physically-based
simulations has also extended to the simulation of brittle fractures [7].

Traditional FEM approaches necessitate re-meshing during crack
propagation due to the initial limitations in DOF imposed by the num-
ber of vertices. Although alternatives like the eXtended Finite Element
Method (XFEM) [8] address this issue, FEM-based methods are often
susceptible to instability and challenges in managing bifurcations. In
contrast, the BEM employs a surface-mesh discretization, formulating
governing equations based on boundary integral forms rather than
volumetric ones. This method can be efficiently streamlined to reduce
response time by swiftly estimating stress using level sets, albeit re-
quiring pre-computation of stiffness matrices. Unlike its predecessors,
MPM exhibits superior adaptability to topological changes inherent

Computers & Graphics 125 (2024) 104104

in deformable materials, making it a longstanding choice for fracture
simulations, even in brittle materials [7]. Moreover, MPM is esteemed
for its enhanced numerical stability.

Completely renouncing realism, Veli¢ et al. [2] introduced Voronoi
diagrams applied to polygonal meshes, aligning with geometry-based
approaches. This algorithm incorporates Voronoi regions either as
boundaries during region growth or as initial points for expansion.
However, this stochastic method tends to yield regular and convex
fragments that differ from realistic outcomes [9]. Similarly, Miiller
et al. [10] projected Voronoi diagrams into convex hulls of meshes
for real-time destruction. They were able to recursively fragments
to simulate impact points. However, they handle better meshes of
polygons rather than only triangles, since the first are easier to cut. This
approach is similar to the Cell Fracture plugin in Blender [9], although
the latter does not project the Voronoi diagram over the convex hull,
but on the bounding box. To mitigate this lack of realism, Oh et al.
[11] introduced noise to the fragmented geometry. While this may
sacrifice realism, it proves beneficial for efficiently simulating diverse
scenarios using Voronoi cells as cutting planes [12]. Another avenue in-
volves the application of Boolean operations to achieve fragmentation,
parametrized by primitive shapes and their quantities [13]. Introducing
more irregular patterns is feasible by employing primitives with noisy
geometry [14] or incorporating level sets [15]. The latter approach is
particularly effective over volumetric representations, enhancing crack
details when voxel size is significantly reduced. Although categorized as
non-physical, this category of methods is faster in generating extensive
datasets.

In addressing the time-consuming nature of real-time fractures, an
alternative strategy involves pre-computing fracture patterns that can
dynamically adapt to real-time collisions. The activation of fractures
during a specific impact often relies on criteria such as Euclidean
distance or learning from examples, as demonstrated by Schvartzman
and Otaduy [16]. Introducing a novel and advanced method, Sellan
et al. [17] extends a linear subspace into which impacts can be pro-
jected. Employing an optimizer, this method identifies points prone
to separating first into fragments. The process involves simplifying
polygon meshes into a set of tetrahedrons, with pre-computed fracture
modes. While it entails a substantial preparation phase, this approach
yields rapid real-time fragmentation. The variability in the generated
fragments is contingent on the number of pre-computed modes.

2.2. Shape assembly and completion

Shape assembly and completion problems address the incomplete
knowledge of 3D shapes that may come from occlusion and insufficient
resolution during its acquisition by scanning, or directly from parts
that have been lost. Current state-of-the-art works approach these
tasks using GAN, Encoder-Decoder architectures [18-20] as well as
auto-decoders [13] and transformers [21]. For point cloud datasets,
optimization is also possible by ensuring the final shape fits in the
depictions of multiple views [22].

Polygonal meshes are not frequently used as input in ML mod-
els; instead, several alternative representations have been used, each
having advantages and disadvantages. The most straightforward is
the voxel model [19,23]. Over these, convolutional networks can be
directly used, though dimensionality is a huge problem which limits
the voxel space resolution. Point clouds are another common represen-
tation in the literature [20,21]. Otherwise, signed distance functions
(SDFs) [24], signed directional distance functions (SDDFs) [25] and
unsigned distance functions [26] are inferred from triangle meshes and
point clouds.

Regarding the availability of quality datasets for training and testing
the different solutions, the vast majority of previous studies use partial
views of ShapeNet [27], ModelNet [19], BuildingNet [27], cultural
heritage models [28], scanned objects [29], 3D vehicles [30] and
SemanticKITTI [19,31]. Note that datasets such as SemanticKITTI also

https://alfonsolrz.github.io/VoxelFragmentML

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Computers & Graphics 125 (2024) 104104

Voxelization ——>

| Biased seeds

Seed instancing

Additional seeds

Marching cubes — Fusing duplicate vertices — Laplacian smoothing

Triangulation

v

R — Erosion = -
‘ o oo
MxKxP

& T

f=2v+2

]

T

I

|

I

I

|

I

I

I

I

I .
: | Fragmented point cloud
: 2
I

I

I

I

I

I

I

I

I

I

High-res mesh \

i y
V ﬁ i Simplified triangle mesh |
N | f=2v+2

Voxelization
MxKxP

Fig. 1. Overview of the proposed dataset generation. High-res triangle meshes are voxelized, fragmented, eroded and optionally converted to point cloud and triangle mesh. The
starting high-res mesh can be stored in the same formats. The number of points is illustrated as T, triangles as f, vertices as v and the voxelization size as M, K, P.

provide pose data and are highly suitable for multi-view completion.
Besides this, completion can be further guided by text feed [27,32].
Other works have constructed their datasets. For example, Lamb et al.
[13] build their fractures over ShapeNet and Greek pottery from Kout-
soudis et al. [33]. To this end, input models were modified by applying
Boolean operations with regular shapes such as icospheres and cubes.
These regular primitives may have some noise to provide more irregu-
lar cuts, and even be combined to create more realistic fractures [14].
More recently, Sellan et al. [34] built a dataset based on their fracturing
method [17].

3. Methodology

This section explains the details of the fragmentation pipeline de-
picted in Fig. 1. The inputs of our pipeline are rigid bodies given
by triangle meshes of any number of vertices and triangles. No pre-
processing is required besides merging repeated vertices. The primary
output is a voxel-based fragmentation, while others such as point clouds
and triangle meshes can be optionally calculated from voxels.

3.1. Voxelization

We simulate mesh fracturing in voxel space since it provides a
simpler data structure where fragments can be calculated by trivially
accessing surrounding voxels. In addition, this data can be directly
used to feed models [23] and enable simulating subtle effects, such as
erosion. Other common representations in ML, such as distance func-
tions, are derived from voxels and polygonal meshes. In comparison,
tetrahedralization also requires a high resolution and provides hard
boundaries unless these are subdivided and smoothed. The voxelization
is performed as proposed by Ogayar-Anguita et al. [35] since it is a
fast, simple and reliable method that also voxelizes the interior of the
solid, unlike other studies that only voxelize the surface [36]. This work
has its theoretical foundation in the point-in-tetrahedron inclusion test,
and it is resolved using plane-sweeping in the geometry shader. Further
details can be found in Ogayar-Anguita et al. [35], though a brief
overview of this method is shown in Fig. 2.

The dimensionality of the voxel space, VAM*KX? s obtained by
applying a fixed multiplier, n (voxel/metric unit), to the axis-aligned
bounding box (AABB) of the mesh, rather than being a square, to lower
the CPU/GPU memory footprint. However, it can be later padded to &
on disk storage, with © « max M, K, P. The matrix is filled with free,
a yet-to-determine value, or empty voxels that will never be occupied.

Fig. 2. Voxelization results obtained using the method of Ogayar-Anguita et al. [35]
over (a) a solid mesh and (b) a mesh whose surface has some thickness. Red-coloured
slices indicate that there is an even number of overlapping triangles, whereas green
colouring indicates that there is an odd number. Hence, red-coloured areas do not have
active voxels.

