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A B S T R A C T   

Thermal infrared (TIR) images acquired from Unmanned Aircraft Vehicles (UAV) are gaining scientific interest in 
a wide variety of fields. However, the reconstruction of three-dimensional (3D) point clouds utilizing consumer- 
grade TIR images presents multiple drawbacks as a consequence of low-resolution and induced aberrations. 
Consequently, these problems may lead photogrammetric techniques, such as Structure from Motion (SfM), to 
generate poor results. This work proposes the use of RGB point clouds estimated from SfM as the input for 
building thermal point clouds. For that purpose, RGB and thermal imagery are registered using the Enhanced 
Correlation Coefficient (ECC) algorithm after removing acquisition errors, thus allowing us to project TIR images 
into an RGB point cloud. Furthermore, we consider several methods to provide accurate thermal values for each 
3D point. First, the occlusion problem is solved through two different approaches, so that points that are not 
visible from a viewing angle do not erroneously receive values from foreground objects. Then, we propose a 
flexible method to aggregate multiple thermal values considering the dispersion from such aggregation to the 
image samples. Therefore, it minimizes error measurements. A naive classification algorithm is then applied to 
the thermal point clouds as a case study for evaluating the temperature of vegetation and ground points. As a 
result, our approach builds thermal point clouds with up to 798,69% more point density than results from other 
commercial solutions. Moreover, it minimizes the build time by using parallel computing for time-consuming 
tasks. Despite obtaining larger point clouds, we report up to 96,73% less processing time per 3D point.   

1. Introduction 

Infrared Radiation (IR) provides valuable information to detect and 
describe objects in a scene, while thermal cameras utilize passive sensors 
to measure the radiation in a small portion of the IR spectrum (Thermal 
InfraRed (TIR) band). Three spectral ranges are typically used for ther
mography: short-wave (0.9–1.7 μm), mid-wave (3–5 μm) and long-wave 
(8–14 μm) (Vollmer and Möllmann, 2017; Gade and Moeslund, 2014). 
Thermal remote sensing presents a wide range of applications, although 
they can differ significantly for the three conventional wavebands. For 
instance, thermography has been previously used for quality control and 
monitoring in industrial environments (Alfredo Osornio-Rios et al., 
2019; Vollmer and Möllmann, 2017), as well as for medical analysis 
(Lõrinczy, 2017), building inspection (Jarzabek-Rychard et al., 2020; 
Kylili et al., 2014), agriculture and animal applications (McManus et al., 
2016; Tsouros et al., 2019), geological monitoring (Grechi et al., 2021), 
fire detection (Gade and Moeslund, 2014), etc. 

Regarding the surveying platform, TIR imaging was originally 

focused on satellite and manned vehicles due to their military use. In the 
last years, inexpensive and lightweight thermal cameras have spread 
their use to scientific and civilian environments (Vollmer and Möllmann, 
2017; Sledz et al., 2018) and thus have found applications in other 
fields. However, the resolution of TIR images is low. For instance, 640 ×
480 and 640 × 512 pixels are frequent resolutions for consumer-grade 
products. Consequently, the maximum height is restricted when small 
spatial resolutions are required, e.g. below 10 cm (Vollmer and 
Möllmann, 2017). As a result, the use of Unmanned Aerial Vehicles 
(UAV) provides an alternative for satellite remote sensing when 
surveying small areas, as their flight altitude is more flexible and thus 
allows to provide information with higher resolution (Ribeiro-Gomes 
et al., 2017). Furthermore, UAVs are more economically feasible and 
easier to operate than other aerial vehicles (Tsouros et al., 2019). 

The acquisition of high-resolution images provides an opportunity to 
estimate three-dimensional (3D) models from the surveyed scene, such 
as point clouds or digital surface models (DSM). Data for 3D modeling 
can either be provided by laser sensors, such as LiDAR (Yandun Narvaez 
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et al., 2017), or derived from imagery processed by photogrammetry 
algorithms, for instance, Structure from Motion (SfM) (Jiang et al., 
2020) and Multi-View Stereo (MVS) (Furukawa and Hernández, 2015). 
Previous studies show the benefits of three-dimensional models for 
assessing and monitoring a scene in a wide variety of fields, even for 
thermal imagery. Classification algorithms for 3D points clouds are 
frequent in Precision Agriculture (PA); (Comba et al., 2018) detects 
vineyards and vine-rows from 3D multispectral point clouds, while 
(Jurado-Rodríguez et al., 2020b) is focused on the detection of vineyard 
trunks from RGB point clouds. The characterization and evaluation of 
natural environments have also been extensively studied (Jurado- 
Rodríguez et al., 2020a; Webster et al., 2018). Furthermore, 3D 
modeling is being introduced to other research areas (Grechi et al., 
2021). 

However, photogrammetry algorithms rely on image data for key- 
points detection. Therefore, estimating 3D point clouds from low- 
resolution thermal imagery is a challenging task. First, TIR images suf
fer from stronger noise in comparison with RGB images (Sledz et al., 
2018), as well as aberration-induced blurring causing the spreading of 
the object radiance. As opposed to ideal optical imaging, the radiation of 
an object field is observed by neighboring detector elements (Vollmer 
and Möllmann, 2017). In these conditions, the number of extracted tie 
points in TIR images is smaller, and thus the resulting 3D point clouds 
are much sparser and less accurate (Jarzabek-Rychard et al., 2020; 
Hoegner et al., 2016a; Ham and Golparvar-Fard, 2013a; Westfeld et al., 
2015), although the outcome seems to be more stable when further 
calibration is considered (Ribeiro-Gomes et al., 2017). On the other 
hand, the optimization of camera orientation parameters and reduction 
of alignment errors can be achieved through the use of Ground Control 
Points (GCP) (Sanz-Ablanedo et al., 2018). Nevertheless, identifying 
GCPs on TIR images represents a challenge in fields with non-uniform 
materials (Javadnejad et al., 2020). 

The fusion of multiple imagery resources is also recurrent in many 
thermography applications. Most works combine RGB point clouds with 
TIR imagery (Javadnejad et al., 2020; Jarzabek-Rychard et al., 2020; 
Grechi et al., 2021; Webster et al., 2018; Hou et al., 2021; Ham and 
Golparvar-Fard, 2013b), while multispectral imagery is seldom merged 
with previous data sources (Comba et al., 2019; Jurado-Rodríguez et al., 
2020a). The most frequent workflow reconstructs RGB and thermal 
points clouds separately and then aligns both of them through the 
optimization algorithm of Iterative Closest Point (ICP) (Webster et al., 
2018; Grechi et al., 2021; Ham and Golparvar-Fard, 2013b). Therefore, 
it is assumed that both point clouds are correctly estimated and present 
similar shapes. Few studies work in 2D space and project the results into 
3D point clouds (Javadnejad et al., 2020; Hou et al., 2021; Hoegner 
et al., 2016b). (Hou et al., 2021) generates sparse thermal point clouds 
based solely on feature points, while (Javadnejad et al., 2020) produces 
point clouds with higher density through the fusion of RGB and TIR 
images. (Hoegner et al., 2016b) also evaluates the registration of RGB 
and TIR images through edge detection and the projection to an RGB 
point cloud. However, previous studies rely on external software and do 
not represent automatic solutions. As a consequence, the proposed 
methodologies are rarely optimized. Furthermore, conventional 
methods for image registration, such as edge detection, are not appro
priate for blurred and noisy images. 

