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Abstract: Classifying grapevine varieties is crucial in precision viticulture, as it allows for accurate
estimation of vineyard row growth for different varieties and ensures authenticity in the wine indus-
try. This task can be performed with time-consuming destructive methods, including data collection
and analysis in the laboratory. In contrast, unmanned aerial vehicles (UAVs) offer a markedly more
efficient and less restrictive method for gathering hyperspectral data, even though they may yield
data with higher levels of noise. Therefore, the first task is the processing of these data to correct and
downsample large amounts of data. In addition, the hyperspectral signatures of grape varieties are
very similar. In this study, we propose the use of a convolutional neural network (CNN) to classify
seventeen different varieties of red and white grape cultivars. Instead of classifying individual
samples, our approach involves processing samples alongside their surrounding neighborhood for
enhanced accuracy. The extraction of spatial and spectral features is addressed with (1) a spatial at-
tention layer and (2) inception blocks. The pipeline goes from data preparation to dataset elaboration,
finishing with the training phase. The fitted model is evaluated in terms of response time, accuracy
and data separability and is compared with other state-of-the-art CNNs for classifying hyperspectral
data. Our network was proven to be much more lightweight by using a limited number of input
bands (40) and a reduced number of trainable weights (560 k parameters). Hence, it reduced training
time (1 h on average) over the collected hyperspectral dataset. In contrast, other state-of-the-art
research requires large networks with several million parameters that require hours to be trained.
Despite this, the evaluated metrics showed much better results for our network (approximately 99%
overall accuracy), in comparison with previous works barely achieving 81% OA over UAV imagery.
This notable OA was similarly observed over satellite data. These results demonstrate the efficiency
and robustness of our proposed method across different hyperspectral data sources.

Keywords: grapevine; classification; deep learning; feature extraction; hyperspectral; unmanned
aerial vehicle

1. Introduction

Understanding vegetation development is a crucial aspect of crop management that
impacts the effectiveness and productivity of agricultural efforts. Precision agriculture
involves observing agricultural variables that affect crop production, which enables ac-
counting for spatial and temporal variations, resulting in enhanced crop performance,
reduced costs and improved sustainability. Additionally, it provides a forecasting tool to
accurately supply crop needs, such as water and nutrients. When applied to vines, this con-
cept is known as precision viticulture (PV), which has a wide range of applications. These
include detecting biomass [1] and water content [2], identifying plant diseases, conducting
pest surveillance [3], analyzing grape maturity [4], estimation yields [5] and identifying
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grapevine varieties [6]. This study focuses on the latter, as the authenticity and classifi-
cation of cultivars significantly impact wine production and are subject to governmental
regulations [7].

To achieve this goal, data are gathered through remote and proximal sensors for
subsequent analysis. Remote sensing (RS) data primarily include aerial images captured by
sensors attached to three main platforms: satellites, manned aircraft and unmanned aerial
vehicles (UAVs). Among these, satellite and UAV platforms are more extensively utilized,
with UAVs gaining popularity due to their ability to improve both spatial and temporal
resolution. There are several limitations associated with satellite platforms, such as high
costs, low spatial resolution and extended periods between revisits [8]. In contrast, UAVs
offer lower acquisition costs, the ability to integrate multiple sensors and improved spatial
resolution based on flight altitude [9,10]. Consequently, these advantages make UAVs a
suitable choice for contemporary PV.

The characterization of vineyard plots using UAVs is particularly challenging due to
their variability regarding the tree structure, inter-row spacing and surrounding elements
(bare soil, shadowed areas, grassing, etc.). Therefore, high-detailed images are relevant
for discriminating vegetation, soil and weeds, which have been previously shown to
affect grape estimations [8]. As a result, previous studies have devoted significant effort to
canopy segmentation [11]. In this regard, UAVs help to support decision-making systems by
gathering precise information that enables the estimation of biophysical and performance-
related features.

This study examines hyperspectral data for classifying a significant number of grapevine
varieties. First, data are explored to shed some light on the initial clustering of hyperspectral
signatures of these varieties, and then the feature reduction problem is studied over them.
Once the shortcomings of working over these data are presented, a deep learning training
pipeline is presented for providing a phenotyping tool applied to vineyards. This study’s
findings aim to demonstrate the classification capabilities of UAV hyperspectral data. In
comparison with previous work, the proposed network was proven to perform well over
UAV- and satellite-based imagery.

Therefore, our main contributions are as follows:

• Introduction of a convolutional neural network (CNN) designed to effectively general-
ize and demonstrate strong performance over hyperspectral data obtained from both
UAV and satellite sources.

• Classification of several grapevine varieties that show notably similar hyperspectral
signatures, hence showing the robustness provided by grouping multiple samples by
means of CNNs.

• Implementation of a band-narrowing procedure which reduces both storage require-
ments and the network footprint.

• Development of a CNN architecture that is rapidly trainable even with extensive
datasets, showcasing robust performance in scenarios with limited available data.

• Investigation into the potential utilization of previously published hyperspectral
datasets collected via UAVs to enhance network performance.

2. Related Work

The purpose of this section is to offer an overview of the research on hyperspectral
data, encompassing both conventional and novel approaches. Given that our case study is
focused on grape classification, the primary techniques for this task are outlined below.

2.1. Processing of Hyperspectral Signature

Remotely sensed data are subject to various factors, such as sensor-related random
errors, atmospheric and surface effects and acquisition conditions. Therefore, radiometric
correction is performed to obtain accurate data from the Earth’s surface. Although the
literature in this field covers numerous topics, it primarily focuses on satellite imaging.
While some of the techniques studied can be applied to UAV imaging, other topics are
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irrelevant to our case study. For instance, atmospheric effects like absorption are not
significant in close-range work. However, due to low flight altitudes, UAV instability and
varying viewing angles, preprocessing operations can be challenging [12].

Most studies that classify satellite images use standard datasets with radiometric
corrections, provided by the Grupo de Inteligencia Computacional [13]. In the case of
UAV hyperspectral imaging, various corrections are necessary to obtain precise data, in-
cluding geometric and radiometric corrections and spectral calibrations [14]. Geometric
distortions are primarily caused by UAV instability and the acquisition technique, with
push-broom sensors showing higher geometric distortions that can be reduced using stabi-
lizers. Geometric correction can be achieved through an inertial navigation system (INS),
Global Positioning System (GPS) and digital elevation model (DEM). Although commercial
software is available for this approach, it requires a high-precision system for accurate
correction. Alternatively, ground control points have been extensively utilized to ensure
correct positioning [15]. In addition, dual acquisition of visible and hyperspectral imagery
enables matching both data sources [15–17], with visible data being more geometrically ac-
curate. Another technique for geometric correction is feature matching among overlapping
images [18].

In a similar way to geometric distortions, radiometric anomalies can also be fixed
with software tools provided by the hyperspectral manufacturer. The aim is to convert
the digital numbers (DNs) of the sensor to radiance and reflectance of Earth’s surfaces,
regardless of acquisition conditions. Therefore, the latter result must be applied to deep
learning techniques for their implementation over any hyperspectral dataset. The coeffi-
cients required for this correction are generally calibrated in the laboratory, but they may
vary over time [14], which may affect the radiometric correction. Grayscale tarps, whose
reflectance is known, can be used to support this process and perform linear interpolations
to calibrate the acquired DNs [19] using the empirical line method [9,20]. To perform the lin-
ear interpolation for the radiometric correction, it is necessary to have dark and gray/white
references, which are usually obtained from isotropic materials that have a grayscale palette
and exhibit near-Lambertian behaviour [12,21,22]. An alternative approach is to acquire
radiance samples, which can be used with fitting methods such as the least-square method
to transform DNs.