3.2. Fragmentation

The implemented fragmentation is based on the Discrete Voronoi
Chain (DVC) [2]. It generates a list of Voronoi region centres, from now
on referred to as seeds, that expand to their neighbourhood until every
voxel belongs to a region. Note that, seeds are internally represented
as 3D indices within the voxelization. Flooding in the limits between
regions may lead to an incorrect Voronoi diagram, therefore distance
checks to the region centres are required. However, disabling the
distance checks also enables disrupting the Voronoi diagram to create
concavities.

The first matter of discussion is how to sparse seeds. Trivially, they
should be evenly distributed over free voxels. Despite Monte-Carlo
samplers behaving more uniformly, we found the Mersenne Twister
pseudo-random generator fair enough to sparse seeds. As a result, a
set S composed of seeds is extracted, with s; € S being a vector such
as {s; , SiysSi, }.

In the straightforward DVC approach, each free voxel from V is
assigned the fragment ID i of the nearest seed s;. Various distance
functions can be implemented, from Euclidean or Chebyshev to Man-
hattan, ultimately leading to different fracture patterns. However, the
main drawback of this method is that voxels are flooded without
checking their connectivity to seeds. For instance, vessel handles are
characterized by an inter-leaved, empty space, which is omitted during
this procedure. A better solution is to assign each voxel by propagating

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Fig. 3. Voronoi regions expanded after ten iterations using Moore (left) and Von
Neumann neighbourhoods.

the fragment ID of each seed using a growing-region approach. Albeit
slightly slower in the GPU, this procedure intrinsically tackles the
previous connectivity drawback.

The growing procedure is implemented with a stack that is itera-
tively updated. In the GPU, two stacks with a length of M X K x P
are required; while one is updated during an iteration, the other is
checked and emptied. For each voxel of a stack, its free neighbours
(yvet to flood but inside the mesh) are set to the ID of the current
voxel. Then, they are appended to the stack of the following iteration.
Neighbourhoods may have different shapes; for instance, the two most
common are Von Neumann (six faces, as in a cube) and Moore, which
also integrates the corners (twenty-six voxels). They can be easily
integrated into the GPU as buffers containing a variable number of 3D
vectors. The aftermath of different flooding neighbourhoods is depicted
in Fig. 3.

3.2.1. Additional seeds

Although real-world fragments are predominantly convex, they also
include more intricate cuts leading to concave shapes. This feature can
be smoothly incorporated into our fragmentation pipeline by generat-
ing additional seeds. These are intended to push the fragment limits
from several points, thus creating more complex shapes. Note that, new
seeds are not assigned different IDs, but the value of the closest initial
seed using a distance function such as Chebyshev. This new seed set is
represented as M = {my,m,,...,m;} with m; belonging to any region
from S.

A drawback of this approach is that it can create isolated regions
if two seeds are too far and the growing regions cannot merge before
the region-growing procedure stalls. Therefore, these isolated regions
must be identified and removed (i.e., their voxels must be reset to
free) to allow a new assignment by region growing from neighbouring
fragments. Notice that isolated fragments could be attached to a sur-
rounding fragment; however, the implemented approach leads to more
visually appealing pieces.

A simple solution to detect isolated fragments is to use disjoint sets
(see Fig. 4). In this approach, a set of voxels is considered isolated
if its ID matches the ID of another set with which it is disconnected.
Our GPU implementation of this test is mainly supported by the voxel
data type: uint16_t. This amount of bits can be split into two parts
to save (1) the seed ID in the most significant 16 bits (identifier of
the random point that flooded a voxel) and (2) the fragment ID in
the least significant bits. That is, additional seeds have different IDs
but share their fragment ID. Then, the flooding procedure is repeated
by exchanging the seed ID with surrounding voxels from the same
fragment ID, hence storing the minimum seed ID. As a result, the
same voxel could be processed more than once if a lower seed ID is
encountered. In practice, the voxels to be processed are handled using
one buffer for reading and another for writing. With this approach,
disjoint sets are groups of voxels whose seed ID is not the minimum
possible ID for their fragment, i.e., zero. Once detected, their voxels
are freed and the fragmentation process is restarted.

Computers & Graphics 125 (2024) 104104

Fragment ID :I

> 0 1 0] 2

Disjoint sets >0 Minimum seed ID per fragment

Disjoint sets == 0

Mask out seed ID
e Fragment ID

Fig. 4. Fragmentation procedure, during which isolated regions are checked. On the
top side, the Armadillo model is displayed with isolated regions (left) and fixed (right).

Free voxels with non-
minimum seed ID

3.2.2. Biased seeds

Another benefit of randomly sampling the voxelization is that it
can be trivially biased towards specific parts to obtain more fragments.
This can be viewed as a specific case of additional seeds. Rather than
placing seeds uniformly, we can bias them towards one or more specific
locations. Moreover, any alternative random distribution generating
values in [0, 1] can be used, leading to different volume histograms,
as illustrated in Fig. 5. Biased seeds emulate impacts focused on a
surface point (high bias) or a dispersed fragmentation that could rather
correspond to squashing (spread over a larger area). Other tools such
as Cell Fracture [9] emulate this effect by recursively subdividing
previous fragments. In our work, biased seeds are implemented through
Gaussian random distributions configured with a bias factor, S. The
higher the bias, the less the seeds are scattered.

Fig. 5 illustrate the differences between additional seeds, which
are uniformly sparsed to create more intricate shapes, and biased
seeds, which concentrate new seeds in a few surrounding voxels to
recreate collisions. This feature holds particular relevance to simulating
fracture patterns guided by strained points. For instance, it can sim-
ulate interactive impacts (Fig. 6) by scattering seeds over an impact
point. Simulating incomplete findings lacking small fragments could
be even advantageous, as occurs in archaeology. Nevertheless, biased
pieces tend to be smaller, thus more likely to be discarded according
to their volume. Hence, this feature is more relevant for interactive
fragmentation than for generating datasets.

3.2.3. Erosion

Previous voxelized fragments have a perfect fit, i.e., joining all of
them produces the starting voxelization. However, the breakage of
artefacts can result in tiny shards detaching, often going unnoticed or
being discarded during excavations. In addition to small fragments,
larger shards may also remain unrecovered, as shown in Fig. 8. Fur-
thermore, we can also find fragments with smoothed edges due to
erosion or abrasion caused by contact with soil, especially in wet
environments [37]. The loss of larger shards can be simulated using
the previous bias seeds, while the erosion of details and the loss of
tiny shards can be replicated with erosion techniques. These factors
contribute to misfitting shards, making it difficult to fully reconstruct
the original artefact.

A. Lopez, A.J. Rueda, R.J. Segura et al.

a) Additional seeds b) Biased seeds

Frequency Frequency
81 =
—— Uniform distribution — S=5;32bias seeds
—— Normal distribution —— S =10; 32 bias seeds
6 61 — $=10; 6 bias seeds
- =
=] =)
8 4 8
b 4 ~
3])
~ ~
2
0

Volume

Volume

Fig. 5. On the left side, ten regions grow with no bias using two different random
distributions, resulting in larger pieces. In the right image, eight regions grow with
two bias points (circled) emulated with different numbers of seeds and spreading (S).

Fig. 6. Initial fragmentation and on the right side, the fragmentation produced by an
impact interactively selected over the dragon’s head.