Registration of TIR data and Mobile Laser Scanning (MLS) is also 
frequent in the literature, either including RGB images (Hoegner et al., 
2018) or not (Zhu et al., 2021). These systems are geometrically cali
brated through the 3D boresight and lever-arm transformations 
(Hoegner et al., 2018; Javadnejad et al., 2020) to describe the relative 
differences between the laser scanner system and the camera coordinate 
system. In addition, (Hoegner et al., 2018) distributes several control 
points on the acquired environment to calibrate the imaging sensor 
system, while (Zhu et al., 2021) utilizes feature extraction for TIR im
ages and point clouds and tries to match pairs of key-points manually. 
Therefore, the described methodologies work under controlled 

environments and can be labeled as semi-automatic methods. 
Moreover, ICP based works present more accurate results on their 

color distribution as MVS is an optimization problem constrained by a 
photo-consistency function (Furukawa and Hernández, 2015). Never
theless, the inverse projection frequently ignores the occlusion problem, 
as occurs in (Javadnejad et al., 2020), where a 3D point can be projected 
into a viable pixel that, in fact, represents another object. In such a case, 
final colors are computed as an aggregation of feasible intensity values. 
(Jurado-Rodríguez et al., 2020a) manages the occlusion problem by 
estimating a triangle mesh from the k-nearest neighbors. Although it 
works on planar surfaces, canopy reconstruction is much more complex 
and constitutes a research field by itself. 

We propose an automatic methodology that overcomes the described 
drawbacks of reconstructing thermal point clouds. The complete work
flow is developed from scratch, enabling any further processing and 
optimization through hardware capabilities, e.g. using the Graphics 
Processing Unit (GPU). Firstly, a point cloud is reconstructed through 
SfM-MVS and high-resolution RGB imagery. Consequently, large and 
dense point clouds are used as the input of this approach. Then, coac
quired RGB and TIR images are registered. The projection of a 3D point 
cloud into image space is finally performed considering a viable 
geometrical description of the scene. Furthermore, we evaluate the use 
of multiple aggregation functions to minimize the distance from 
aggregated values (3D point cloud) to image samples. As a result, we 
acquire a dense thermal point cloud that preserves image details. In 
addition, we solely need to manage a unique point cloud and thus GCPs 
are marked only once over RGB images, where they are undoubtedly 
visible. 

Consequently, the main contribution of this work is the generation of 
large and dense thermal point clouds by mapping 3D points into 2D TIR 
images along with occlusion tests. Furthermore, we use the GPU hard
ware to solve time-consuming tasks in a reduced response time, out
performing currently available approaches for generating thermal point 
clouds. Hence, the presented method is a disruptive solution based on 
GPU computing for the generation of thermal 3D point clouds in order to 
help a better understanding of thermal distribution in real-world envi
ronments. The complete procedure of our mapping methodology is 
shown in Fig. 1. 

This paper is structured as follows. The data acquisition method is 
first described as an introduction to our technologies. Second, we 
describe the details of our solution to construct 3D environments with 
RGB and thermal information. Then, we present the study area and 
assess our implementation through dispersion measures and frequency 
tests to prove the preservation of 2D color information in Section 3. The 
performance and results of our method are also evaluated with respect to 
commercial solutions. The outcomes of the conducted tests as well as the 
conclusions of this work are summarised in Section 4. 

2. Materials and methods 

2.1. Data acquisition 

UAV imagery was acquired from a dual payload device stabilized by 
a gimbal (DJI Zenmuse XT2, Fig. 2). The RGB camera provides high- 
resolution images (CMOS sensor with 12 MP), whereas the thermal 
sensor captures images of lower resolution (Table 1). Regarding the 
sensor radiometric calibration, most metadata parameters are pre- 
calibrated by the manufacturer, while a few values can be configured 
through in-situ measurements to improve temperature estimations. 
Hence, the environmental temperature is measured and set as the 
background temperature to replace the default value. Flat Field 
Correction (FCC) is also performed before the flight to enhance image 
quality. Nevertheless, a detailed evaluation of the calibration accuracy is 
out of the scope of this work since our method is focused on the fusion of 
RGB and thermal data in 3D point clouds. The thermal sensor is 
configured to represent TIR results by means of a grayscale palette. 
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Visible light and thermal sensors are mounted on a quadcopter drone 
(DJI Matrice 210 model). Despite both types of images are acquired 
synchronously, there exists a delay between both frames. Furthermore, 
drone movement and distance of sensors generate a more complex 
description of such misalignment. As a reference, Fig. 3 depicts the area 
covered by two co-acquired RGB and thermal images. 

The UAV flight was performed in November 2019, whereas the 
mission was planned and executed using DroneDeploy (California, CA, 
USA) in a remote control device. The flight time was set to 19 min with a 
fixed altitude of 45 m (695 m above sea level) from take-off position. The 
planned UAV path defines a Boustrophedon path, i.e. back and forth 

parallel lines. The view direction was configured as nadir, with a frontal 
overlap of 90% and a side overlap of 85%. Overlap values were 
increased to avoid issues as a consequence of elevation changes. As a 
result, a total of 820 images were acquired, i.e. 410 images for each 
sensor. Moreover, the network of GCPs was established prior to the UAV 
flight by distributing them on the edges as well as inside the study area 
(Martínez-Carricondo et al., 2018). In addition, GCPs are sparsely placed 

Fig. 1. Summary of the procedure of this work. SfM-MVS and image registration stages build isolated results, and therefore, can be performed in parallel, whereas 
fusion of 3D and 2D information depends on previous stages. Thermal data is assigned to 3D points by considering the point cloud occlusion and selecting an 
appropriate aggregation operator to reduce the error from image samples to the outcome. The visualization of the resulting point cloud is improved by highlighting 
outlier values. Furthermore, we describe a naive segmentation algorithm to characterize vegetation through its temperature. 

Fig. 2. Unmanned aerial vehicle, DJI Matrice 210 RTK, and thermal camera, DJI Zenmuse XT2, in the area of study.  

Table 1 
Specifications of imaging sensors.   

Sensor 

Attributes RGB Thermal Infrared 

Resolution 4000 × 3000 pixels 640 × 512 pixels 
Focal Length 8 mm 19 mm 
File Format JPG RJPG 
FOV 57.12◦ × 42.44◦ 32◦ × 26◦

GSD 0,6885 cm/pixel 4,57242 cm/pixel  

Fig. 3. Coacquired images from the dual device. a) RGB image, b) ther
mal image. 
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on points with significant height variations, given the non-uniform plot 
elevation. 

2.2. Point cloud estimation 

RGB point clouds are acquired by combining high-resolution RGB 
images through methods that estimate three-dimensional structures 
from sequences of images. However, this procedure does not represent a 
challenge, as multiple libraries and software solutions provide imple
mentations for methods such as SfM-MVS (Structure from Motion/Multi- 
View Stereo) (Webster et al., 2018). This technique is based on finding 
features that can be recognized on multiple images, so that they can be 
aligned. The recognition of key-points allows estimating external and 
internal camera parameters, enabling the calibration of the whole set of 
images. Key-points also represent an initial approximation of the point 
cloud through a sparse reconstruction. Both sparse point cloud and 
estimated camera parameters can be further optimized through bundle 
adjustment and the marking of GCPs in a real-world coordinate system, 
e.g. UTM. 

A dense point cloud is finally calculated through MVS algorithm. The 
density and storage size of the result depends on the image resolution. 
Hence, this is an adjustable parameter that is later used by those 
methodologies dealing with the occlusion problem in the point cloud. 

Table 2 shows the nomenclature of the parameters used throughout 
this work, some of them calculated through the feature recognition 
process of SfM-MVS. Others are previously known from the device 
specifications (e.g. sensor width). Even though the resolution is variable 
during SfM-MVS procedure, these values are calculated from the initial 
size. 