2.2. Hyperspectral Transformation and Feature Extraction

In this section, we discuss the transformations that facilitate classification using tradi-
tional methods. Due to the extensive coverage of land by satellite imagery, it is uncommon
for hyperspectral pixels to depict the spectral signature of a single material. Consequently,
analyzing the surfaces visible in collected hyperspectral signatures is a prevalent topic in
hyperspectral research. The problem is illustrated with ρ = MF+ ϵ, where M is the spectral
signature of different materials, F is the weight, ϵ is an additive noise vector and ρ is an
L× 1 matrix where L is the number of bands. Hence, the difficulty of finding a solution
to M and F is lowered if M is fixed, i.e., the end-member signatures are known. Multiple
end-member spectral mixture analysis (MESMA) was the initial approach taken, followed
by the mixture-tuned matching filtering technique, which eliminates the need to know
end-members in advance. This approach was further refined with the constrained energy
minimization method, which effectively suppresses undesired background signatures.

The current state-of-the-art techniques for linear mixture models can be categorized
based on their dependency on spectral libraries. Additionally, the level of supervision and
computational cost also determine the taxonomy of methods [23]. For instance, Bayesian
methods and local unmixing do not necessitate end-member signatures, although Bayesian-
inspired approaches are less supervised and more time-intensive. Besides MESMA, other
proposed methods that require spectral signatures are based on artificial intelligence (AI)
techniques such as machine learning (ML) and fuzzy unmixing. The latter is less supervised
but more time-consuming. In recent years, interest in deep learning (DL) has grown, with
techniques such as autoencoders, convolutional neural networks (CNNs) and generative
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adversarial networks being utilized for training with synthetic data [24]. Non-negative
matrix factorization (NMF) has also attracted attention as it can extract sparse and inter-
pretable features [25]. Recently, state-of-the-art methods such as NMF have been combined
with spectral information [26].

Besides discerning materials, the results of hyperspectral imaging (HSI) present a large
number of layers that can be either narrowed or transformed, as many of them present a
high correlation. Otherwise, the large dimensionality of HSI data leads neural networks
and other classification algorithms to be hugely complex. Accordingly, the most frequent
projection method is PCA (principal component analysis) [27–29], which projects an HSI
cube of size X×Y× λ into D× B, where D has a size of X×Y× F, and B is a matrix such
as F× λ. In this formulation, F is the number of target features. Independent component
analysis is a variation of PCA that not only decorrelates data but also identifies normalized
basis vectors that are statistically independent [30]. Least discriminant analysis is another
commonly used technique, but it is primarily applied after PCA to increase interclass
and intraclass distance [28]. In the literature, it is also referred to as partial least-square
discriminant analysis, mainly as a classifier rather than a feature selection method.

Instead of projecting features into another space, these can be narrowed into the subset
with maximum variance according to the classification labels of HSI samples. There are
many techniques in this field, including the successive projection algorithm, which reduces
colinearity in the feature vector. The competitive adaptive reweighted sampling method
selects features with Monte Carlo sampling and iteratively removes those with small abso-
lute regression coefficients. Two-dimensional correlation spectroscopy aims to characterize
the similarity of variance in reflectance intensity. Liu et al. [31] used the Ruck sensitivity
analysis to discard bands with a value below a certain threshold. Agilandeeswari et al. [32]
calculated the band entropy, vegetation index and water index for wavelength subsets, gen-
erating a narrower cube only with bands above three different thresholds. Finally, the work
of Santos et al. [33] presents an in-depth evaluation of methods based on PLS regression.
To this end, HSI data from olive orchards were first narrowed and then classified with LDA
(least discriminant analysis) and K-nearest neighbors. In conclusion, the Lasso method [34]
as well as genetic algorithms [35] showed the best performance with LDA.

2.3. Traditional Hyperspectral Classification

Deep learning methods have recently become the preferred approach for classifying
hyperspectral imagery. However, earlier techniques relied on comparing the acquired data
to reference reflectance shapes that were ideally measured in a laboratory. The primary
objective of these methods was to measure the similarity between labelled and unlabelled
spectral shapes. Spectral libraries, containing data measured from a spectrometer, were
used for these comparisons [36]. These methods varied from the widely used Euclidean dis-
tance to more sophisticated techniques such as spectral angle matching, cross-correlogram
spectral matching and probabilistic approaches like spectral information divergence [30].
In addition, error and colorimetric methods [37] have been investigated in previous studies.

2.4. Classification of Hyperspectral Imaging with ML and DL

This section reviews studies related to the classification of vineyard varieties using HSI.
However, only a few studies address HSI classification over vineyard varieties; therefore,
other state-of-the-art DL networks achieving high accuracy in HSI classification will also be
reviewed. Note that our research investigates pixel-wise classification, and models aimed
at semantic segmentation (e.g., encoder–decoder architectures) are omitted.

In previous grapevine classification studies, binary masks or grayscale maps were first
extracted to distinguish soil, shadows and vineyards. Clustering, line detection and ML algo-
rithms have been applied to segmenting vineyard rows [11,38–42], amongst which artificial
neural networks (ANNs) stand out. Geometrical information from depth maps, DEMs, LiDAR
data and photogrammetric reconstructions were also assessed [11,43–45], showing that this
information improves the baseline performance. DL approaches for semantic segmentation
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and skeletonization algorithms have also been discussed [46,47]. Further insight into this field
is provided by Li et al. [48].

Other vineyard classification studies operate with traditional methods and proximal
hyperspectral sensing. In the work of Gutiérrez et al. [49], samples were selected by man-
ually averaging the variety signature and filtering those with high correlation to such a
signature. A support vector machine (SVM) and multilayer perceptron (MLP) were then
trained with k-fold to distinguish thirty varieties (80 samples for each one), with the latter
obtaining a recall close to one. Murru et al. [50] collected infrared spectroscopy data of five
grape varieties and classified them using ANN with an overall accuracy (OA) of 85.3%. Sim-
ilarly, Fuentes et al. [51] employed identical data types across sixteen grapevine cultivars,
contrasting with colorimetric and geometric leaf features. Their classification methodology
leveraged ANNs, yielding an OA of 94.2% by integrating morpho-colorimetric attributes.
Kicherer et al. [52] presented a land phenotyping platform that segments grapes from
the depth map and discerns between sprayed and nonsprayed leaves. To this end, sev-
eral learning models were tested: LDA, partially least square (PLS), radial basis function
(RBF), MLP and softmax output layer, with RBF and PLS showing the best results. Besides
phenotyping, the following work is aimed at detecting diseases [53–55] and plagues [3].
Nguyen et al. [53] attempted to differentiate healthy and infected leaves with data obtained
from land. They flattened the data processed by 2D and 3D convolutional networks and
used them as input for random forest (RF) and SVM algorithms. They found that com-
bining PCA reduction (50 features) and RF resulted in the best performance (97%), and
RF improved SVM classification regardless of data reduction. However, it notably varies
according to the case study; for instance, Wang et al. [56] reported that minimum noise
fraction performed better in classifying crops over HSI. Another revised ML algorithm is
gradient boosting for binary HSI classification over aircraft imagery [57], with an OA over
98% when discriminating algae.

Nevertheless, some of these applications formulate a binary problem where signatures
of distinct classes significantly differ in scale and shape. Others operate with small datasets
obtained on land via close sensing [58] or from imagery acquired at higher altitudes (hence
showing more recognizable spatial features). For instance, a lightweight CNN composed
of several inception blocks was also developed to classify up to 15 plant species [58] using
multispectral images with a size of at least 200× 200 pixels. The authors found that the
best results were achieved using a combination of six RGB and near-infrared features,
with an accuracy of 94.7%. The use of PCA with only six features achieved an accuracy
of 88%. Nezami et al. [59] also applied a 3D CNN to classify three tree species using
both hyperspectral and visible imaging as well as canopy height models as input, with
an OA below 95%. While it performs well over notably different materials, the network
is not complex enough to discriminate similar hyperspectral signatures. On the other
hand, transfer learning, attention-based and residual models are commonly observed in the
literature [60]. Zhou et al. [61] delved into the realm of CNNs trained on distinct domains
for satellite HSI classification, augmented with few-shot learning techniques. Although not
yet attaining state-of-the-art performance, this approach showcased promise in expediting
training procedures [62].