In this regard, voxelization helps to integrate erosion through 3D
erosion kernels. Different convolutions (C?), from squares, circles or
crosses, can be utilized for sampling the neighbourhood of a voxel. Fol-
lowing this procedure, voxels are eroded (discarded and set to free)
whether the summed convolution is not equal to the number of voxels
activated in C3. In practice, this is hard to control and parametrize as
voxels not in the fragment boundaries may also be eroded. To tackle
this, boundary voxels (in contact with a free voxel) are detected from
each fragment to create a list of erasable voxels. We define a boundary
voxel as one with direct connectivity with at least one free voxel. We
emphasize this as this principle will also be used later.

The erosion is further parametrized by establishing the number of
iterations during which the voxelization is eroded. In addition, it is
possible to relax or harden the erosion by requiring less activations
from a given convolution. We also introduced random checks to avoid
smoothed boundaries; instead, voxels are convoluted with a probability
in [0,1]. If the probability is one, every voxel is convoluted. It is
configured with a threshold, where a lower value results in gentler
erosion. Fig. 8 shows the erosion results in triangle meshes, compared
to another set of non-eroded shards, whereas Fig. 7 displays the erosion
kernels.

Computers & Graphics 125 (2024) 104104

Fig. 7. Three erosion kernels and their effects. Voxels were convoluted and freed if
less than 50% of the expected voxels were active.

]

S ™

Fig. 8. Comparison of eroded (left) and fitting fragments (right) on the top side. Fitting
pieces are obtained by weighting the Laplacian operator to zero in the boundary voxels.
Below, two real-world vessels are compared: (1) an incomplete vessel with notable
erosion cues, and (2) an incomplete vessel artificially reconstructed by replicating
missing pieces.

3.3. Mesh generation

The primary aim of this work is to simulate fragmentation within
voxel space. However, additional representations can be derived from
this, including triangle meshes, point clouds, and SDFs. We generated
triangle meshes by implementing the marching cubes algorithm in the
GPU. The main bottleneck is to transfer large triangle meshes back
from VRAM (Virtual Random Access Memory), with [5, 12] triangles
being returned per voxel. This drawback is partially suffocated by
fusing duplicated vertices in the GPU. First, points are encoded as
3D Morton codes of 30 bits (10 bits per coordinate) which can be
efficiently sorted with the Radix sort algorithm (O(nk) complexity, with
n being the number of points and k = 30 bits). Once sorted, contiguous
values which satisfy distance(p,,p,) < ¢ are merged. In the GPU, this
test is implemented by finding the indices of the first points that are
identical to the following points. This also involves reallocating points
via prefix-scan and modifying the triangle indices.

Another drawback arises from the staggered appearance of resulting
meshes. This is particularly evident in the curved surfaces of ceramic
vessels. To alleviate this, we perform several iterations of the Laplacian
operator, as depicted in Fig. 10. However, as a side effect, this also
removes the sharp details at the edges of the fragments. We handled
this by weighting the smoothing operator in faces within boundary
voxels with a lower factor, even zero. Note that border voxels were
previously identified for erosion and this information is still present in
this stage. Finally, meshes can be optionally decimated with quadric
error metrics [38] to reduce the storage footprint, as illustrated in
Fig. 9.

A. Lopez, A.J. Rueda, R.J. Segura et al.

Fig. 9. Marching cubes over a fragment of the armadillo. The mesh was iteratively
simplified with quadric decimation.

Higher number of iterations

Iterations

Weight

Higher weight

Fig. 10. Triangle meshes obtained by using different Laplacian smoothing factors. On
the top side, the number of iterations varied from 0.01 - max (M, K, P) to 0.08. On the
bottom side, the weight factor goes from 0.1 to 0.6.

Fig. 11. Sampling of the Armadillo mesh using the Mersenne Twister pseudo-random
sampler (left) and Halton sampling (right). On the left point cloud, the right ear of the
model is missing.

3.4. Point cloud generation

Point clouds are another successful representation in DL that can be
inferred from triangle meshes. They are composed of k points sampled
from triangles according to their area and the overall summed-area.
We considered that at least one point was to be extracted from every
triangle. Then, the generated points are shuffled and subsampled if
the number of points is higher than k. Unlike seed instancing, where
uniformity is not required, the random distribution in this step holds
particular significance, as it could potentially omit relevant parts with
low k. Fig. 11 compares the sampling with the Mersenne Twister
pseudo-random generator and a Halton sampler.

Computers & Graphics 125 (2024) 104104
4. Experimentation and results

The experiments are focused on measuring the memory footprint
and efficiency of the parallel fragment generation in the form of vox-
els, meshes and point clouds. Firstly, it is compared against Break-
ing Good [17], a realistic fragmentation method which was recently
published. It is based on pre-fractured modes that do not provide
direct control over the number of fragments; instead, fragments are
determined by the projected impact. We have also integrated the
Cell Fracturer plugin from Blender [9], which utilizes Voronoi dia-
grams as in [10,15]. Measurements were performed on a PC with
Intel®Xeon®Silver 4210R (2.4GHz), 176 GB RAM, GeForce RTX 3070
GPU with 8 GB VRAM, and Windows 10 OS. The proposed pipeline
is implemented in C++23 using OpenMP (Open Multi-Processing) for
parallel processing. We use OpenGL 4.6 for rendering and GPGPU
(general-purpose computing on GPU). Note that OpenGL storage buffers
are limited to 2 GB regardless of the VRAM capacity. Our work employs
voxelizations with low resolution since these are appropriate for con-
volutional operations, and besides this, the footprint is diminished by
quantization (with the data type being uint16_t). Still, the VRAM
is rapidly outgrown by buffers allocated for solving marching cubes.
Hence, our experimentation will be clamped to 128 voxels.

Overall, we have considered two ways the fragments can be fed
into the network: (1) storing the whole dataset in an out-of-core fash-
ion, and (2) generating batches consumed by the model in the GPU.
However, the second approach has not been annotated in the following
experiments since it has no storage footprint.

4.1. Dataset preparation

The generation of fragment datasets has three results: voxels, trian-
gle meshes and point clouds. Additionally, the resulting dataset should
have a similar number of samples for each number of pieces. To
this end, we fragmented every item in [2, 10] pieces during a number
of iterations interpolated from [15,5]. We tested our pipeline over a
dataset of 1,052 artefacts comprising different kinds of Iberian ceramic
vessels [3]. These were generated as surfaces of revolution from profiles
reconstructed by archaeologists. Other parts, such as their handles,
were later included under their supervision. These models oscillate
between 500k and 3M vertices, and between 200k and 1.6M trian-
gles. The dimensionality of voxelizations was downscaled according
to the object’s bounding box. In this manner, the triangles obtained
from marching cubes have a similar scale to the starting mesh. Point
clouds were generated by sampling 1000 points, similar to previous
fracture assembly works [34], and triangle meshes were stored with
no quadric decimation when possible. The pieces were smoothed using
the Laplacian operator: the boundary voxels were smoothed with a
weight of 0.2, whereas the rest were smoothed with a weight of 0.9. It
was prolonged during 0.048 - k iterations, with k being the maximum
dimension of the voxelization. In this manner, the number of iterations
grows as voxelizations get larger.

The instructions to download our fragment dataset are published
online. The details of the dataset are shown in Table 3 for two different
voxel resolutions: 64 (for comparisons) and 128 (released version). Two
variants of our dataset have been released: (1) 1M pieces of 1,052
artefacts in every possible binary file format, and (2) 200K pieces from
only 200 artefacts, stored as plain . obj and . ply (~25 GB). The latter
is released to offer an overview of our dataset.