RGB images are suitable for estimating 3D structures due to their 
high resolution and color space. However, reconstructing a point cloud 
from thermal images is not trivial as their resolution is low and they are 
frequently noisy (Sledz et al., 2018). The aforementioned problems 
harden the extraction of key-points due to the inconsistency of their 
color space. Consequently, point clouds calculated from these images 
may contain noticeable errors, e.g. empty areas that could not be 
reconstructed. In addition, the stage of bundle adjustment of SfM-MVS 
can not be optimized accurately through the marking of Ground Con
trol Points (GCP) due to an inadequate color consistency for human 
operators. As a result, a naive solution based on aligning both point 
clouds through an algorithm such as ICP can be hard to manage using 

erroneous TIR point clouds with low point density. 

2.3. Thermal image processing 

This section operates with thermal images to correct them and 
extract derived information. Results can be calculated once and stored to 
reduce response time for the following executions of our software 
solution. 

2.3.1. Geometric calibration 
The projection of estimated points on the image plane works under 

ideal images. However, radial distortion is observed when using lenses 
with small field of view. Such aberration can be corrected through the 
camera matrix, K, and both radial and tangential distortion coefficients, 
(k1,k2,p1,p2,k3). Such factors are not provided as image metadata, and 
therefore are determined as part of the bundle adjustment of SfM by 
considering the image data. 

The dominant value for radial distortion coefficients is k1. This value 
is smaller than zero for thermal images, i.e. they present a pincushion 
distortion where lines bow inwards. Consequently, correcting such 
distortion generates images with blank values as long as the original 
dimensions are preserved. Therefore the minimum area with non-null 
color information must be calculated to crop every image. As a result, 
corrected thermal images end up with lower resolution than expected. 
Fig. 4 compares three stages of the correction procedure. 

Corrected images are calculated through Eq. 1 (Mallon and Whelan, 
2004) by solving the problem of inverse distortion correction, where 
undistorted images are created from a distorted image (de Villiers et al., 
2008). Consequently, each undistorted pixel is guaranteed to be mapped 
with a distorted pixel. 

[ x, y, z ]⊺ =
[ x − cx

fx
,
y − cy

fy
, 1
]⊺

= K[ x, y, 1 ]⊺ (1)  

r2 = x2 + y2 (2)  

xu = x⋅(1 + k1r2 + k2r4 + k3r6)+ 2p1x⋅y
+p2

(
r2 + 2x2) (3)  

yu = y⋅
(
1 + k1r2 + k2r4 + k3r6)+ p1

(
r2 + 2y2)

+2p2x⋅y
(4) 

Note that the pair (xu, yu) describes a non-distorted point in the 
corrected image, while ideal images are generated in the opposite 
manner. We need to determine for each pixel, defined by integer co
ordinates, the distorted pixel to use. Eq. 5 defines the inverse procedure 
to determine xd,yd ∈ R. Consequently, an interpolation function such as 
the bilinear function is applied in this procedure. 

Table 2 
Parameters obtained both from RGB and thermal camera calibration, as a pre
processing stage for SfM algorithm, and from image metadata.  

Parameter Definition 

Image size (wimage,himage)  Original size of images. 
Principal point (cx,cy)  Intersection of principal axis and image plane. 
Focal length (fx, fy)  Distance in pixels from the center of projection and 

the image plane. 
Width and height of sensor 

(wsensor,hsensor)  
Size in millimeters of both dimensions. 

Omega, Phi, Kappa (ω,ϕ, κ)  Rotation between image coordinate system and 
world system. 

Camera position (tlocal)  Camera position in point cloud system. 
World offset (tworld)  Offset between local coordinate system and UTM 

system. 
Camera matrix (K) Calculated from previous parameters: 

⎛

⎝
fx 0 cx
0 fy cy
0 0 1

⎞

⎠

Rotation matrix (R) Composition of R(ω)⋅R(ϕ)⋅R(κ).  
Projection matrix (P) Distortion-free projection of a pinhole model: 

K⋅[R| − Rtlocal ].  
Radial distortion (k1,k2,k3)  Distortion mostly visible on straight lines. 
Tangential distortion (p1,p2)  Misalignment of device lens with respect to the 

image plane.  

Fig. 4. Comparison of a) free of distortion thermal image with blank values 
preserving the original size, b) distorted thermal image and c) free of distortion 
thermal image with reduced size. 
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[ xd, yd, 1 ]⊺ =
[

xfx + cx, yfy + cy, 1
]⊺

=

= K[ x, y, 1 ]⊺
(5)  

2.3.2. Temperature computation 
Thermal images show a normalized representation of temperature 

captured on the scene. Though, absolute values are not known from 
color data. However, automatic computation of temperature can be 
performed through radiometric file formats, e.g. RJPG. Thermal cam
eras record the radiation emitted from an object surface, either it comes 
from the object itself or surrounding objects. However, it is affected by 
several environmental parameters, such as the air humidity, the air 
temperature and the background temperature (beyond the object 
reflectivity and emissivity, as well as the distance between the surface 
and the camera) (DJI, 2018). Therefore, each manufacturer models the 
transmissivity of the atmosphere through a theoretical or empirical law, 
using some constant values embedded in the image metadata (Teza and 
Pesci, 2019). Consequently, we need to extract several parameters from 
the embedded data, including the emissivity, atmospheric temperature, 
reflected apparent temperature, infrared window temperature, infrared 
window transmission, relative humidity, Planck’s constants (PR1,PR2,PO,

PF , PB) and atmospheric transmission constants (α0, α1, β0, β1, X). 
Nevertheless, most of them are calibrated by the manufacturer. Hence, 
temperature T is given by Eq. 6: 

T =
PlanckB

ln
(

PlanckR1
PlanckR2(radiance+PlanckO)

+ PlanckF

) (6)  

where radiance is given by Planck’s Law for every pixel. We refer the 
reader to (Minkina and Dudzik, 2009; Teza and Pesci, 2019) for further 
details. 

Absolute temperature values for every image are calculated once and 
stored to be processed by our solution. Fig. 5 shows the thermal 
boundaries of an image. Temperature values have also been normalized 
and presented through a mapping function defined by a linear interpo
lation and the texture on the right of Fig. 5. 

2.4. RGB image processing 

Previous distortion concepts can also be applied in this step. RGB 
images present geometric distortions since they are captured by a wide- 
angle lens. However, their distortion model produces the barrel effect 
instead of the pincushion defect. In consequence, the dominant radial 
distortion k1 is greater than zero, although the image can be corrected by 
using Eqs. 1 and 5 as shown previously. Both tangential and radial co
efficients are extracted from the first stage of SfM-MVS as well. 

Fig. 6 compares an RGB image with barrel distortion, where lines are 
bowed outwards, and the corrected result. As opposed to the pincushion 

effect, reversing this distortion produces images of the same resolution, 
although the captured area is not completely preserved. 

2.5. RGB and thermal image registration 

The fusion of RGB point clouds with thermal data can be performed 
through image registration. This solution avoids errors derived from the 
estimation of thermal point clouds. Furthermore, our solution manages a 
single 3D point cloud where processing tasks are carried out (e.g. 
georeferencing through multiple GCPs). For this purpose, 3D RGB points 
need to be projected into the RGB image plane, where this fusion occurs. 
This transformation is defined as follows (Eq. 7, 8): 

[ x
′

, y
′

, z
′

]
⊺
= P[ x, y, z ]⊺ (7)  

[ x′′, y′′ ]⊺ =
1
z′ [ x

′

, y′

]
⊺ (8)  

provided that [ x, y, z ] is expressed in the local coordinate system where 
both the point cloud and the cameras are defined. Otherwise, if defined 
in a global coordinate system such as UTM: 

[ x, y, z ]⊺ =
[

xglobal, yglobal, zglobal
]⊺
− tworld (9)  

Consequently, each 3D point is associated with two values, x′′,y′′ ∈ R, for 
each image of the dataset. Note that tworld is defined as an arbitrary shift 
of real-world points to avoid working with large values. The same 
reasoning applies to local positions of cameras (tlocal). 