Regarding DL, the classification of satellite HSI is more frequent than using UAV im-
agery. Among previous works, the top-performing models based on their OA are discussed
below. Zhong et al. [63] published an HSI dataset and proposed a simple CNN with condi-
tional random field (CRF) to extract spatial relations among data, even with the presence
of gaps. They obtained an OA of 98% and 94% over their own HSI dataset. Moraga and
Duzgun [64] presented an inception-based model with parallel convolutional pipelines of
increasing size, achieving near-perfect classification. Chakraborty and Trehan [65] proposed
the SpectralNet model, which combines wavelet decompositions with a traditional convo-
lutional path (OA: 98.59–100%). HybridSN [66] included both spectral–spatial and spatial
feature learning using 3D and 2D convolutional layers (OA: 99.63–100%). Later, a network
based on residual blocks and spectral–spatial attention modules with varying architecture
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(start, middle and ending ResBlock) (OA: 98.77–99.9%) was presented [67]. Lastly, the
A-SOP network [68] proposed a module composed of matrix-wise operations that output a
second-order pooling from the attention weights after extracting the first-order features
(OA: 98.68–100%). Similar to Moraga and Duzgun’s work in 2022, the FSKNet model
employs a combination of 2D and 3D convolutional layers with an intermediate separa-
ble convolution to reduce training latency while achieving comparable overall accuracy
results. It achieves an OA above 99% with significantly fewer parameters and a shorter
training time. Finally, other approaches have gained attention lately, such as contrastive
learning, multi-instance segmentation and transformer networks [69] (e.g., using the BERT
architecture [70] with an OA above 99%).

Although revised studies present outstanding results, most of them operate over
satellite and aircraft imagery. These datasets are frequently less noisy and more curated
than UAV images. Moreover, spatial features are not as relevant nor apparent in imagery
obtained at a lower altitude, which is later subdivided into patches with low to no label
heterogeneity. Indeed, we compare our method to numerous models to show that they
underperform over UAV-based HSI.

3. Materials and Methods

The structure of this section is as follows: firstly, a brief explanation of the study area
and sensors is provided. Next, the challenges of classifying vine varieties are introduced
by the collected data. Subsequently, UAV imagery is utilized to differentiate between
phenotypes of white and red root variants. To achieve this, a CNN architecture is proposed,
which is evaluated against previously reviewed work with impressive OA results.

3.1. Study Area

The vineyards used as study areas in this work are situated in the northern region
of Portugal, specifically in Vila Real (Figure 1). Each vineyard plot is dedicated to either
red or white grapevine variants, and each grapevine variety is cultivated in one or more
contiguous rows. The names of the row varieties were visible at the ground level via
human-made marks, and these were annotated for the individual classification of rows
visible in aerial imagery. The first crop (a) extends over 0.1551 ha and the second one (b)
covers an area of 0.2814 ha.

Figure 1. Overview of the areas surveyed using UAV hyperspectral imaging for the classification
task. Two different vineyard crops are depicted according to their main variety: (a) red and (b) white.
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3.2. Material

A Matrice 600 Pro (M600) hexacopter (DJI, Shenzhen, China) equipped with a Nano-
Hyperspec from Headwall was used for the UAV flight. A Ronin-MX (DJI, Shenzhen,
China) gimbal was employed to minimize geometric distortions in HSI acquisition. The
lens had a focal length of 12 mm, covering 21.1°. The HSI swaths had 270 spectral bands
and a width of 640, with the height depending on the flight plan. The spectral range went
from 400 nm to 1000 nm, with a uniform sampling of 2.2 nm that increased to 6 nm at half
maximum. The UAV’s location was captured at different timestamps using two positioning
antennas, and angular data were recorded using an inertial measurement system (IMU).
The flight was planned using Universal Ground Control Station at an altitude of 50 m
with a 40% side overlap. The red and white varieties were surveyed with 8 and 5 swaths,
respectively. Table 1 provides a summary of the number of samples of each grape variety.

Table 1. Summary of acquired information regarding different grapevine varieties. For each variety,
the number of field rows and image pixels obtained by labelling UAV imagery is shown.

Grapevine Berry Vineyard Variety No. Field Rows No. Pixels

Red

Alicante 3 58,680
Alvarhelao 4 144,315
Barroca 3 35,656
Sousao 3 75,078
Touriga Femea 3 36,114
Touriga Francesa 3 71,547
Touriga National 3 53,620
Tinta Roriz 4 67,157

White

Arito Do Douro 1 92,432
Boal 3 44,654
Cercial 1 105,384
Codega Do Ladinho 3 261,228
Donzelinho Branco 1 98,304
Malvasia Fina 3 242,412
Moscatel Galego 1 101,885
Nascatel Galego Roxo 1 92,432
Samarrinho 1 77,229

Total 1,658,127

3.3. Preprocessing of Hyperspectral Data

This section briefly describes the process of obtaining reflectance data from raw
hyperspectral imagery, illustrated in Figure 2. The hyperspectral data were collected
using a drone and processed using Headwall SpectralView™ software (v3.1.5.1, Headwall
Photonics, Inc., Bolton, MA, USA). Several swaths were captured for each study area, and a
white sample was marked from the white area in a grayscale tarp, while a dark reference
was obtained by collecting a hyperspectral sample with the lens cap on before the flight.
The sensor exposure and frame period were adjusted before the flight by pointing at a
bright reference to avoid clamping samples from white surfaces. The white and dark
references were then used to convert the raw data to reflectance. The ortho-rectified swath
in Figure 2 was obtained using high-resolution DEMs (25 m) from Copernicus’s observation
program [71] and the drone’s GPS and IMU data. However, non-ortho-rectified swaths
were used for the analyses presented in this paper to work with smaller image sizes and
avoid distorting the hyperspectral signatures.
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Figure 2. Conversion of (a) hyperspectral DNs into (b) reflectance using white and dark references.
The three grey levels are sampled in (a).

3.4. Transformation of Hyperspectral Data

The analysis of the corrected reflectance data involved several steps to observe and
differentiate the spectral signatures from different varieties. Initially, PCA was employed
to explore the clustering patterns, extracting 50 features and narrowing them to three
components using uMAP (uniform manifold approximation and projection for dimension
reduction) [72]. As a result, Figure 3 shows that there are no clear distinctions between
different varieties.

Figure 3. Three-dimensional distribution of hyperspectral samples from 17 classes, obtained by
narrowing 50 components calculated with PCA into three components estimated by uMAP.

To determine the most suitable feature transformation algorithm for the collected HSI
data, we evaluated four algorithms: NMF, PCA, FA and LSA. These were selected because
they do not require the sample labels for their execution and therefore can work over
not-yet-observed data. Additionally, LDA was included in these tests despite requiring
the labels. Note that the evaluated samples simply consist of 140 bands after discarding
the first and last layers, which are typically noisier. These were tested in isolation rather
than using their neighborhood. For each algorithm and varying numbers of features, from
5 to 95, two tests were performed. First, the distance-based separability measure (DSI)
was computed using the transformed manifold [73]. Subsequently, an SVM model was
trained to predict the labels of the transformed samples. Through this evaluation, it was
determined that FA outperformed the other algorithms in terms of both metrics, especially
with more than thirty-five features. The results of these experiments are summarized in
Figure 4, which supports the use of FA with forty features in the following sections.
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Figure 4. Results of experiments conducted to compare different feature transformation algorithms
with different numbers of components. PCA, FA, NMF and LSA (truncated SVD) are evaluated using
the DSI metric and the OA obtained by training an SVM model. The default DSI and accuracy are
obtained from the original data with 140 features.