4.2. Computational resources

Besides the storage footprint addressed in Section 4.4, we investi-
gated the computational resources used during the dataset generation,
in contrast to Breaking Good. They released their code in Python and
we adapted it to behave similarly to our fragmentation (grid of size
128, simplification to 5,000 tetrahedra, 20 fracture modes and stops

https://alfonsolrz.github.io/VoxelFragmentML

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Sellan et al. (2022) Ours

100

80

60

40

CPU usage (%)

20

0 1000 2000 3000 4000 5000 6000 7000
Time (s)
Sellén et al. (2022) (RAM) Ours (RAM) —— Ours (VRAM)
4
=
Q3
&
g
3
22
=]
&
3
=
1 H—\%
0
0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Computers & Graphics 125 (2024) 104104

Sellan et al. (2022) Ours

100
80
2
< 60
)
g
3
2 40
o
20
0
0 10000 20000 30000 40000 50000 60000 70000 80000
Time (s)
Sellan et al. (2022) (RAM) Ours (RAM) — Ours (VRAM)
8
=
5} 6
@
&n
g
3
2 4
S
&
3
=
2
0
0 10000 20000 30000 40000 50000 60000 70000 80000
Time (s)

Fig. 12. Usage of CPU, RAM and VRAM resources while generating a dataset with Breaking Good fragmentation and our method. On the left side, the results are obtained by
fragmenting 20 random vessels, while the results on the right side were extracted from 200 artefacts of the Thingil0K dataset.

for every model when 1000 fragments are generated). Their results are
written as compressed binary files (. npy). On the other hand, the Cell
Fracture plugin was not included in this experiment since it stalled with
some of the meshes in Thingil0K. However, it managed to fragment the
twenty vessels in 1.91 h (slightly better than the performance of Sellan
et al. [17]). The performance on this small dataset also showed minimal
CPU usage and no utilization of the GPU.

Fig. 12 illustrates the overall response time and resource utilization
over two mesh collections: a small subset of 20 vessels from our dataset
and 200 artefacts from the ThingilOK dataset. Our approach not only
exhibits parallelism in the GPU but also in the CPU, optimizing resource
utilization across both components. Additionally, we minimize virtual
memory usage and optimize performance by reusing GPU buffers in-
stead of allocating new ones for each step. The data type of GPU and
CPU buffers was also adapted to have a reduced footprint while keeping
the required capabilities (e.g., using voxels of 16 bits that still enabled
instancing up to 28 seeds). It is important to note that our approach may
result in a slightly higher RAM footprint due to the mapping of VRAM
to RAM for data transfers. This mapping conceptually resembles an
open stream connecting the GPU and CPU. Finally, we must highlight
that the pipeline is notably optimized for dataset generation, as buffers
are allocated only once per mesh, and the same applies to stages like
voxelization. Note that the larger dataset also had a higher variability
of voxelization dimensions, leading to higher usage of computational
resources. As the meshes get more detailed, such as in Thingil0K (right
side), the compared work seems to struggle even when computing
impacts.

Fig. 13 groups the measured response time by events, showing the
fracturing and impact projection stages are far more time-consuming
than our core events. Yet, reads notably impact the time measured
from Sellan et al. [17]. For this reason, load and storage stages are
dashed and omitted in the summed time below. The second summation,
however, includes these stages. Furthermore, we omitted the data type
conversion stage since it transforms voxels into triangle meshes and
point clouds, which are not required for implicit datasets.

4.3. Convexity

Although realism is difficult to quantify, an overabundance of con-
vex pieces is a common indicator of unrealistic shapes, as seen in
Voronoi diagrams. However, measuring convexity in 3D is not straight-
forward. For instance, shards from Voronoi diagrams are not perfectly
convex due to hollowed objects and complex shapes, but their convex-
ity is expected to be closer to one. To assess fragment convexity, we
measured the distance of mesh vertices from the convex hull. Rays were
cast from each vertex along the surface orientation, and the collision
distances were averaged across all vertices.

This test was conducted on 10,000 fragments from the three ap-
proaches being compared, using ThingilOK artefacts. As shown in
Fig. 14, fragments generated by Cell Fracture were the most convex, as
expected, followed by Breaking Bad and our method. We also evaluated
several configurations of our dataset, including varying numbers of ad-
ditional seeds. As the number of seeds decreases, the fragments become
more conveXx. Additionally, the total number of fragments significantly
impacts convexity. It tends to increase as the fragment count rises, as
fragments become more similar to their convex hull, with less space
for complex shapes and hollowness. However, there is a noticeable
gap between Breaking Bad and our dataset when the fragment count
is lower. We hypothesize this is due to Sellan et al. [17] showing a
higher level of detail on fracture boundaries, which are relatively close
to the convex hull. As the number of vertices per fragment decreases
(i.e., with more fragments), the difference in this metric diminishes. It
is also worth noting that, even with fewer seeds, our results remain
far from those of Voronoi diagrams. This is because we modified DVC
to allow multiple fragments to push boundaries without considering
proximity to seed locations. As a result, the outcome is not a Voronoi
diagram even without additional seeds.

4.4. Compression

Large datasets can scale up to a few TB if not properly handled.
Hence, different file formats were checked to minimize the storage
footprint. Notice that a few have a lower footprint at the expense of
requiring some preprocessing when loading. Experimentation has been

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Sellan et al. (2022)

Load model Wm 3084.61
Compute modes 2406.72
Compute impacts 1001.78
Save fragments //A 834.70
Tetrahedralization{13.13 2.10x our response time
Global saz1.63 [734095
0 2000 4000 6000 8000
Ours
Fragmentation 1579.72
Data type conversion 1/ 470.25
Voxelization {44.67
Storage {18.56
Load model {2.75
Memory allocation {0.51
Global 1624.90 [l 2116.46
0 2000 4000 6000 8000
Time (s)

Computers & Graphics 125 (2024) 104104

Sellén et al. (2022)

Compute modes 25225.16

Compute impacts 24154.90

Save fragments W 21669.28
Load model /// 9314.76

Tetrahedralization { 529.29 3.28x our response time

Global 4090935 | NNEOSSTE0)
0 20000 40000 60000 80000
Ours
Fragmentation 15105.25
Data type conversion ///// 13535.51
Storage 1/ 4183.33
Voxelization {52.30
Memory allocation {24.32
Load model {19.74
Global | 15181.88 [JIS2920%6]
0 20000 40000 60000 80000
Time (s)

Fig. 13. Response time reported in every pipeline step. Steps are vertically ordered according to the response time. Global time depicts summed time without accumulating dashed

steps (light grey), and including them (dark grey).

@ Voronoi @ Ourwork (x1 extra seeds) . Sellén et al. (2022)
Our work (x2 extra seeds) @ Our work (no extra seeds)
0.96
[
0.941
>
5 0.92 ® o o Q
: 8 ¢ 3 ¢ 3
2 0.90 ’ 8 Y
O o - o
0831 @ e :
0.86 . . ; : . .
3 4 5 6 7 8
Fragments

Fig. 14. Average convexity of the fragments produced by the three compared ap-
proaches, based on the number of splits. The number of seeds was set according to the
number of required fragments (x1, x2). The size of the circles represents the standard
deviation.

narrowed to [64, 128] voxels since formats such as .vox are notably
heavier and therefore are not recommended for dataset generation. The
following formats have been contemplated:

» Point clouds: PLY (binary), XYZ (human-readable) and com-
pressed binary (compression with the Point Cloud Library (PCL)
package, 1 mm? resolution).

» Voxel: raw binary (uncompressed), Run-Length Encoding (RLE)
binary [39], quad-stacks binary [40] and MagicaVoxel.

» Mesh: STL, OBJ and binary mesh (using the internal format of our
program).

Table 1 shows the footprint if files are in their original format
(in parentheses) or zipped. Formats such as the quad-stack binary
are lighter when uncompressed, presumably because they present a
significant compaction of the raw data. However, other simpler al-
gorithms such as RLE have a lower footprint when compressed as
zipping contemplates repeated data not addressed by the algorithm.
According to this, the dataset was stored using RLE (voxel), binary PCL
compression (point cloud) and binary mesh formats.