On the other hand, the registration of RGB and thermal imagery has 
been previously achieved with the Enhanced Correlation Coefficient 
(ECC) algorithm (López et al., 2021; Evangelidis and Psarakis, 2008) so 
that the misalignment of two images is expressed through a trans
formation matrix, Hi, of variable complexity. Hence, Hi is the result of an 
optimization problem whose objective function is provided by a corre
lation coefficient for both template and input image. In our solution, Hi 
is defined as a homography matrix of size 3x3, which is proved enough 
to describe perspective differences between images. 

The procedure for applying ECC to RGB and TIR images starts by 
cropping each RGB image. However, the homography matrix Hi also 
includes a rotation for some pairs of images due to capture delays and 
platform movement. Consequently, the area to be cropped is expressed 

as an approximate rectangle centered at 
(

wimage
2 ,

himage
2

)

that guarantees to 

cover TIR images under most of the valid rotations. Therefore, RGB 
images are defined as source images, while TIR images are transformed 
to align both of them. The computed homography matrix allows pro
jecting thermal images into cropped RGB images, whereas the inverse 
matrix enables the backward projection. 

In summary, Eqs. 7 and 8 allow to project 3D RGB points to RGB 
images, while Ci⋅Hi projects 2D RGB points into a TIR image plane, 
provided that Ci is a composite matrix (Eq. 10) that defines the inverse 
cropping transformation, so that RGB pixels are projected into thermal 
images. However, note that projected points may not be within the 

Fig. 5. TIR image coloured with a mapping function. Absolute values can be 
observed through the represented maximum and minimum values. 

Fig. 6. Comparison of a) distorted RGB image and b) RGB image 
without distortion. 
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rectangle defined by the size of undistorted TIR images. Nevertheless, 
the inverse homography matrix Hi leads to an ideal rectangle, and thus 
the ’point in polygon’ test is carried out by four Boolean operations 
instead of more complex solutions (Feito et al., 1995). 

Ci = Tcrop*Sratio*T− centerRGB =

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
wthermalu

2

0 1
hthermalu

2

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎣

rx 0 0

0 ry 0

0 0 1

⎤

⎥
⎥
⎦⋅

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −
wRGBu

2

0 1 −
hRGBu

2

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rx 0
1
2

(

− rxwRGBu + wthermalu

)

0 ry
1
2

(
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where (cropx, cropy) are the dimensions of the cropped area, (wthermal,

hthermal) are the dimensions of undistorted thermal images and u 
subscript refers to the index of an undistorted image. Fig. 7 shows the 
result of the registration methodology, where the warped quadrilateral 
shape is also represented. 

Composite matrices Ci are calculated once and stored in binary files 
since this process is time-consuming. Due to the complexity of the 
alignment methodology, there may exist pairs of images that can not be 
registered as intensity highly differs between both types of images. In 
such a case, the ECC algorithm fails to converge or the resulting quad
rilateral shape highly differs from an ideal rectangle. Both erroneous 
scenarios can be easily observed, although the second detection relies on 
a strict threshold based on minimum/maximum angles degrees enclosed 
by the rectangle shape. However, those 3D points visible on discarded 
images more than likely appear in multiple images as the drone flight 

mission is planned so that most areas are covered by five images at least. 
Table 3 shows the percentage of thermal images which can be matched 
to RGB images for our dataset as well as the number of 3D points that 
were not visible from any registered thermal image. Note that the field 
of view is wider for our RGB device, therefore edge points are also dis
carded as they are not visible from any thermal image. Consequently, it 
is observed that all the unregistered points are also labeled as points not 
visible from any viewpoint (edge points). For larger point clouds, the 
number of edge points grows unevenly with respect to the rest of the 
scenario. Hence, the percentage of unregistered and edge points 
decreases. 

2.6. Thermal image mapping 

Merging RGB point clouds and TIR data involves the previously 
described projections. First, we implement a naive approach without 
any consideration about occlusion or visibility. As a result, 3D points are 
considered to be visible from a viewpoint as long as they are mapped to 
2D points with valid thermal data. 

Each thermal image presents two layers, both for relative tempera
ture (original format) and absolute values (extracted in previous sec
tions). Eqs. (7)–(9) allow projecting each 3D point into the RGB image 
plane. Points are considered not visible from a viewpoint and thus dis
carded whether their projected coordinates present values smaller than 
zero or larger than the dimensions of RGB images. In addition, the TIR 
registration within RGB images imposes another discard condition due 
to its smaller observed area. 

From 2D coordinates (xthermal,ythermal ∈ R) within TIR images, we can 
sample values through a bilinear interpolation in which surrounding 
pixels to xthermal, ythermal also affect the outcome through weight factors 
given by their distance. The resulting values also contribute to an ag
gregation function that combines information from different TIR images 
for a 3D point, e.g. the arithmetic mean. 

The main challenge during this step is the search of candidate points 
for each image. Regular grids can manage such search whether the set of 
points is distributed uniformly along the scenario, which is not assumed 
in our solution. Hence, an adaptive data structure is implemented to 
speed up the search. The point cloud is managed with an octree opti
mized for searching neighbors within a radius (Behley et al., 2015). A 
radius search is selected over a box search since the previously described 
methods to correct geometric distortions also apply interpolation func
tions. Therefore, the color of image edge points is considered to be less 
reliable. As a consequence, this radius represents a new condition that 
may also discard edge points, although this restriction can be avoided 
using a large radius. This data structure organizes the 3D RGB points 
instead of the array of image viewpoints, otherwise, an efficient search 
would not be needed due to the relatively low number of images. Note 
that the search radius is more intuitive when defined at ground level, 
and therefore it is always expressed relative to the ground point (x,

Fig. 7. A result from the registration of RGB and thermal images. The thermal 
image is overlapped within the RGB image and displayed with transparency 
(α = 0.7). The bottom image presents the final quadrilateral shape. 

Table 3 
a) Percentage of pairs of RGB-thermal images that were successfully registered. 
b) Percentage of points which were not visible from any thermal image for two 
point clouds with different size. Edge points represent those points that are not 
visible even when the complete image dataset is successfully registered. A radius 
r of 80 m was utilized during the search of candidate points to avoid omitting 
visible values.  

a) Two-dimensional space 

Number of pairs Resolution Registration success 

410 640 × 512 pixels 89,7561%  

b) Three-dimensional space 

Number of points Unregistered Edge points 

19.161.076 18,8952% 18,8952% 
98.016.324 15,5823% 15,5823%  
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aabbcentery , z), where x and z depends on the local position of the image 
viewpoint and aabbcentery is the y coordinate for the center of the axis- 
aligned bounding box (AABB) of the environment. Fig. 8 renders this 
data structure as a set of spheres (optimized octree) and as a set of 
bounding boxes (the conventional representation of an octree). 

Fig. 9 shows a top view of the reconstructed thermal point cloud. 
Close-up images emphasize the preservation of details which are visible 
on thermal images, such as rocks or paths. 

2.7. Occlusion problem 

The previous approach presents a comprehensible methodology for 
reconstructing a thermal point cloud, although it is not geometrically 
accurate. The color of occluded points can not be estimated by consid
ering the data of foreground objects. Previous studies have used ray- 
casting along with voxelization to solve this problem (Vidas et al., 
2015). However, this solution lacks accuracy and flexibility as octrees 
are mainly constructed with top-down methodologies, i.e. the size of a 
voxel is determined by the subsequent subdivisions of the point cloud 
bounding box (AABB) and the octree level. 