Furthermore, feature transformation algorithms, such as FA, help to perform material
unmixing to make the processing more robust against different background surfaces,
including soil, low vegetation and other human-made structures. Pixels from UAV-based
hyperspectral swaths depict more than one material. Therefore, the classification of these
data ought to work under different kinds of surfaces. As proposed in recent work, material
unmixing could be performed with NMF. To this end, hyperspectral swaths in reflectance
units could be flattened to 1D (n← h · w) with a dimensionality of n×m, where m is the
number of features. Then, this flattened vector could be transformed into weight (Wn×c)
and component (Cc×m) matrices, where c is the number of target surfaces (end-members).
However, the number of materials visible in a single image (or vineyard varieties plus
ground) is not known in nature. Hence, material unmixing with an unknown number of
target materials is suited for the classification of significantly different signatures rather than
for performing fine-grained classification as in our case study. On the other hand, the feature
space can be transformed and narrowed to a few more representative features instead of
unmixing materials. In this regard, FA is also aimed at decomposing A into W × C + Θ
without the non-negative restriction, with Θ being the measurement error [74]. For this
reason, FA was proven to be highly suitable to our case study, beyond outperforming
the rest of the feature transformation methods in terms of separability and classification
accuracy using an SVM model.
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3.5. Automated Training

The classification of vineyard varieties with UAV data can be hardly approached with
1D algorithms due to the high similarity of spectral signatures. This shortcoming was
already observed in Figure 4, where SVM did not perform well for any number of features
(OA below 50% in every case). In this section, a method based on deep learning is described
to classify 3D hyperspectral patches. In this section, the proposed method is tuned to
achieve a high generalization performance.

3.5.1. Dataset

The hyperspectral imagery used in this study was collected on 28 July 2022, when
all reported grapevine varieties were observed to be in a mature phenological stage. This
ensured consistency and comparability across the surveyed plots, despite variations in the
phenological cycles of different grapevine varieties.

Once radiometrically corrected, hyperspectral swaths were manually labelled as
depicted in Figure 5 to distinguish different vineyard varieties. The Normalized Difference
Vegetation Index (NDVI) was first extracted to differentiate vegetation from the ground,
and images were then thresholded to create a binary mask from each swath. Following
this, these binary masks were annotated with Sensarea [75] by marking each row with a
different polygon and color, according to the variety annotated via human-made marks at
the ground level. Some rows were marked with more than one polygon in order to avoid
annotating small vegetation clusters that do not belong to vineyards but to small vegetation.
For this reason, different polygons were labelled with the same colors, also because some
varieties were repeated in several rows. According to this, Table 1 shows the number of
collected samples for each variety and the number of cultivated rows.

Figure 5. Workflow for manually labelling HSI swaths. First, the false RGB image is displayed. Then,
the NDVI is extracted, followed by thresholding and marking with polygons using the Sensarea
software. Finally, a Boolean operation, AND, is performed between the polygon and binary masks to
obtain the final labelled regions.

HSI cubes and masks were then split into 3D patches whose size is a matter of
discussion in Section 4. Dividing the hyperspectral swaths into patches for classifying
pixels using their neighborhood helps to partially suppress noise. Individual pixels are not
substantial enough by themselves; instead, aggregations learned by kernels help to mitigate
the noise. The window size used in this study is 23× 23 by default, whereas previous work
used patches whose x and y dimensions range from 7 [67] to 64 [65]. Only [58] reported
patches of much larger dimensionality (200× 200) for multispectral images. The larger
the patch, the deeper can be the network, though it also increases the number of trainable
weights, the training time and the amount of data to be transferred into/from the GPU.
Configurations using larger patch sizes are more suited to images with notable spatial
features, such as close-range imagery [58], whereas ours ought to be primarily discerned
through spectral features.
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Instead of inputting the label of every patch’s pixel, they were reduced to a single
label corresponding to the centre of an odd-sized patch. Thus, the classification was
performed per pixel rather than through an overall semantic segmentation. Based on this,
the hyperspectral samples were processed using the following steps: (1) separating the
training and test samples at the outset, (2) fitting the FA and standardization only to the
training samples to emulate a real-world application and (3) transforming both the training
and test samples using the fitted models (see Figure 6). Standardization was utilized to
eliminate the mean and scale reflectance to unit variance. By employing this approach, the
CNN restricted the range of input HSI values, although the initial values were expected
to differ due to various sensor exposures, frame periods and environmental conditions
across different flights. Regarding feature reduction, spectral bands were transformed and
narrowed to n← 40 with FA. None of the fitted models requires the pixel’s labels and thus
are very convenient for their application in new unlabelled areas. The resulting dataset is
composed of 542,167 and 1,115,960 patches for red and white varieties, which were split
into training (68%), validation (12%) and test (20%) subsets. With this partitioning, a total
of 368 k samples were used for training on red varieties, and 758 k were applied to white
variety classification.

Figure 6. Overview of dataset preparation. First, a binary mask was generated using the NDVI and
rows were organized into different groups to distinguish vineyard classes. Once pixels were processed
as described in Section 3.3, both reflectance and labels were split into patches. The signatures on the
right side show the original and transformed reflectance, including the variance per feature. Blue
lines show the averaged ground spectral signature, whereas orange represents the pixels labelled
as vegetation.

3.5.2. Implementation

To make this paper self-contained, a brief introduction about DL is detailed in this
section. Firstly, deep learning refers to layered representations that evolve in a learning
process where they are exposed to input data. Typically, the depth of these models is
large enough to automatically transform data and learn meaningful representations of data.
Despite these models being able to work over any kind of structured data, even 1D, it is
here proposed that one’s pixel neighborhood may help with the phenotyping problem.
Convolutional neural networks (CNNs) have achieved remarkably good results in the
computer vision field. Convolutions are designed to learn local features, rather than global,
by applying element-wise transformations while sliding over input data. These are defined
as rank-3 tensors defined by width, height and depth. The width and height determine how
large the neighborhood of every element is, whereas the depth is the number of different
learned filters. Hence, a single filter is applied element-wise to compose a response map
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from input data, whereas the whole filter stack is known as a feature map. If several
convolution operations are concatenated, these evolve from learning low-level details (e.g.,
edges) to high-level concepts. Since individual filters are applied element-wise, the learned
patterns are invariant to the position within the image [76]. However, kernels may not be
applied for every element. Instead, information can be compressed using steps greater than
one, also known as the stride value. Another key concept in CNN is that not every node is
connected, thus partially tackling the overfitting problem. Training and test errors ought to
remain similar during training, which implies that the network is not learning the training
data (overfitting) or generalizing excessively (underfitting). To avoid both situations, the
capacity of the model must be tuned in terms of complexity to generalize and reach low
training errors.

Trainable CNN layers are typically defined by a matrix of weights and biases applied
over input data, f (x; w, b), with f being an activation function that allows the solving
of nonlinear problems. In this work, ReLU and Leaky ReLU are applied to tackle the
vanishing gradient problem, together with batch standardization. The latter operations
work similarly to the standardizer applied as a preprocessing stage. On the other hand,
w and b are updated during training to minimize a loss function comparing ground-truth
and predicted values for supervised classification. This is performed by an optimizer that
changes these trainable parameters using the error gradient scaled by the learning rate,
η. The greater the η, the faster the convergence is achieved, though it can also lead to
significant oscillations. This process is known as gradient descent (GD) [77]. As faster
convergence may be necessary at the beginning, the decay and momentum concepts were
introduced to downscale η during training, thereby omitting abrupt changes.