4.5. Evaluation of applicability
One of the main concerns during the data type transformation is

whether significant changes in the geometry could worsen the perfor-
mance of trainable models. Factors such as the voxelization LOD have

Table 1
Storage footprint of 200 vessel models broken into [2, 10] fragments, using 15 iterations
for 2 fragments and 5 for 10 fragments. The footprint after and before zipping files is
reported out and in parentheses, respectively.

64 128

0.09 GB (8.59 GB) 0.57 GB (68.75 GB)

Binary raw grid

MagicaVoxel 5.09 GB (17.19 GB) 44.88 GB (137.52 GB)
RLE 0.08 GB (1.99 GB) 0.32 GB (8.10 GB)
QuadsStack 0.21 GB (0.92 GB) 0.65 GB (2.94 GB)
PLY 4.34 GB (8.22 GB) 4.38 GB (8.22 GB)
XYZ 3.93 GB (9.13 GB) 3.96 GB (9.12 GB)
Comp. binary 0.97 GB (0.98 GB) 1.00 GB (1.04 GB)
OBJ 4.98 GB (13.89 GB) 5.80 GB (16.42 GB)
STL 17.37 GB (79.82 GB) 16.40 GB (94.61 GB)
Binary 4.23 GB (16.92 GB) 4.85 GB (19.84 GB)

their weight in the loss of precision, as do the Laplacian smoothing
factors. Yet, adequately trained models should be able to generalize de-
spite fragments having small changes in their geometry, thus attending
to global features rather than local features. The voxel models from this
pipeline were used in a previous shape completion work [23], whereas
point clouds and polygonal meshes were not yet checked. We used
multiple datasets, including (1) the artefact dataset of Breaking Bad
(200 artefacts, 74,698 pieces), (2) a subset of our vessel dataset (200
artefacts, 70,000 pieces) and (3) a mix of both (200 artefacts, 71,632
pieces). The latter was generated by removing half of the artefacts from
(1) and including half of (2) while maintaining the test set (25% of
the available meshes). All these datasets were tested using the DGL
(Dynamic Graph Learning) [41] fracture assembly model. Fragments
are processed before training by sampling them, zeroing their location
and randomly rotating them. On the other hand, the performance
of DGL was measured by annotating (1) the translation and rotation
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), (2)
the Chamfer distance between the starting point clouds and (3) part
accuracy, i.e., the percentage of fragments whose Chamfer distance is
below ¢ = 0.01.

We used the Breaking Bad dataset as a baseline for comparison,
as realistic fragments are hypothesized to be optimal for training ma-
chine learning models. While we believe that larger datasets would
benefit the training process, this experiment was designed to assess
whether our generated fragments negatively impact assembly metrics.
Therefore, we did not test larger datasets but instead worked with one
comparable in size to the Breaking Bad dataset.

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Table 2
Metrics obtained by training the DGL fracture assembly model over the artefact dataset
and our fragmented vessels.

Breaking Bad Ours Breaking Bad & Ours
T. MAE (x1072) 12.26 15.82 13.31
R. MAE (°) 75.36 68.39 73.04
T. RMSE (x1072) 14.71 18.88 15.84
R. RMSE (°) 86.58 77.56 84.15
Chamfer d. (x1073) 25.78 11.38 22.60
Part accuracy (%) 4.05 4.19 5.32

Table 3

Details of the released fragment dataset (up to 128 voxels in any dimension), and
another version with a lower number of voxels (64). # is used to abbreviate ‘number
of”.

Up to 64°

187,257 (0.77 GB)
1,040,428 (115.55 GB)
1,040,428 (4.32 GB)

Up to 128°

187,257 (2.86 GB)
1,040,428 (432.35 GB)
1,040,428 (4.32 GB)

#Voxel files
#Triangle mesh files
#Point cloud files

#Models 1,052
Response time 0.90 days 2.42 days
#Fragments/s 13.33 4.96
Average #vertices 4,490 17,933
Average #faces 9,084 36,703

As reported in Table 2, both models are far from producing perfectly
fitted fragments, though our dataset obtained similar results to those
from the Breaking Bad fragments. Even when both datasets are fused,
the majority of metrics are similar to the baseline Breaking bad training.
Therefore, incorporating our fragments does not seem to disrupt the
training of the model. However, the results show that there is still room
for improvement in models that work with partial views of objects. It is
important to note that DGL was originally released as a model trained
on semantic parts from PartNet, rather than on fractured objects.

4.6. Visual comparison

Fig. 15 illustrates fractures produced by the methods under compar-
ison, including Cell Fracture. Notably, the code released by Sellan et al.
[17] lacks control over the number of resulting fragments, resulting in
a lower count. This does not necessarily translate to larger fragments,
as evidenced by the plate artefact broken into a few thin pieces.
Conversely, our methodology tends to generate fragments that, while
geometrically intricate, are not completely realistic. Thus, there is a
potential synergy between both approaches for training ML models.
Additionally, Sellan et al. [17] introduces rough boundaries by dec-
imating the edges of the fragments. In contrast, our technique leads
to fragments with smoother edges, due to utilizing marching cubes,
smoothing operators and erosion, as illustrated in the bottom images of
Fig. 15. Finally, Cell Fracture produces notably convex pieces. Although
the Blender implementation is not as efficient, this method could be po-
tentially more rapid than previously compared approaches. However,
some subtle effects are harder to integrate, such as erosion. Therefore,
our work is halfway between a simple Voronoi diagram and realistic
fragmentation.

5. Conclusions and future work

In this paper, we have presented an efficient pipeline for fragment-
ing 3D meshes and generating huge voxel datasets. It is implemented
in the GPU operating volumetric models to rapidly fragment models
based on the Discrete Voronoi Chain. We improved this unrealistic
method to introduce effects such as erosion, concavities and impact
simulations. Over this method, we generated a large dataset of more
than 1M fragments (~450 GB) from 1,052 archaeological artefacts.
Since it is implemented in the GPU, the resulting pieces can even

Computers & Graphics 125 (2024) 104104

be used on the fly to feed ML models without intermediate storage.
We tested our pipeline by (1) comparing resource usage and response
time with previous work, (2) testing the convexity of our fragments
against those of a simple Voronoi diagram, (3) evaluating metrics of
popular ML models for fracture assembly and (4) comparing visual
results. Our method was proven more efficient, and the released dataset
was successfully used for fracture assembly tasks. Despite successfully
integrating our data into DL tasks, we emphasize the synergy between
our method and realistic approaches, such as Sellan et al. [17], for
generating larger fragment datasets.

While this work primarily focuses on voxel-based fragments, other
common data representations have been derived from them. However,
these representations exhibit greater geometric inaccuracies due to
converting from voxel to mesh. Therefore, we present these optional
representations to trivially integrate them into other assembly and
completion solutions based on triangle meshes and point clouds.

As a future work, the efficiency of the pipeline could be substan-
tially enhanced by exploring alternatives to marching cubes, which
currently represent the primary bottleneck in terms of both storage
footprint and response time. Moreover, thorough assessments regarding
the impact of various factors on the trained models should be con-
ducted, including but not limited to the number of fragments, degree
of convexity/concavity and voxel resolution.

CRediT authorship contribution statement

Alfonso Lopez: Writing — review & editing, Writing — original draft,
Visualization, Validation, Supervision, Software, Resources, Methodol-
ogy, Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization. Antonio J. Rueda: Writing — review & editing, Vi-
sualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Rafael J. Segura: Writing
- review & editing, Visualization, Validation, Supervision, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Carlos J. Oga-
yar: Writing — review & editing, Validation, Supervision, Resources,
Project administration, Methodology, Investigation, Formal analysis,
Conceptualization. Pablo Navarro: Writing — review & editing, Valida-
tion. José M. Fuertes: Writing — review & editing, Validation, Funding
acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This result has been partially supported by the Spanish Ministry of
Science, Innovation and Universities via a doctoral grant to the first
author (FPU19/00100).