Here we propose multiple solutions to produce a more color-realistic 
point cloud. Then, the outcomes are compared to visualize their fidelity 
with respect to our image data-set. 

2.7.1. Visibility test 
Images represent a discrete domain from where the SfM-MVS algo

rithm can estimate at least one 3D point from an RGB pixel. For each 
image we can build a depth buffer (or z-buffer) of the same size as the 
resolution used during the SfM estimation. Nevertheless, we can in
crease the size of the depth buffer whether we consider sub-pixel ap
proaches of SfM. This procedure saves the closest point to the current 
viewpoint if multiple 3D points are mapped to a pixel. Therefore, the 
depth (z) determines if a point is visible. Depth buffers can be repre
sented as a sparse matrix instead of a matrix of fixed size to reduce 
memory usage, mainly for high resolutions. This sparse matrix is 

implemented as a hash map that stores pairs of values; their key is given 
by the access index of a 2D point and the value is the nearest point for 
such position. The depth buffer can be rendered as shown in Fig. 10, 
where a circular pattern is visible as a result of the search algorithm. The 
workflow for determining visible points is presented in Algorithm 1. 

Algorithm 1. Visibility test to accurately map thermal images into an 
RGB point cloud.   

Input RGB point cloud: P 
Input RGB images: c 
Input RGB resolution during SfM-MVS procedure: (wSfM,hSfM)  
Input Search radius: R 
Output Array of normalized and absolute thermal values 

1: for Every image ci captured from the position pci do  
2: Create a new buffer of size (wSfM,hSfM) with dx,y = ∞ provided that 0⩽x < wSfM 

and 0⩽y < hSfM.  
3: Retrieve candidate points within the radius R through the point cloud octree 
4: for Every three-dimensional candidate point pj do  
5: Calculate 2D TIR point (x, y) (Eqs. 7, 8)  
6: if (x, y) in TIR polygon then  

(continued on next page) 

Fig. 8. Rendering of a) an octree whose nodes are spheres, optimized for 
searches within a radius and b) a basic octree whose nodes are boxes. 

Fig. 9. Top view of a thermal point cloud captured by a nadir camera. Absolute 
temperature values are normalized and mapped to the upper texture. The 
search radius was fixed to 30 m. 

Fig. 10. Depth buffer of a camera during a visibility test carried out with a 
radius of size a) 20 m, b) 30 m. 
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(continued ) 

7: if distance(pci , pj) < dx,y then  
8: Add point to depth buffer and update the minimum distance found at dx,y  

9: end if 
10: end if 
11: end for 
12: for Every point pj stored in depth buffer do  
13: Retrieve and accumulate the normalized and absolute thermal values from ci 

for pj  

14: end for 
15: end for 
16: Compute final values for each point of P as an arithmetic mean   

2.7.2. Occlusion test 
Occlusion tests can be ideally managed through a ray-casting 

implementation as long as the target structure is presented as a trian
gle mesh (Jurado-Rodríguez et al., 2020a). However, estimating the 
mesh from a point cloud is a challenging task. Multiple algorithms are 
found in the bibliography; some require the normal for each point, while 
others are robust enough to work without surface orientation, e.g. 
Advancing Front reconstruction (Cohen-Steiner and Da, 2004). 
Furthermore, surface reconstructions are commonly based on time- 
consuming algorithms that rely on multiple parameters non-consistent 
along different point clouds, e.g. a search radius. In addition, the out
comes are not accurate for the cumbersome problem of reconstructing 
vegetation models (Zhang et al., 2014; Gong et al., 2018). Fig. 11 shows 
the result of Advancing Front surface reconstruction for a subset of RGB 
points. Faces are oriented considering that the viewpoint is above the 
scene. Hence, faces are flipped if n̂⋅ ̂(v − p) > π

2, provided that n̂ is the 
surface normal, v is an image viewpoint and p is a 3D point over the 
triangle mesh surface. A schematic representation of our occlusion 
methodology is depicted in Fig. 12. 

However, points can be occluded by others if they have a volume. 
This assumption allows solving this problem through ray-casting, 
though solving the occlusion problem for millions of points is a time- 
consuming task. Some data structures can discard large parts of the 
scene with each advancing step, such as a Bounding Volume Hierarchy 
(BVH), a tree structure where each primitive of the scene is bounded by 
an AABB, while surrounding AABBs are merged up to the tree root. 
Regarding the tree quality, better cluster separations lower the trace 
time as they allow discarding larger parts of the scene, thus reducing the 
number of steps needed to traverse the scene. 

In this work, point volumes are modeled as spheres to provide an 
efficient alternative to viewpoint oriented boxes. Otherwise, the quality 
of the BVH worsens due to self-intersecting geometry (AABBs from a 
BVH are axis-aligned instead of object-oriented), whereas the intersec
tion test of an oriented bounding-box (OBB) with a ray is slightly more 

complex. The sphere radius depends on the relative height from a point 
to an image viewpoint (Fig. 12), and it is calculated as defined in Eq. 11. 

R =

wsensor ⋅height
fx ⋅wimage

2
=

hsensor ⋅height
fy ⋅himage

2
=

GSD
2

(11)  

with GSD being the Ground Sample Distance, i.e., the size of a pixel 
when target is at an altitude of height. R is defined in meters per pixel, 
although wsensor and fx are defined in millimeters. 

Note that spherical volumes vary for each 3D point and image 
viewpoint, and therefore BVH trees need to be built for every subset of 
candidate points. However, we implement their construction on GPU 
hardware to speed up the procedure through the methodology defined in 
(Meister and Bittner, 2018). This work proposes a spatial ordering of 
primitives using their Morton codes (30 bits that represent xyz co
ordinates) and merging nodes by searching efficiently the nearest 
neighbour (which also happens to be near within the ordered buffer). On 
the other hand, the ray-casting problem is also solved on GPU using the 
BVH data structure. For that purpose, we generate a ray for each 3D 
point. Occluded points receive a collision linked to a different volume, 
whereas visible points find themselves as the nearest volume to the 
viewpoint (Fig. 12). A schematic workflow for this methodology is 
presented in Algorithm 2. 

This algorithm generates point clouds where their thermal values are 
less likely to be calculated from as many images as the naive approach. 
Furthermore, we avoid contributions from images where points are not 
visible, although it also tends to discard more points as some pairs of 
images are not registered successfully. 

Algorithm 2. Occlusion test to determine temperature values of 
sphere-shaped RGB points with adaptive radius.   

Input RGB point cloud: P 
Input RGB images: c 
Input Search radius: R 
Output Array of normalized and absolute thermal values 

1: for Every image ci captured from the position pci do  
2: Retrieve candidate points within the radius R through the point cloud octree 
3: Build a new BVH with the array of candidate points 
4: Sort candidate points expressed as Morton codes and build BVH leaves 
5: Join leaf and intermediate nodes while root is not reached 
6: for Every three-dimensional candidate point pj do  
7: Throw a ray towards pj and find the first intersected volume 

(continued on next page) 
Fig. 11. Triangle mesh estimated for a subset of our point cloud through 
Advancing Front algorithm. Reconstruction of vegetation is clearly erroneous in 
comparison with the ground. 