Besides convolutions and normalization, there exist other layers to narrow data, avoid
overfitting and output probabilistic values. The pooling operations, with max and average
being the most popular, are aimed at downsampling input data. Dropout layers are used as
a mechanism to introduce some noise into the training by zeroing out some output values,
thus getting rid of happenstance patterns. Weight regularization also seeks to make the
model simpler by forcing the weights to be small. Finally, the output units of the model are
aimed at transforming features to complete the classification task. For a multilabel problem,
the softmax represents the probability distribution of a variable with n possible values.

The kind of problem and label representation is coupled with the cross-entropy func-
tion measuring the error. Sample labels were not hot-encoded to reduce storage footprint,
and therefore, a sparse categorical cross entropy as defined in Equation (1) is used for
training in a multiclass problem. Otherwise, hot encoding requires transforming labels
into binary vectors of size c that activate the indices of the sample label(s), with c being the
number of unique labels.

LCE = − ln (ŷ[y]) (1)

where ŷ is the model’s output as a vector of size c with ŷ[i], i ∈ [0, c− 1] indicating the
probability of the sample to belong to the i-th class, and y is the ground truth given by an
integer value.

3.5.3. Architecture and Training

Several architectures were checked over both datasets, transitioning from networks
with a few layers to the network proposed in Figure 7. Hyperparameter tuning was also
used to define the best values for dropout, activation and convolutional layers, including the
number of filters, the percentage of zeroed weights, the gradient of Leaky ReLU activation
and the final activation.
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Figure 7. Scheme of the proposed CNN, highlighting four different parts as well as the structure of
inception blocks.

The input of the network is a single patch of size 23× 23× 40. Moreover, the attention-
based kernel of [68] is included as the first layer in order to discriminate representative
spatial–spectral low-level features from the starting data. In this manner, it is able to extract
spectral features without neglecting spatial ones within each patch. The first operation in
the attention-based thread is to normalize the data, from which the kernel will learn the
weights. Such a kernel is a correlation matrix that learns the cosine distance between the
central pixel and the neighbors. Then, learned weights are normalized through a softmax
function that is shown to provide better convergence. With this in mind, the attention-based
thread can be formulated as follows:

Pnorm
M2×B ← l2(PM2×B)

SM2×M2 ←
[
Pnorm

M2×B
(
Pnorm

M2×B
)⊺]

Scentral
M2×1 ←

[
S⌊M

2 ⌋
M2

]⊺
KM2×1

SAM2 ← SM2×M2KM2×1 + BM2×1

PSAM2×B ← softmax(SAM2
) · PM2×B

where l2 refers to L2 normalization, PM2×B is a 3D patch resized from PM×M×B, S , Scentral
as well as SA are intermediate states, and PSA is the result that is later concatenated with
the original form. From here, the result is concatenated in z with the original inputted
data. Unlike in [68], this approach communicates two data blocks to the following layers:
(1) discriminative spatial–spectral features, mainly for areas with high label heterogeneity,
and (2) the original data for areas in which previous features are not that relevant.

Then, two similar blocks are included as Part II and Part III in Figure 7. Both share the
same structure: inception block, normalization, activation and dropout. This is a frequent
follow-up of convolutional layers [68,78], with dropout being greater (0.4) for middle layers
than the last and initial layers (0.2). Instead of using max-pooling to downsample the
network, strides of size 2 in convolutional layers were observed to perform better. These
blocks are particularly well suited to our case study, as variations in flight altitude and
image resolution are common among different observations. Consequently, employing
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inception blocks with kernels of varying sizes demonstrates robust performance against
these uncertainties. The network specifications are shown in Table 2.

Table 2. Layer specifications of the proposed network. Inception blocks are simply named, but their
layers are not expanded here to make this table more readable.

Part Layer Kernel Size Strides Output Size

I
Input 23 × 23 × 40
Spatial attention 23 × 23 × 40
Concatenate 23 × 23 × 80

II

Conv2D 1 × 1 1 23 × 23 × 16
Conv2D 3 × 3 2 12 × 12 × 16
Leaky ReLU (α← 0.1) 12 × 12 × 16
Batch normalization 12 × 12 × 16
Dropout (0.2) 12 × 12 × 16

III

Inception v2 1 (Conv2D 1× 1), 2 6 × 6 × 96
Batch normalization 6 × 6 × 96
Leaky ReLU (α← 0.1) 6 × 6 × 96
Dropout (0.4) 6 × 6 × 96

IV

Inception v2 1 (Conv2D 1× 1), 2 3 × 3 × 288
Batch normalization 3 × 3 × 288
Leaky ReLU (α← 0.1) 3 × 3 × 288
Flatten 2592
Dropout (0.2) 2592

V Softmax 17

No. trainable parameters: 562,227.
No. non-trainable parameters: 768.

No. parameters: 562,995.

The inception block was first proposed by [79], which consists of a module with four
parallel layers that are later concatenated: convolutional layers with different kernel sizes
(1 for spectral features and 3 and 5 to obtain aggregations from surrounding pixels) and a
max-pooling layer that works directly over input data. Accordingly, a response map with a
large number of filters is obtained. The importance of each of them is determined by the
following layers that will again downsample data. However, at the time, this layout was
considered to be prohibitive if the input layer had a large number of filters, especially for
kernels of larger size. Therefore, 1× 1 convolutions aimed at reducing data were attached
before each one of the inception threads (max-pool and convolutions with κ > 1). In this
work, both proposals are used: the naïve is checked in the experimentation to increase
the network’s capacity, whereas the second is part of the proposed network. The latter
compresses spatial data even more and is then connected to the network output.

Finally, the model is fitted with training data, and its performance is assessed with
validation samples. For supervised problems like ours, data are composed of both samples
and ground truth. In this work, the training samples were split into several sets according to
the hardware limitations, and the model was iteratively trained during a significant number
of iterations (ε ← 500). Besides mitigating storage limitations, this leave-p-out cross-
validation also helps to generalize by not training over the complete dataset. Furthermore,
each one of these clusters is further split into small batches during a single iteration. The
batch size must be large enough to include a balanced representation of samples. In this
work, the batch size was set to 210. This phase can be terminated early if no improvements
are observed during t← 20 epochs. A summary of the hyperparameters used in this study
can be found in Table 3.
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Table 3. Hyperparameters used during training.

Hyperparameter Value

Patch size 23
Patch overlapping 22
Batch size 1024
Epochs 500
Learning rate 1−5

Number of training splits 9
Transformations per split 2
Optimizer RMS propagation
Loss function Categorical cross entropy
Training split 0.68
Validation split 0.12
Test split 0.2

3.5.4. Data Sampling and Regularization

It can be observed from Figure 8 that the dataset is not balanced. The number of
vineyard rows differs in length and so does the number of examples for each variety.
Instead of generating new feasible batches by upsampling, a subset was obtained with
different techniques. The objective is not to equalize the number of samples for every
variety but rather to make it more balanced. Accordingly, the subsampling is performed
by determining how many groups are downsampled; the larger it is, the more balanced
the dataset becomes at the expense of reducing the number of hyperspectral samples. In
this regard, Figure 8 compares the original distribution observed in a training batch and
the utilized downsampling technique. Besides balancing the dataset, which is split into
several batches to make it fit in the GPU, the CNN is watched with a callback that saves the
current best model and prevents saving an overfitted model.

Figure 8. From top to bottom: initial distribution of samples per label and after using the proposed
narrowing, with only three groups being downsampled.