Appendix

Dataset details

Fig. 17 illustrates the distribution of fragments regarding the num-
ber of triangles and vertices. In this manner, we can observe that
fragments obtained by breaking artefacts into ten fragments have vol-
umes above 10%, which is a frequently used threshold to filter out
fragments that are otherwise difficult to classify and hardly relevant
during training. For instance, the compared fragmentation work [34]
firstly tested the deep learning models over every piece, whereas a later
released version was decimated by removing those pieces whose nor-
malized volume felt under 2.5%. Finally, Fig. 16 provides an overview
of our triangle mesh dataset.

A. Lépez, A.J. Rueda, R.J. Segura et al. Computers & Graphics 125 (2024) 104104

Cell Fracture Selldn et al. (2022) Our fragmentation

Fig. 15. At the top: front, back and top view of fragments generated by the Cell Fracture plugin, Sellan et al. [17] and our method. On the bottom side, the fragments of a single
vessel are displayed.

150000
., 100000
8
5
> 50000
0
2 3 4 5 6 7 8 9 10

Fragments

300000

200000

Fig. 16. Overview of sixteen fragmented vessels. 100000 ‘ ‘ ! !
2 3 4 5 6 7 8 9 10

Faces

o

Fracture assembly: training details

Fragments

Fig. 17 shows that triangle meshes are large, especially when arte-
facts are broken into less fragments. Therefore, training deep learning
models over these kinds of meshes is time-consuming. A widespread . .

. Input model Input pieces Assembled pieces
approach to save RAM and VRAM is to sample meshes on the fly to
extract another data representation (e.g., point clouds). However, this
is a particularly intensive task for large triangle meshes. For this reason,
we implemented the quadric decimation that narrows the number of ‘
faces and vertices. Sellan et al. [17] provide a low-resolution dataset of
74,698 pieces over which we trained in barely ~1 day using an NVIDIA
A600 GPU. In comparison, our dataset comprises 200 artefacts and
70,000 pieces with up to 10,000 faces. The training over both datasets
was prolonged for approximately one day using 200 epochs, and the
top-1 checkpoint was used to assemble the pieces in the test dataset, as Fig. 18. Pieces assembled with the DGL network.
shown in Fig. 18. It shows that the current state-of-the-art is far from
the ideal assembly, and therefore, we hope our dataset contributes to
this challenging problem.

Fig. 17. Distribution of the number of faces and vertices in our fragment dataset.

10

A. Ldpez, A.J. Rueda, R.J. Segura et al.

Data availability

The data is already shared in the manuscript.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Muguercia L, Bosch C, Patow G. Fracture modeling in computer graphics. Comput
Graph 2014;45:86-100. http://dx.doi.org/10.1016/j.cag.2014.08.006, URL https:
//www.sciencedirect.com/science/article/pii/S0097849314000806.

Veli¢ M, May D, Moresi L. A fast robust algorithm for computing discrete
voronoi diagrams. J Math Model Algorithms 2009;8(3):343-55. http://dx.doi.
0rg/10.1007/5s10852-008-9097-6.

Lucena M, Fuertes JM, Martinez-Carrillo AL, Ruiz A, Carrascosa F. Classification
of archaeological pottery profiles using modal analysis. Multimedia Tools Appl
2017;76(20):21565-77. http://dx.doi.org/10.1007/s11042-016-4076-9.

O’Brien JF, Bargteil AW, Hodgins JK. Graphical modeling and animation of duc-
tile fracture. ACM Trans Graph 2002;21(3):291-4. http://dx.doi.org/10.1145/
566654.566579, URL https://dl.acm.org/doi/10.1145/566654.566579.

Koschier D, Lipponer S, Bender J. Adaptive tetrahedral meshes for brittle fracture
simulation. The Eurographics Association; 2014, http://dx.doi.org/10.2312/sca.
20141123.057-066, URL https://diglib.eg.org:443/xmlui/handle/10.2312/sca.
20141123.057-066. Accepted: 2014-12-16T07:33:42Z ISSN: 1727-5288.

Hahn D, Wojtan C. Fast approximations for boundary element based brittle
fracture simulation. ACM Trans Graph 2016;35(4):104:1-104:11. http://dx.doi.
org/10.1145/2897824.2925902, URL https://dl.acm.org/doi/10.1145/2897824.
2925902.

Fan L, Chitalu FM, Komura T. Simulating brittle fracture with material points.
ACM Trans Graph 2022;41(5):177:1-20. http://dx.doi.org/10.1145/3522573,
URL https://dl.acm.org/doi/10.1145/3522573.

Chitalu FM, Miao Q, Subr K, Komura T. Displacement-Correlated XFEM for sim-
ulating brittle fracture. Comput Graph Forum 2020;39(2):569-83. http://dx.doi.
org/10.1111/cgf.13953, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13953. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953.
Blender. Cell fracture: Blender 4.1 manual. 2024, URL https://docs.blender.org/
manual/en/latest/addons/object/cell_fracture.html.

Miiller M, Chentanez N, Kim T-Y. Real time dynamic fracture with volumetric
approximate convex decompositions. ACM Trans Graph 2013;32(4):115:1-
115:10. http://dx.doi.org/10.1145/2461912.2461934, URL https://dl.acm.org/
doi/10.1145/2461912.2461934.

Oh S, Shin S, Jun H. Practical simulation of hierarchical brittle fracture. Comput.
Animat. Virtual Worlds 2012;23. http://dx.doi.org/10.1002/cav.1443.

Zafar NB, Stephens D, Larsson Ma, Sakaguchi R, Clive M, Sampath R, Museth K,
Blakey D, Gazdik B, Thomas R. Destroying LA for "2012". In: ACM SIGGRAPH
2010 talks. SIGGRAPH ’10, New York, NY, USA: Association for Computing
Machinery; 2010, p. 1. http://dx.doi.org/10.1145/1837026.1837059, URL https:
//dl.acm.org/doi/10.1145/1837026.1837059.

Lamb N, Banerjee S, Banerjee NK. MendNet: Restoration of fractured shapes using
learned occupancy functions. Comput Graph Forum 2022;41(5):65-78. http://
dx.doi.org/10.1111/cgf.14603, URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14603. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14603.

Gregor R, Bauer D, Sipiran I, Perakis P, Schreck T. Automatic 3D object fracturing
for evaluation of partial retrieval and object restoration tasks - benchmark
and application to 3D cultural heritage data. In: Pratikakis I, Theoharis T,
Spagnuolo M, Gool LV, Veltkamp RC, Godil A, editors. 3DOR. Eurographics
Association; 2015, p. 7-14.

Museth K. OPENVDB. In: ACM SIGGRAPH 2021 courses. SIGGRAPH ’21, New
York, NY, USA: Association for Computing Machinery; 2021, p. 1-197. http:
//dx.doi.org/10.1145/3450508.3464577, URL https://dl.acm.org/doi/10.1145/
3450508.3464577.

Schvartzman SC, Otaduy MA. Fracture animation based on high-dimensional
Voronoi diagrams. In: Proceedings of the 18th meeting of the ACM SIGGRAPH
symposium on interactive 3D graphics and games. i3D 14, New York, NY,
USA: Association for Computing Machinery; 2014, p. 15-22. http://dx.doi.
org/10.1145/2556700.2556713, URL https://dl.acm.org/doi/10.1145/2556700.
2556713.