Fig. 12. Representation of an occlusion test for two points expressed as 
spherical volumes. a) Point where the ray impacts first (p1), occluding the point 
p2, b). 
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(continued ) 

8: if Intersected volume = volumepj then  
9: Calculate 2D TIR point (x, y) (Eqs. 7, 8)  

10: if (x, y) in TIR polygon then  
11: Retrieve and accumulate the normalized and absolute thermal values 

from ci for pj  

12: end if 
13: end if 
14: end for 
15: end for 
16: Compute final values for each point of P as an arithmetic mean   

2.8. Visualization 

This section describes a method for improving the visualization of 
thermal data. (Javadnejad et al., 2020) proposes a linear interpolation 
between RGB and TIR data, where RGB colors are converted to grayscale 
and temperature values are mapped to an RGB value through a color- 
ramp function. The weight, w(t), is computed as the distance of each 
temperature sample, t, to the mean, tmean, so that w(t) = 1 omits RGB 
colors. Although it accentuates cold and hot regions (w(t)←1), inter
mediate values are also merged with grayscale colors. Therefore, the 
representation of non-anomalous temperature values distorts the color 
distribution of the RGB point cloud and does not help to identify 
anomalies. 

We detect outlier values through the conventional numeric outlier 
method. For that purpose, thermal values were sorted in GPU to retrieve 
first and third quartiles, Q1 and Q3, as well as the interquartile range 
(IQR ←Q3 − Q1). Values under Q1 − k(IQR) and above Q3 + k(IQR), 
where k⩾0, are considered to be anomalous temperature values and thus 
they take w(t)←1. The visualization of intermediate values is computed 
as proposed in (Javadnejad et al., 2020). However, RGB colors are not 
converted to grayscale nor we utilize a linear interpolation. Instead, we 
use a Hermite interpolation that emphasizes values of t close to tmin and 
tmax. 

Eq. 12 shows the procedure for computing the proposed enhanced 
visualization. Note that γ allows us to modify the brightness of RGB 
colors, where 0⩽γ⩽1. Fig. 13 depicts the use of γ to darken irrelevant 
regions. On the other hand, ζ(t) represents a color mapping function that 
is also parameterized by the temperature. In this work, ζ(t) is given by 
the texture depicted at the left part of Fig. 13. 
⎡
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2.9. Aggregation of image samples 

3D points are mapped to several images; hence, we have many 
thermal measurements for each point. However, the acquired TIR ra
diation changes in relation to the viewing angle, expressed through 
azimuth, ϕ, and zenith angle, δ, given that ϕ ∈ [0,360] and δ ∈ [0,180]. 
Any real surface emits radiation non uniformly in its hemisphere unless 

it is considered to be a Lambertian emitter (Vollmer and Möllmann, 
2017). Furthermore, objects emit more radiation when δ = 0, i.e., the 
viewing direction is normal to its surface. Fig. 14 depicts 19 TIR radia
tion samples acquired for the same 3D point with respect to the Lam
bertian behaviour, both of them scaled by a factor of π. 

Although the arithmetic mean has been previously assumed as the 
standard aggregation for any number of samples (Javadnejad et al., 
2020), here we propose a procedure with multiple aggregation functions 
that can be either used separately or combined. When combined, their 
outputs are compared to a set of inputs to select the aggregation that 
minimizes the outcome of a penalty function (Bustince et al., 2017b; 
Bustince et al., 2017a). Consequently, the penalty function determines 
the similarity of each aggregation output to a set of TIR radiation 
samples. 

The fusion of information by means of penalty functions has been 

Fig. 13. Visualization of the study area using multiple configurations. a) 
Visualization proposed by (Javadnejad et al., 2020), while b), c) and d) show 
our modified procedure. b) γ = 0.8,k = 0.8, c) γ = 0.8,k = 0.5, d) γ = .0.5,k =

0.5. 

Fig. 14. Representation of a point cloud with 19 TIR radiation samples 
observed from different viewpoints for the same surface point. Sampled emis
sion values are compared to a Lambertian radiator (semisphere). 
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gaining interest in scientific research. However, it has hardly been 
explored in the field of computer graphics (Paternain et al., 2012). 
Furthermore, the correct implementation of this procedure allows to 
omit penalty functions when needed and exchange the arithmetic mean 
for another suitable operator. Note that TIR radiation samples are ac
quired from different points of view; hence, these values are consistent 
by themselves. Therefore, a function that selects one value is also valid, 
e.g. maximum or minimum operators as well as any behaviour that es
tablishes a preference for a viewing angle. 

Briefly, a function is called an n-ary aggregation function f : [0, 1]n→ 
[0, 1] if it is monotone increasing and satisfies the boundary conditions 
(Eq. 13). 

∀i ∈ {1,…, n}, if xi⩽y⇒
⇒f (x1,…, xn)⩽f (x1,…, xi− 1, y, xi+1,…, xn)

f (xmin,…, xmin) = xmin
f (xmax,…, xmax) = xmax

(13)  

Furthermore, it is an averaging aggregation function if it is bounded by 
the minimum and maximum input (Eq. 14). 

min{x1,…, xn}⩽f (x1,…, xn)⩽max{x1,…, xn} (14)  

Hence, the local penalty function is expressed as the function P : R2→R 

that satisfies the conditions defined in Eq. 15, given that y is the 
aggregated value. Consequently, the penalty based function is summa
rized as 

∑n
i=1P(xi,y), where the objective is to retrieve the aggregation 

that minimizes the value of P,g(x)←argminyP(x,y). 

P(xi, y) = 0 ∀xi = y
P(xi, y) > 0 ∀xi ∕= y

P(xi, y)⩾P
(
xj, y
)

if |xi − y| >
⃒
⃒xj − y

⃒
⃒

(15)  

However, our environment simplifies these expressions as n = 1 neither 
we require the use of (r, g, b) tuples. Normalized and absolute TIR ra
diation are represented with one value. Therefore, we simply need to 
define a set of aggregation and penalty functions, like the operators 
which are following enumerated.  

i) Minimum: f(x) = argmini xi  
ii) Maximum: f(x) = argmini xi  

iii) Arithmetic mean: f (x) =

∑n
i=1

xi

n  

iv) Geometric mean: f(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏n
i=1xi

n
√

v) Harmonic mean: f (x) = n
(
∑n

i=1
1
xi

)− 1 

whereas penalty functions are less intricate as their objective is to 
measure the error between the inputs and the aggregated value, y. The 
following list presents three penalty functions (Paternain et al., 2012) 
here considered for the minimization problem. Note that we have 
omitted to include weighted aggregation operators, such as OWA 

(Ordered Weighted Averaging) (Zhou et al., 2010), or parameterized 
aggregations, for example, Bonferroni mean (Yager, 2009), as they 
imply more computational complexity. OWA operator requires sorting 
the samples, while parametric operators require adjusting variables to 
minimize the penalty function.  

i) P1(xi,y) = |xi − y|
ii) P2(xi,y) = (xi − y)2  

iii) P3(xi,y) = |xi − y|3 

Accordingly, the dissimilarity of new results and input samples is 
clearly reduced by minimizing an error function. We have measured the 
frequency of choosing each aggregation for different penalty functions. 
Table 4 shows the selection ratio of three proposed local penalty func
tions, P(xi, y), against five aggregation operators. As shown in Fig. 14, 
thermal values are not evenly distributed along a given range, and 
therefore the arithmetic mean is not always the preferred solution. 
However, maximum and minimum operators are seldom utilized; their 
highest frequency is observed for those procedures that discard occluded 
points and thus aggregate fewer values. 

From the results, we can observe that the arithmetic mean is the most 
used aggregation, although the geometric and harmonic mean are also 
widely utilized. maximum and minimum are rarely selected, but their use 
is significantly increased for occlusion-based methods, where the num
ber of samples is reduced. However, for optimization purposes, we could 
reduce the number of operators by discarding uncommon aggregations. 