Batches were probabilistically (P ← 0.1) transformed by performing rotations and
orientation flips so that learned features are invariant to the flight’s positioning conditions.
With this approach, each batch of the training dataset was processed twice, each one
with a different random seed, and therefore, differently transformed patches. Hence,
the regularization was controlled by the proposed downsampling and transformation
sequences. Several considerations were also taken into account during the CNN design:
(1) the CNN must not have a large number of trainable parameters to avoid overfitting
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and a sufficient number to cope with underfitting, and (2) dropout layers were included to
randomly reset some output weights and thus lead to proper generalization.

4. Experimentation and Analysis

The effectiveness of the proposed network is evaluated in this section. To this end,
the classification experiments are jointly performed over various hyperspectral swaths
of both surveyed areas. Results are presented in terms of overall accuracy (OA), average
accuracy (AA), statistical kappa (κ) and f1-score. The first shows the percentage of correctly
classified samples, the AA represents the average class-wise accuracy, the κ coefficient
is the degree of agreement between the classification results and the ground truth and,
finally, the f1-score measures the model’s precision by leveraging both precision and
recall metrics. Several representative neural networks are compared with our method:
LtCNN [58], JigsawHSI [64], SpectralNET [65], HybridSN [66], Nezami et al.’s [59] and
A-SPN [68]. From these, only a few address airborne sensing imagery [58], and the rest are
focused on satellite data. Hence, several considerations must be addressed: (1) some of
these approaches apply different transformations to the input data and (2) the number of
spectral bands also differs from our HSI device. Therefore, the preprocessing pipeline was
selected as the one providing better performance over our input data, either our pipeline
or the one proposed in the reference work. However, FA showed a higher performance for
every network if input data were transformed according to this fitting method rather than
the following:

• Nezami et al. and LtCNN used the corrected reflectance with no preprocessing.
• JigsawHSI used PCA, FA, SVD and NMF with 9–12 final features.
• LtCNN and HybridSN used PCA to transform reflectance with n← 6, 30 components,

respectively, whereas n is unknown for A-SPN.
• SpectralNet used FA with only three features.

Regarding implementation, all the tests were performed on a PC with AMD Ryzen
Threadripper 3970X 3.6 GHz, 256 GB RAM, Nvidia RTX A6000 GPU and Windows 10
OS. The proposed CNN as well as the compared networks were implemented with Keras
(version 2.10.0) and TensorFlow (version 2.10.1) in Python. CUDA 11.8 and CuNN 8.6
were installed to reduce the fitting time. Not every network from previous work could be
applied as published; for example, LtCNN is designed for large image patches (200× 200),
and thus, convolutional striding and max-pooling cannot be applied when patches reach
a size of 1× 1. For LtCNN [29], kernel size and max-pooling’s strides were reduced as
reflected in our repository (please, see Data Availability Statement).

4.1. Classification Results

Table 4 shows the overall results of our method in comparison with state-of-the-art
networks for classifying HSI datasets. Most of them are considerably unstable due to
operating with noisy UAV data rather than working with satellite imagery. In addition,
the second-best-performing network is Nezami et al.’s [59], which is the only one checked
against UAV datasets for discerning different tree species. Similar to ours, it is also a
shallow CNN with only a few layers; however, convolutions are applied sequentially rather
than operating with stacked features extracted from various parallel convolutions. The
confusion matrix in Figure 9 shows the OA of the proposed network against any grape
variety. Hence, classification over the majority of varieties shows uniform results, with
most of them being close to 99%. Note that these percentages were rounded, and therefore,
some of these results are below 99%, while others are above. When averaged, all these
results lead to an OA of ≈98.8%, as shown in Table 4.
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Table 4. Overall results in terms of OA, AA, f-1 and κ coefficient with different methods. The best
results for every metric were highlighted in bold.

Metric Ours LtCNN [58] Nezami [59] JigsawHSI [64] SpectralNET [65] HybridSN [66] A-SPN [58]

OA 98.78 ± 0.15 74.33 ± 9.77 80.42 ± 0.59 73.89 ± 1.72 79.09 ± 0.55 63.46 ± 0.45 63.40 ± 0.69
AA 98.94 ± 0.09 73.09 ± 9.69 77.72 ± 0.43 73.55 ± 0.67 78.92 ± 0.29 63.04 ± 0.68 69.82 ± 0.49
Kappa 99.67 ± 0.05 91.15 ± 3.87 95.43 ± 0.28 90.27 ± 1.69 93.43 ± 0.15 89.68 ± 0.24 88.77 ± 0.31
f1 98.78 ± 0.15 73.86 ± 10.29 80.38 ± 0.61 73.00 ± 2.41 79.05 ± 0.56 63.10 ± 0.70 61.69 ± 0.96

Figure 9. Confusion matrix for classifying red and white varieties altogether.

4.2. Training Time and Network Capacity

The benchmark on the classification problem is relevant to show that training time is
not excessive and that the proposed network does not have much more capacity than the
problem warrants. Figure 10 shows that training and validation signatures are similar and
therefore do not show overfitting or underfitting behaviours. Furthermore, the training
AO and loss worsen as a new dataset is introduced, whereas the validation metrics remain
similar. Along with this, the network is only parameterized by nearly 560 k parameters,
while other state-of-the-art models exceed 10 million parameters (see Figure 11). The
number of parameters is derived from the proposed architectures, using an input of size
23× 23× 40. Note that the network of Lu et al. [29] was decimated in our experimentation
with pooling operations of a lower size than proposed to adapt it to smaller patches. Finally,
the response time for training the proposed network is below an hour, whereas others
require up to several hours. Note that every available sample was used during training,
instead of using strides; otherwise, the training time can be reduced. In conclusion, very
shallow networks [68] or excessively deep ones [64] seem to struggle over a case study
where spectral features have a greater weight in the inferring.
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Figure 10. Training and validation accuracy and loss during training.

Figure 11. Response time for training the network (left axis) as well as the number of parameters
(right axis) for every compared network, including ours [59].

4.3. Separability

The output of the proposed network can be assessed in terms of separability by remov-
ing the final dropout and dense layers. Data were transformed and flattened according to
the network’s learned weights. It was subsequently embedded with uMAP [72] to compress
high-dimensionality data into a few features, thus allowing us to visualize the new data
representation. The same procedure can be followed over the original data to compare
how the data manifold was uncrumpled. As shown in Figure 12, different labels were not
perfectly unmixed, although the improvement in comparison to the starting representation
is notable. To provide this result, the last densely connected layer was connected to uMAP
fitting with n = 2; hence, 2592 features were narrowed to two features to represent the
embedding in a two-dimensional chart.



Remote Sens. 2024, 16, 2103 19 of 29

Figure 12. Clustering of samples according to the feature transformation performed by uMAP over
(a) the starting hyperspectral features and (b) features extracted by the CNN before transferring it to
the final softmax layer.

4.4. Impact of Window Size

The patch size is one of the most, if not the most, relevant parameters concerning
the network architecture. Larger patches are assumed to also work, as irrelevant spatial
features can be zeroed out. However, it also comes at the expense of increasing the training
time. On the contrary, lower patches come at the risk of not being sufficient for classifying
samples as accurately as performed by the proposed network. Figure 13 shows the whole
battery of metrics obtained with patch sizes ranging from 5 to 31. According to the obtained
results, patches were split with dimensionality 23 to balance network capacity and accuracy,
despite a higher patch size achieving slightly better results. Accordingly, the highest
patch size reached an OA of 99.57%, whereas the lowest reached 82.5% (size of 5). On
the other hand, the selected dimensionality achieves an OA of 99.20%, thus leveraging
network size and capacity. Figure 14 depicts the training time and network size as the patch
dimensions increase. The number of training splits was calculated according to the patch
size, and therefore, the lowest size had also a lower number of subdivisions. This led to a
considerable time bottleneck in patch-wise transformations since they were performed in
the central processing unit (CPU).