Selldin S, Chen Y-C, Wu Z, Garg A, Jacobson A. Breaking Bad: A dataset
for geometric fracture and reassembly. 2022, http://dx.doi.org/10.48550/arXiv.
2210.11463, URL http://arxiv.org/abs/2210.11463. arXiv:2210.11463 [cs].

Gu J, Ma W-C, Manivasagam S, Zeng W, Wang Z, Xiong Y, Su H, Urtasun R.
Weakly-supervised 3D shape completion in the wild. In: Vedaldi A, Bischof H,
Brox T, Frahm J-M, editors. Computer vision — ECCV 2020. Lecture notes in
computer science, Cham: Springer International Publishing; 2020, p. 283-99.
http://dx.doi.org/10.1007/978-3-030-58558-7_17.

11

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Computers & Graphics 125 (2024) 104104

Stutz D, Geiger A. Learning 3D shape completion under weak supervision. Int J
Comput Vis 2020;128(5):1162-81. http://dx.doi.org/10.1007/511263-018-1126-
y.

Deng Z, Jiang J, Chen Z, Zhang W, Yao Q, Song C, Sun Y, Yang Z, Yan S,
Huang Q, Bajaj C. TAssembly: Data-driven fractured object assembly using
a linear template model. Comput Graph 2023;113:102-12. http://dx.doi.org/
10.1016/j.cag.2023.05.003, URL https://www.sciencedirect.com/science/article/
Ppii/S0097849323000560.

Yu X, Rao Y, Wang Z, Liu Z, Lu J, Zhou J. PoinTr: Diverse point cloud completion
with geometry-aware transformers. In: ICCV. 2021, p. 12498-507.

Kerbl B, Kopanas G, Leimkiihler T, Drettakis G. 3D Gaussian splatting for
real-time radiance field rendering. ACM Trans Graph (SIGGRAPH Conf Proc)
2023;42(4). URL http://www-sop.inria.fr/reves/Basilic/2023/KKLD23.

Navarro P, Cintas C, Lucena M, Fuertes JM, Rueda A, Segura R, Ogayar-
Anguita C, Gonzilez-José R, Delrieux C. IberianVoxel: Automatic completion
of iberian ceramics for cultural heritage studies. In: Thirty-second international
joint conference on artificial intelligence. Vol. 6, 2023, p. 5833-41. http:
//dx.doi.org/10.24963/ijcai.2023/647, URL https://www.ijcai.org/proceedings/
2023/647. ISSN: 1045-0823.

Zheng Z, Yu T, Dai Q, Liu Y. Deep implicit templates for 3D shape representation.
2021, http://dx.doi.org/10.48550/arXiv.2011.14565, URL http://arxiv.org/abs/
2011.14565. arXiv:2011.14565 [cs].

Zobeidi E, Atanasov N. A deep signed directional distance function for object
shape representation. 2021, http://dx.doi.org/10.48550/arXiv.2107.11024, URL
http://arxiv.org/abs/2107.11024. arXiv:2107.11024 [cs].

Tang J, Lei J, Xu D, Ma F, Jia K, Zhang L. SA-ConvONet: Sign-agnostic
optimization of convolutional occupancy networks. In: 2021 IEEE/CVF In-
ternational Conference on Computer Vision. ICCV, 2021, p. 6484-93. http:
//dx.doi.org/10.1109/1CCV48922.2021.00644, URL https://ieeexplore.ieee.org/
document/9710632/. Conference Name: 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV) ISBN: 9781665428125 Place: Montreal, QC,
Canada Publisher: IEEE.

Cheng Y-C, Lee H-Y, Tulyakov S, Schwing AG, Gui L-Y. SDFusion: Multimodal
3D shape completion, reconstruction, and generation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2023, p.
4456-65, URL https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_
SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_
CVPR_2023_paper.html.

Payne A, Limp F. Virtual hampson museum project.

Choi S, Zhou Q-Y, Miller S, Koltun V. A large dataset of object scans. 2016,
arXiv:1602.02481.

Manivasagam S, Wang S, Wong K, Zeng W, Sazanovich M, Tan S, Yang B,
Ma W-C, Urtasun R. LiDARsim: Realistic LiDAR simulation by leveraging the
real world. In: 2020 IEEE/CVF conference on computer vision and pattern
recognition. CVPR, IEEE Computer Society; 2020, p. 11164-73. http://dx.
doi.org/10.1109/CVPR42600.2020.01118, URL https://www.computer.org/csdl/
proceedings-article/cvpr/2020/71680011164/1m30170Go2k.

Behley J, Garbade M, Milioto A, Quenzel J, Behnke S, Stachniss C, Gall J.
SemanticKITTI: A dataset for semantic scene understanding of lidar sequences.
In: 2019 IEEE/CVF international conference on computer vision (ICCV). 2019, p.
9296-306. http://dx.doi.org/10.1109/ICCV.2019.00939, URL https://ieeexplore.
ieee.org/document/9010727. ISSN: 2380-7504.

Chen K, Choy CB, Savva M, Chang AX, Funkhouser T, Savarese S. Text2Shape:
Generating shapes from natural language by learning joint embeddings. 2018,
arXiv preprint arXiv:1803.08495.

Koutsoudis A, Pavlidis G, Arnaoutoglou F, Tsiafakis D, Chamzas C. Qp: A
tool for generating 3D models of ancient Greek pottery. J. Cult. Herit.
2009;10(2):281-95. http://dx.doi.org/10.1016/j.culher.2008.07.012, URL https:
//www.sciencedirect.com/science/article/pii/S1296207409000326.

Sellin S, Luong J, Mattos Da Silva L, Ramakrishnan A, Yang Y, Jacob-
son A. Breaking good: Fracture modes for realtime destruction. ACM Trans
Graph 2023;42(1):10:1-10:12. http://dx.doi.org/10.1145/3549540, URL https:
//dl.acm.org/doi/10.1145/3549540.

Ogayar-Anguita CJ, Rueda-Ruiz AJ, Segura-Sanchez RJ, Diaz-Medina M, Garcia-
Ferndndez AL. A GPU-based framework for generating implicit datasets of
voxelized polygonal models for the training of 3D convolutional neural
networks. IEEE Access 2020;8:12675-87. http://dx.doi.org/10.1109/ACCESS.
2020.2965624, URL https://ieeexplore.ieee.org/document/8955843. Conference
Name: IEEE Access.

Zhang Y, Garcia S, Xu W, Shao T, Yang Y. Efficient voxelization using pro-
jected optimal scanline. Graph Models 2018;100:61-70. http://dx.doi.org/10.
1016/j.gmod.2017.06.004, URL https://www.sciencedirect.com/science/article/
pii/S152407031730053X.