2.10. Thermal characterization of vegetation 

Analyzing the temperature of object surfaces often implies seg
menting the environment, so that target structures can be further stud
ied. Our datasets characterize a natural environment whose main 
components are soil and trees and thus we only need to isolate and 
discard ground points. Regarding the classification procedure, we pro
pose a geometric approach based on the surface orientation of a point 
cloud. 

Consequently, normal vectors are first computed. The normal esti
mation is performed with different algorithms, so we can later compare 
their results and execution time. The first algorithm is implemented on 
GPU through a KNN (k-nearest neighbors) search that finds those sur
rounding points that contribute to the normal estimation. KNN search is 
optimized with an approach previously used while constructing a BVH 
(Meister and Bittner, 2018). Points are spatially ordered along a z-curve; 
first, they are expressed as Morton codes, i.e. 30 bits codes (3D), and 
then they are sorted with the Radix Sort algorithm. This solution has 
been previously explored on high-performance works (Connor and 
Kumar, 2010; Jakob and Guthe, 2021) due to its multiple benefits. First, 
points to be accessed for each index are reduced to 2r, where r is the 
search radius. Access time to memory is also reduced through spatial 
locality as 3D multidimensional arrays are transformed into sorted 1D 
arrays. Furthermore, the complete search methodology is highly 

Table 4 
Comparison of frequency of choosing an aggregation operator using three different penalty functions for each proposed mapping method. Frequency is normalized in 
[0,1], therefore the sum of a row is equal to 1. The first and second choice of each configuration are highlighted in bold.    

Aggregation functions 

Penalty Function Mapping algorithm Arithmetic mean Geometric mean Harmonic mean Maximum Minimum 

g1 : argminy
∑n

i=1|xi − y| Naive Mapping 0,64699 0,07563 0,23348 0,02530 0,01858 
Depth Buffer Mapping 0,65672 0,06017 0,21589 0,03815 0,02905  
Occlusion Mapping 0,67193 0,03362 0,17048 0,07004 0,05392 

g2 : argminy
∑n

i=1(xi − y)2  Naive Mapping 0,67787 0,15036 0,14783 0,01312 0,01080 
Depth Buffer Mapping 0,66193 0,13732 0,16330 0,02067 0,01676  
Occlusion Mapping 0,63223 0,10407 0,19052 0,03972 0,03344 

g3 : argminy
∑n

i=1|xi − y|3  Naive Mapping 0,57092 0,14996 0,25392 0,01412 0,01106 
Depth Buffer Mapping 0,56471 0,13513 0,26142 0,02171 0,01701  
Occlusion Mapping 0,57647 0,09821 0,25101 0,04057 0,03371  
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parallelizable, so we have developed it on GPU and thus our normal 
estimation is solved in a few minutes at most for large point clouds. 

Once neighbors are retrieved, normal vectors are estimated as an 
average vector from multiple cross products between those vectors that 
go from a neighbour to the main point. This basic solution is expected to 
calculate wrong normal vectors as it does not tolerate noisy 
neighbourhoods. 

The second solution maintains the core of our previous proposal, 
where a KNN search is performed on GPU. However, we implement an 
algorithm more robust against noise through a plane fitting methodol
ogy. Principal Component Analysis (PCA) allows retrieving the plane 
that better represents a subset of points (Nurunnabi et al., 2014; Sanchez 
et al., 2020) through eigenvector decomposition (see Fig. 16). As a 
result, the calculated normal vectors fit better the expected surface 
(Fig. 15). The complete algorithm is implemented on GPU as well. 

Other libraries are also integrated in our solution to compare their 
results and performance against our proposed algorithm. Both CPU and 
multi-core CPU normal estimations from Point Cloud Library (PCL) are 
integrated. Fig. 17 shows a comparison of the response time of four 
normal estimation algorithms. The noisy estimation provides a baseline 
time for a GPU implementation, whereas SVD implements an optimized 
approach also in GPU. As observed in Fig. 17, our solution scales better 
with larger point clouds, while it presents a similar response time to 
multi-core PCL implementation for small point clouds. Therefore, the 
proposed method is more convenient whether we consider the 
increasing size of point clouds. 

The dot product of the calculated normal vectors, n̂, and Y-axis al
lows to retrieve feasible ground points by defining a threshold, n̂thr. 
Consequently, the complexity of subsequent stages is also reduced. Our 
methodology is based on the principle of LiDAR returns, where the last 
impacts are more likely to represent soil points. As a result, the last 
intersection of each ray is labeled as ground and the canopy is filtered 
out. The classification of soil and vegetation is approached by assigning 
volumes to points, as proposed previously. These volumes are here 
approximated through spheres of radius R = GSD

2 (Eq. 11). However, 
there may be detection errors, as slightly higher elevation points may 
prevent the detection of surrounding ground points. We avoid most false 
negatives by defining a tolerance radius, given by k⋅GSD. k is ideally 
expressed as 1, i.e. k⋅GSD is equal to the diameter of spheres. 

The method is implemented in GPU so that each point is managed by 
a different thread. The dot product is first computed to determine the 
candidate points. Then, n rays are traced from pi +(0, y,0) to pi, provided 
that n is the number of candidate points and y allows to place the ray 
origin above the boundaries of the point cloud. Both stages are depicted 
in Fig. 18. Regarding the use of this procedure for different vegetation 
fields instead of olive groves, the proposed method is robust enough for 
detecting feasible ground points. Furthermore, the principle followed to 
distinguish soil points from the rest of the scenario works for most 
vegetation environments, as it relies on the detection of the last return of 
a set of traced rays. However, the method is parameterized through a 

normal vector threshold and a factor, k, to scale the sphere radius, 
allowing us to adapt the algorithm to different terrain slopes and point 
cloud densities. 

3. Results and discussion 

We have evaluated our solution with three scenes of the study area 
which is following described (depicted in Fig. 19). Furthermore, each 
scene presents two versions of different point density, depending on the 
resolution of RGB images during SfM-MVS. Consequently, our input RGB 
point clouds range from 98 million points to barely 300 thousand points. 
As reference results, we use point clouds generated by commercial 
software, e.g. Pix4D or Agisoft Metashape. The quality of the output is 
measured through three key factors: point density, algorithm perfor
mance and similarity of color distribution. We aim to prove the benefits 
of our solution in comparison with popular software when recon
structing three-dimensional thermal point clouds. 

Results from external software were computed using configurations 
that provided the highest level of detail, both for aligning photos and 
generating the dense point cloud. Other secondary options not labeled 
with their accuracy were tested to select the value that guaranteed better 
results. However, the stage of bundle adjustment was not optimized 
through the definition of GCPs, as they cannot be marked accurately on 
TIR images due to the radiance spreading phenomenon. Regarding the 
stochasticity of SfM-MVS, it is observed that both Pix4Dmapper and 
Agisoft Metashape software produce non-deterministic outcomes. 
Consequently, their performance is shown as an arithmetic mean of five 
results. 

All measurements were performed on a PC with Intel Core i7-7700 
3.6 GHz, 16 GB RAM, GTX 1070 GPU with 8 GB RAM (Pascal archi
tecture) and Windows 10 OS. The proposed methodology is imple
mented in C++ along with OpenGL (Open Graphics Library) for 
rendering. Therefore, parallel algorithms are developed in GLSL 
(OpenGL Shading Language) through general-purpose compute shaders. 
Dense RGB point clouds and estimated camera parameters are first 
computed from Pix4D software and used as the input of our solution. 