Figure 13. Overall accuracy obtained for patches of different sizes, from 5 to 31.

In conclusion, selecting a patch size implies leveraging several factors, including
training time, network capacity and accuracy. Therefore, it must be selected according to
the available computational resources, the image resolution and the minimum acceptable
error rate. Using larger patches is safer but also increases the network capacity and training
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time. Hence, the relevance of selecting an appropriate patch size rather than the largest
possible was proved in this experiment.

Figure 14. Training time (in minutes) and the number of parameters as the window size increases.
The blue bars correspond to the left axis, representing training time, while the orange bars represent
the number of parameters.

4.5. Ablation Study

The proposed network is intended to be validated in this section by removing and
transforming some of the network features while the rest remain unchanged. The proposed
changes are the following:

1. Two convolutional layers were included before Part II to extract spectral and spa-
tial features.

2. Both inception blocks were modelled using the original structure [79]. The main
difference between this architecture and ours is that the former stacks feature maps
extracted with different neighborhood sizes, without downsampling data with 1 × 1
convolutions. Therefore, it increases the network capacity and training time.

3. Only the first inception block was exchanged by a naïve version, as the one used in
the previous experiment.

4. The spatial attention layer was removed.

The obtained results are shown in Table 5. Removing the SA layer led to a slight
decrease in performance, similar to exchanging the first inception block. Unsurprisingly,
using the naïve version of the inception layer twice led to a significant performance decrease
for every metric, as it kept transforming the spectral dimensionality in a deep layer. The
second inception version also transformed spectral features but instead provided them as
an additional layer (concatenation) that can be weighted according to their contribution
to the output. Following this reasoning, swapping the first inception block with the first
version of it did not involve a huge performance drop. Improvements to the proposed
architecture over the third variant were very small and therefore may suggest that using
either one of them does not offer great changes in performance. Similar results to the last
setup were achieved by removing the spatial attention layer; it did not lead to a significant
performance drop, though better and, especially, more stable results were obtained using
the proposed network.

Table 5. Overall results in terms of OA, AA and kappa coefficient with different CNN schemes. The
best results for each metric were highlighted in bold.

Metric Ours (a) With Initial Conv. (b) Naïve Inception (c) Naïve & Adv. Inception (d) Without SA

OA 98.78 ± 0.15 98.04 ± 0.11 97.87 ± 0.29 98.51 ± 0.20 98.67 ± 0.23
AA 98.94 ± 0.09 98.21 ± 0.06 98.09 ± 0.25 98.90 ± 0.10 98.93 ± 0.11
Kappa (κ) 99.67 ± 0.05 99.43 ± 0.07 99.45 ± 0.08 99.58 ± 0.12 99.59 ± 0.04
f1 98.78 ± 0.15 98.04 ± 0.11 97.89 ± 0.28 98.52 ± 0.20 97.66 ± 0.22
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4.6. Analysis of Errors

As observed in previous sections, our architecture achieved a high OA and AA.
However, a margin for improvement can be found in the weaknesses of the labelling,
transformation and classification pipeline. Instead of predicting randomly selected samples,
another experiment is to predict every hyperspectral swath sample, thus allowing us to
determine where errors are located within the study area. As observed in Figure 15, these
errors are spatially clustered instead of being sparsed over the study area. If these are
compared against the RGB mosaic of the hypercubes, errors are observed to belong to
(1) small vegetation clusters, mainly from weeds mistakenly labelled as grapevine leaves,
and (2) samples surrounded by ground or metallic vineyard supports. Note that these
are hard to notice during the labelling since they present signatures similar to the target
leaves and are surrounded by vegetation, thus hardening the definition of a geometrical
shape for rapidly tagging whether it is relevant or not. Still, some errors are present in
grapevine samples surrounded by ground and other surfaces that have a notable impact
on the sample’s neighborhood, thus distorting the final probability. Note that boundary
samples, i.e., those close to ground, have a signature that at least fuses the signatures of
a grapevine variety and ground. Nevertheless, the weight of that specific variety in the
signature may not be enough to tell apart varieties, thereby leading to mislabelling samples
heavily surrounded by ground.

Figure 15. Errors observed in the classification of red varieties and the hyperspectral signature of a
few samples concerning different surfaces. FP indicates a false-positive sample mistakenly labelled
as vegetation during dataset preparation, since it reflects a human-made structure in the false RGB
image. It led to a few prediction errors in close grapevine samples. However, it is not trivial to mask
them out during dataset preparation.

4.7. Training over Satellite Imagery

The main shortcoming of the compared CNNs that focus on satellite imagery is that
they obtain a poor performance over the proposed UAV datasets and vineyard varieties.
Hyperspectral imagery from UAVs is noisier than satellite observations, with the spec-
tral signature of the latter being more smoothed out. Therefore, previous work did not
overcome noise in the classification of vineyards and most of them showed a poor per-
formance. Only another architecture tested over UAV samples managed to reach an OA
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near 80%, whereas others showing worse results proposed huge networks with millions of
parameters, thus overkilling the classification with a large training time.

To further evaluate the generalization capabilities of our proposed CNN, we conducted
experiments using publicly available hyperspectral satellite imagery datasets [13]. These
datasets, which are commonly used as benchmarks, vary in the number of spectral bands
and label classes, with some datasets containing as few as nine classes and others up to
sixteen. Similarly, the number of spectral bands differs from our imaging device. However,
FA was fitted to obtain only 40 features per pixel, as proposed for UAV imagery and as is
in the architecture of the network. According to the number of samples of each dataset,
the batch size was adapted, as shown in Table 6. Every dataset had unlabelled samples
which were removed from the training and test datasets to establish a fair comparison with
previous work. Unlike our UAV datasets, labels in satellite imagery were imbalanced, with
some of them having only a few dozen examples. Hence, balancing was not applied in
satellite datasets to avoid levelling the rest of the classes with others that present scarce
examples. As we did not intend to tune the network for satellite imagery, the learning rate
remained as before, and the batch size was scaled according to the number of samples.

Table 6. Classification of HSI from satellite platforms in terms of OA and kappa coefficient (κ).

Ours State of the Art

Dataset OA Kappa (κ) Batch Size OA Kappa (κ) Reference Work

Pavia University 99.97 ± 0.01 99.99 ± 0.00 256 100 ± 0.00 100 ± 0.00 [64]

Indian Pines 99.53 ± 0.13 99.49 ± 0.14 64 99.93 ± 0.07 99.89 ± 0.10 [80]

Salinas Valley 100 ± 0.00 100.0 ± 0.00 256 100 ± 0.00 100 ± 0.00 [64]

Despite the differences in data characteristics between UAV-captured and satellite
imagery, our CNN model performed robustly across all datasets. The model achieved OA,
AA and κ consistently above 99%, demonstrating its adaptability to different sources of
hyperspectral data. Training times for satellite datasets were significantly lower compared
to UAV datasets, attributed to the smaller size of satellite images. For instance, training on
the Pavia University dataset required approximately 7 min, while the Indian Pines dataset
took around 9.42 min to converge. Our model also handled imbalanced datasets effectively.
For example, the Indian Pines dataset, which exhibits a high degree of class imbalance, did
not substantially affect the classification performance, highlighting the model’s robustness.
These results suggest that while our CNN is tailored for UAV imagery, it remains highly
effective for hyperspectral satellite data, confirming its broad applicability in precision
agriculture and beyond.