Skibo JM, Schiffer MB. The effects of water on processes of ce-
ramic abrasion. J Archaeol Sci 1987;14(1):83-96. http://dx.doi.org/10.1016/
S0305-4403(87)80008-0, URL https://www.sciencedirect.com/science/article/
pii/S0305440387800080.

http://dx.doi.org/10.1016/j.cag.2014.08.006
https://www.sciencedirect.com/science/article/pii/S0097849314000806
https://www.sciencedirect.com/science/article/pii/S0097849314000806
https://www.sciencedirect.com/science/article/pii/S0097849314000806
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s10852-008-9097-6
http://dx.doi.org/10.1007/s11042-016-4076-9
http://dx.doi.org/10.1145/566654.566579
http://dx.doi.org/10.1145/566654.566579
http://dx.doi.org/10.1145/566654.566579
https://dl.acm.org/doi/10.1145/566654.566579
http://dx.doi.org/10.2312/sca.20141123.057-066
http://dx.doi.org/10.2312/sca.20141123.057-066
http://dx.doi.org/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
https://diglib.eg.org:443/xmlui/handle/10.2312/sca.20141123.057-066
http://dx.doi.org/10.1145/2897824.2925902
http://dx.doi.org/10.1145/2897824.2925902
http://dx.doi.org/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
https://dl.acm.org/doi/10.1145/2897824.2925902
http://dx.doi.org/10.1145/3522573
https://dl.acm.org/doi/10.1145/3522573
http://dx.doi.org/10.1111/cgf.13953
http://dx.doi.org/10.1111/cgf.13953
http://dx.doi.org/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13953
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13953
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
https://docs.blender.org/manual/en/latest/addons/object/cell_fracture.html
http://dx.doi.org/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
https://dl.acm.org/doi/10.1145/2461912.2461934
http://dx.doi.org/10.1002/cav.1443
http://dx.doi.org/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
https://dl.acm.org/doi/10.1145/1837026.1837059
http://dx.doi.org/10.1111/cgf.14603
http://dx.doi.org/10.1111/cgf.14603
http://dx.doi.org/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14603
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb14
http://dx.doi.org/10.1145/3450508.3464577
http://dx.doi.org/10.1145/3450508.3464577
http://dx.doi.org/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
https://dl.acm.org/doi/10.1145/3450508.3464577
http://dx.doi.org/10.1145/2556700.2556713
http://dx.doi.org/10.1145/2556700.2556713
http://dx.doi.org/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
https://dl.acm.org/doi/10.1145/2556700.2556713
http://dx.doi.org/10.48550/arXiv.2210.11463
http://dx.doi.org/10.48550/arXiv.2210.11463
http://dx.doi.org/10.48550/arXiv.2210.11463
http://arxiv.org/abs/2210.11463
http://arxiv.org/abs/2210.11463
http://dx.doi.org/10.1007/978-3-030-58558-7_17
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1007/s11263-018-1126-y
http://dx.doi.org/10.1016/j.cag.2023.05.003
http://dx.doi.org/10.1016/j.cag.2023.05.003
http://dx.doi.org/10.1016/j.cag.2023.05.003
https://www.sciencedirect.com/science/article/pii/S0097849323000560
https://www.sciencedirect.com/science/article/pii/S0097849323000560
https://www.sciencedirect.com/science/article/pii/S0097849323000560
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb21
http://www-sop.inria.fr/reves/Basilic/2023/KKLD23
http://dx.doi.org/10.24963/ijcai.2023/647
http://dx.doi.org/10.24963/ijcai.2023/647
http://dx.doi.org/10.24963/ijcai.2023/647
https://www.ijcai.org/proceedings/2023/647
https://www.ijcai.org/proceedings/2023/647
https://www.ijcai.org/proceedings/2023/647
http://dx.doi.org/10.48550/arXiv.2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://arxiv.org/abs/2011.14565
http://dx.doi.org/10.48550/arXiv.2107.11024
http://arxiv.org/abs/2107.11024
http://arxiv.org/abs/2107.11024
http://dx.doi.org/10.1109/ICCV48922.2021.00644
http://dx.doi.org/10.1109/ICCV48922.2021.00644
http://dx.doi.org/10.1109/ICCV48922.2021.00644
https://ieeexplore.ieee.org/document/9710632/
https://ieeexplore.ieee.org/document/9710632/
https://ieeexplore.ieee.org/document/9710632/
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_SDFusion_Multimodal_3D_Shape_Completion_Reconstruction_and_Generation_CVPR_2023_paper.html
http://arxiv.org/abs/1602.02481
http://dx.doi.org/10.1109/CVPR42600.2020.01118
http://dx.doi.org/10.1109/CVPR42600.2020.01118
http://dx.doi.org/10.1109/CVPR42600.2020.01118
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
https://www.computer.org/csdl/proceedings-article/cvpr/2020/716800l1164/1m3o170Go2k
http://dx.doi.org/10.1109/ICCV.2019.00939
https://ieeexplore.ieee.org/document/9010727
https://ieeexplore.ieee.org/document/9010727
https://ieeexplore.ieee.org/document/9010727
http://arxiv.org/abs/1803.08495
http://dx.doi.org/10.1016/j.culher.2008.07.012
https://www.sciencedirect.com/science/article/pii/S1296207409000326
https://www.sciencedirect.com/science/article/pii/S1296207409000326
https://www.sciencedirect.com/science/article/pii/S1296207409000326
http://dx.doi.org/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
https://dl.acm.org/doi/10.1145/3549540
http://dx.doi.org/10.1109/ACCESS.2020.2965624
http://dx.doi.org/10.1109/ACCESS.2020.2965624
http://dx.doi.org/10.1109/ACCESS.2020.2965624
https://ieeexplore.ieee.org/document/8955843
http://dx.doi.org/10.1016/j.gmod.2017.06.004
http://dx.doi.org/10.1016/j.gmod.2017.06.004
http://dx.doi.org/10.1016/j.gmod.2017.06.004
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://www.sciencedirect.com/science/article/pii/S152407031730053X
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
http://dx.doi.org/10.1016/S0305-4403(87)80008-0
https://www.sciencedirect.com/science/article/pii/S0305440387800080
https://www.sciencedirect.com/science/article/pii/S0305440387800080
https://www.sciencedirect.com/science/article/pii/S0305440387800080

A. Lopez, A.J. Rueda, R.J. Segura et al.

[38]

[39]

Garland M, Heckbert PS. Surface simplification using quadric error metrics. In:
Proceedings of the 24th annual conference on computer graphics and interactive
techniques. SIGGRAPH ’97, USA: ACM Press/Addison-Wesley Publishing Co.;
1997, p. 209-16. http://dx.doi.org/10.1145/258734.258849, URL https://dl.
acm.org/doi/10.1145/258734.258849.

Tsukiyama T, Kondo Y, Kakuse K, Saba S, Ozaki S, Itoh K. Method and system for
data compression and restoration. 1986, URL https://patents.google.com/patent/
US4586027A/en.

12

[40]

[41]

Computers & Graphics 125 (2024) 104104

Graciano A, Rueda AJ, Pospisil A, Bittner J, Benes B. QuadStack: An efficient
representation and direct rendering of layered datasets. IEEE Trans Vis Comput
Graphics 2021;27(9):3733-44. http://dx.doi.org/10.1109/TVCG.2020.2981565,
URL https://ieeexplore.ieee.org/document/9040672. Conference Name: IEEE
Transactions on Visualization and Computer Graphics.

Huang J, Zhan G, Fan Q, Mo K, Shao L, Chen B, Guibas L, Dong H. Generative
3D part assembly via dynamic graph learning. In: The IEEE conference on neural
information processing systems. neurIPS, 2020, p. 1-12.

http://dx.doi.org/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://dl.acm.org/doi/10.1145/258734.258849
https://patents.google.com/patent/US4586027A/en
https://patents.google.com/patent/US4586027A/en
https://patents.google.com/patent/US4586027A/en
http://dx.doi.org/10.1109/TVCG.2020.2981565
https://ieeexplore.ieee.org/document/9040672
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41
http://refhub.elsevier.com/S0097-8493(24)00239-5/sb41

	Generating implicit object fragment datasets for machine learning
	Introduction
	Related work
	Fragmentation
	Shape assembly and completion

	Methodology
	Voxelization
	Fragmentation
	Additional seeds
	Biased seeds
	Erosion

	Mesh generation
	Point cloud generation

	Experimentation and results
	Dataset preparation
	Computational resources
	Convexity
	Compression
	Evaluation of applicability
	Visual comparison

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	
	Appendix
	Dataset details
	Fracture assembly: training details
	Data availability
	Appendix . Data availability
	References