4.8. Training over Fewer Examples

Another conducted experiment was to train the proposed CNN with a lower amount
of information. In this regard, the training was repeated to learn from a percentage of
training samples ranging from 10% to 100% (of 68%). In Figure 16, it can be observed that
the OA drastically goes to 92% with 10% of training data, although it is still able to learn
relevant features to provide a high OA. It is hypothesized that as the number of training
data increases, the number of learned spatial features is notably higher, whereas lower
amounts of information are enough for learning spectral features that enable classifying
samples from their neighborhood.
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Figure 16. OA observed by training the proposed CNN network with a subset (percentage) of the
training dataset. The dashed line represents the expected results for intermediate values.

4.9. Transfer Learning

Transfer learning has been widely studied to take advantage of trained networks with
a notable capability of separating a variable number of classes. The underlying concept
is that a network which has been successfully applied to one case study and has learned
relevant features may be applied to another case study with a similar outcome. Nonetheless,
it does not necessarily involve training the whole network, which typically has an extreme
amount of parameters. Instead, some layers that learn more abstract features, presumably
the first, are not trained; their weights are preserved, and deeper layers are trained to
specialize in another application.

The objective of this section is to carry out several experiments to conclude whether
weights learned over the classification of other UAV datasets can be exploited to make the
training faster and even more accurate. This experiment was approached by using the
publicly available WHU-Hi HSI datasets for classifying rural materials, including different
vegetation crops [63]. These datasets are primarily designed for semantic segmentation
applications, although the outlined transformation procedure can also be applied to them.
It is important to note that these datasets have a lower level of detail (LOD) compared to
ours, resulting in ground-truth masks that bear a closer resemblance to satellite imagery.
Despite this reduced LOD, they have proven valuable in expediting the training process
due to their smaller size. Conversely, the materials depicted in the WHU-Hi datasets
exhibit significant dissimilarities from those present in our imagery. The ground-truth
masks in these datasets appear smoother due to the lower LOD, leading to a heightened
emphasis on spectral features, while spatial features contribute less significant information.
Consequently, the learned weights from these datasets serve as initial weights, initiating a
retraining process focused on acquiring spectral and spatial features from imagery collected
with a high LOD.

Table 7 shows the outcome of this experimentation. Using previously trained weights
considerably contributed to improving the metric results in comparison with the default
weight initialization. By default, weights in Keras are initialized so that the variance is
guaranteed to be similar across the network layers (Xavier initialization). Note that not
every dataset evenly contributed to improving the results; the weights from the Han Chuan
and Long Kou datasets seem to contribute better to separate hyperspectral samples.
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Table 7. Classification of our HSI dataset with weights learned from WHU-Hi datasets and default
Keras weights. The best results for each metric were highlighted in bold.

Previously Trained Weights Default Weights

Dataset OA Kappa (κ) f1 OA Kappa (κ) f1

Han Chuan 99.10 ± 0.07 99.75 ± 0.01 99.10 ± 0.07
98.78 ± 0.15 99.67 ± 0.05 98.78 ± 0.15Hong Hu 98.79 ± 0.13 99.68 ± 0.03 98.79 ± 0.12

Long Kou 99.09 ± 0.13 99.73 ± 0.07 99.09 ± 0.13

5. Discussion

Our study focused on evaluating the performance of a CNN for classifying grapevine
varieties using UAV-based hyperspectral imagery. This domain presents unique chal-
lenges such as noisy imagery and highly similar hyperspectral signatures among different
grapevine varieties. Selecting an appropriate CNN architecture is crucial to address these
challenges. Shallow networks might fail to capture the intricate patterns within hyperspec-
tral data, whereas deeper networks, while potentially more effective, are time-consuming
and computationally intensive. They must also balance between spatial and spectral feature
extraction, the latter being particularly crucial in vegetative materials. Previous studies
largely concentrated on satellite imagery applications for CNNs, with a limited number
of studies exploring data from UAVs [59]. UAV-based HSI tends to be noisier and more
variable compared to satellite imagery, thus presenting additional difficulties in achieving
high classification accuracy. Despite these challenges, our network achieved an accuracy
of over 98.7% for classifying grapevine varieties from a UAV-based HSI dataset. Other
comparable models showed a significant drop in performance when applied to this kind
of imagery, often achieving only around 81% accuracy [59]. Our network’s efficiency is
further underscored by its lower training time and fewer parameters (560 k), in contrast to
other models that involve several million parameters [64].

A critical component of our approach was the preprocessing of reflectance data. Hy-
perspectral images typically include numerous bands, many of which may be redundant
or irrelevant. Through feature reduction techniques, specifically factor analysis (FA), we
effectively reduced the number of bands from 270 to 40 features. This reduction signifi-
cantly decreased the model’s parameter count and response time while maintaining high
classification accuracy. However, some mislabelled samples were identified, particularly in
low-vegetation areas that were incorrectly labelled as grapevine varieties. Additionally,
misclassifications due to the proximity of samples to other surfaces presented challenges
when examined against false-color RGB imagery. Studies have highlighted the importance
of preprocessing and feature reduction in hyperspectral data classification. For instance, as
suggested by Alvarez-Vanhard et al. [10], preprocessing techniques significantly enhance
classification accuracy in agricultural applications. Similarly, Khezrabad et al. [18] empha-
size the benefits of feature extraction methods for hyperspectral imaging, which align with
our use of factor analysis for band reduction. Hruška et al. [25] discuss the practical applica-
tions of UAV-based HSI for vineyard phenotyping, underscoring its potential in real-world
scenarios. Our experiments demonstrated that pretraining the network on a different UAV
hyperspectral dataset before fine-tuning it on the target dataset improved classification met-
rics. This pre-training enabled the network to better distinguish hyperspectral signatures,
even when initially trained on different materials.

Our findings suggest that integrating spatial attention mechanisms and inception
blocks within the CNN architecture significantly improves the model’s ability to extract
relevant features, thereby enhancing its predictive power. This approach, combined with
meticulous preprocessing, addresses the complexities inherent in hyperspectral data. The
use of spatial attention mechanisms allows the network to focus on the most informative
parts of the image, while inception blocks enable the extraction of multiscale features, both
of which are crucial for handling the high-dimensional nature of hyperspectral data.
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Moreover, incorporating a band-narrowing procedure reduced both storage require-
ments and the network’s computational footprint. This is particularly important in practical
applications where computational resources and storage capacities may be limited. By
demonstrating that a network with fewer parameters can still achieve high accuracy, our
study provides a valuable contribution to precision viticulture.

6. Conclusions

The proposed CNN model utilizes cutting-edge techniques to effectively classify
grapevine varieties. Our experiments highlighted the efficacy of spatial attention layers in
improving classification results, and we conducted a thorough examination of inception
blocks to determine their suitability for hyperspectral imagery. Importantly, our network
demonstrated fast training times and a small footprint, achieving high overall accuracy
across both UAV and satellite hyperspectral imagery datasets, even with limited training
data. Additionally, pretraining the network with other UAV HSI datasets proved beneficial,
albeit at the expense of increased training time. This model shows promise for accurately
classifying a diverse range of grapevine varieties, potentially serving as a valuable tool for
the wine industry to develop region-specific authenticity verification systems.

Future research endeavours will focus on exploring the classification performance of
our proposed network at various phenological stages of grapevine growth. By collecting
hyperspectral imagery at different stages of the phenological cycle, such as bud break,
flowering, veraison and harvest, we aim to investigate how spectral signatures evolve
and influence the network’s ability to accurately classify grapevine varieties. This com-
prehensive analysis will not only enhance our understanding of phenological impacts
on classification outcomes but also contribute to the development of a more robust and
adaptable classification framework for viticulture applications. Other already identified
drawbacks, such as the time-consuming labelling stage, may greatly benefit from other
data such as the DEM collected by the UAV to avoid some labelling errors and speed up
this manual task.
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