3.1. Study area 

The effectiveness of our proposed methodology was evaluated with 
UAV imagery captured from a plot located in Mancha Real, Spain, in the 
region of Jaén. The study area is depicted in Fig. 19 along with the 
network of GCPs, as well as the geographical demarcation of the region. 
The surveyed area covers a surface of about 17000 m2 of an olive grove, 
although reconstructed areas show a larger area due to the FOV of our 
sensors. GCPs utilized for the dense RGB point cloud are depicted within 
the plot. The terrain is characterized by an elevation ranging from 552 m 
to 572 m. Therefore, our algorithm is exposed to a complex environ
ment, where coacquired images do not present recurrent alignment 
matrices, partially as a result of non-uniform elevation of the area. 
Furthermore, some regions of the olive orchard are affected by the 
pathogen Xylella fastidiosa, whose symptoms can be revealed through 
thermal imagery (Zarco-Tejada et al., 2018). Although this study is not 
focused on the detection task, it proves the relevance of estimating 
properly a thermal point cloud. 

3.2. Thermal point cloud reconstruction and performance 

To evaluate the performance of our methodology, we built an RGB 
point cloud with SfM-MVS using the RGB images of our study area with 
their original resolution. Therefore, images are not downscaled and 
averaged. It is a time-consuming task but also guarantees that nearly 100 
million points are estimated. Consequently, this point cloud is the input 
of the described procedure, whereas the comparatives with external 
software are based solely on thermal images, as some works proposed 
previously. Furthermore, we evaluate our three solutions: naive (no 

Fig. 15. Schematic representation of normal estimation by detecting the plane 
that better represents a group of points. 

A. López et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 182 (2021) 78–95

89

occlusion is considered), depth-buffer (also called visibility test 
throughout this manuscript) and occlusion (geometrical approach on 
GPU). 

For our methods, we use two different search radius r: r1 = 20 m and 

r2 = 30 m, centered at y =
aabbminy +aabbmaxy

2 for every image viewpoint, 
provided that aabbmaxy and aabbminy are the y coordinate of both 
maximum and minimum points of the point cloud AABB. The visibility 
test is configured so that the size of a depth buffer is equal to the size of 
the original RGB images, i.e. 4000 × 3000 pixels. BVHs of the occlusion 
test were constructed using 30-bit Morton codes, ordered through the 
Radix Sort algorithm, along with a radius of 50 neighbors for collapsing 
the subtrees. The results are summarized in Table 5. Areas are measured 
by computing the convex hull that wraps a point cloud through Delau
nay triangulation (Shewchuk, 2002), minus the area of internal poly
gons. The reported response times are retrieved using the arithmetic 
mean as a fixed aggregation function. 

Number of points. From the results, we can see that our thermal 
point clouds have the largest number of points. Although the number of 
points by itself does not reflect the quality of the result, these points are 
expected to be more precise as they are reconstructed from images of 
higher resolution (RGB) supported by GCPs. On the other hand, point 
clouds reconstructed solely from thermal data pose several challenges in 

terms of point density and spatial covering due to the feature extraction 
phase (Hoegner et al., 2016a; Westfeld et al., 2015; Ham and Golparvar- 
Fard, 2013a), as reported both in Table 5 and Fig. 22. We lose nearly 16 
million points on the naive approach, which are not visible in any 
thermal image, though the increase of the number of points for r2 with 
respect to Agisoft Metashape and Pix4Dmapper results are 358,64% and 
746,09% respectively. Occlusion-based approaches build point clouds of 
lesser size as some points are considered to be occluded when consid
ering a radius equivalent to GSD, although they greatly improve the 
result of external software. Note that using the radius r2 barely enhances 
the size retrieved for r1, while the response time has significantly 
increased. Therefore, r1 is preferable to r2. 

Area and point density. Our algorithms cover the plot more uni
formly than the compared methods. Agisoft Metashape fails at some 
boundary regions, while Pix4Dmapper generates areas indeed very 
similar to our methods but also presents gaps (see Fig. 22). Additionally, 
the larger number of points provides an advantage when computing the 
point density of our solutions. Consequently, the highest point density, 
given by the naive approach, increases the density by 275,95% and 
798,69% from Agisoft Metashape and Pix4Dmapper respectively. As a 
reference, Webster et al. (2018) manages thermal point clouds of density 
776 points/m2, while (Javadnejad et al., 2020) works with thermal 

Fig. 16. Comparison of normal estimation results for a point cloud of reduced size. Normal vectors are up-scaled, therefore they are not normalized. Color cor
responds to the vector (x, z, y) of each normal. Our method and PCL produces similar outcomes, while ours is optimized for dense point clouds. 

Fig. 17. Response time in seconds for normal estimation algorithms. Both PCL implementations belong to an external library. Results are calculated as an arithmetic 
mean of five response time samples for each algorithm. 
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datasets of 270 points/m2 (0,36 ha and 95 images), 336 points/m2 (2,38 
ha and 101 images) and 5.429 points/m2 (0,35 ha and 165 images). As 
observed, point density can be improved by increasing the number of 
coacquired images. 

Absolute and normalized response time. The naive approach is 
the fastest mapping algorithm, whereas occlusion-based methods are 
also quite competitive, despite the fact that Pix4Dmapper and Agisoft 
Metashape methods benefit from the use of CUDA-compatible GPUs. As 
previously described, the naive and depth buffer mapping algorithms 
are developed as sequential approaches, while occlusion mapping uti
lizes GPU for solving the occlusion problem. The naive approach offers a 
minor improvement for the overall response time in comparison with 
Agisoft Metashape, while normalized response time outperforms com
mercial software (78,39% and 96,73% less processing time per point 
with respect to Agisoft Metashape and Pix4Dmapper, respectively). 
Results of occlusion mapping for r1 are also remarkable as it builds 
different BVHs for every image, each one integrating up to 6 million 
points (r2 peaks on 14,5 million points). 

3.3. Aggregation of thermal data 

The proposed methodologies were evaluated in order to prove their 
accuracy when assigning thermal values to 3D points. However, this 
chapter is significant whether we assume separate thermal values must 
be aggregated, despite the fact that they are acquired from different 
viewing angles. As proposed previously, aggregation functions may be 
replaced by operators which select the most appropriate value, e.g. 
assigning priorities based on the viewing angle. 

The improvement of applying penalty functions is assessed by 
measuring the deviation of aggregated values from the observed values 
in the dataset. For that purpose, we compute the deviation of our ther
mal point cloud through the Root Mean-Square Deviation (RMSE), Mean 
Absolute Error (MAE) and standard deviation. However, penalty func
tions are applied as local optimizers, where the result of an aggregation 
is chosen as the value that minimizes a distance function (given by the 
penalty function). This suggests that global measurements are not 
appropriate for this problem. Average RMSE and MAE (Eqs. 16, 17) are 
two alternative criteria mainly adopted for unbalanced sets of few items. 

Fig. 18. Classification of ground points with k = 1 and a normal threshold of 0,7. a) First step of our methodology; candidate points are displayed as green points. 
a.1) Valid candidate point (α⩽β), a.2) Point discarded for further processing (α > β). The angles that both normal and boundary vectors form with respect to the Y- 
axis are defined as α and β respectively. b) Evaluation of ray-casting for each candidate point. Note that less points are rendered with green color at this stage. 

Fig. 19. An overview of the study area. a) Location of the surveyed area in the region of Jaén. b) Study area as a portion of an olive grove. Coordinates are given in 
WGS84 (EPSG:4326). 
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However, it allows quantifying the quality of the adjusted thermal data 
in terms of distance to image samples. 

RMSEavg =

∑p

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑si

j=1
(Sj − Ai)

2

si

√

p
(16)  

MAEavg =

∑p

i=1

∑si

j=1
|Sj − Ai|

si

p
(17)  

where si is the number of samples (Sj) from where Ai was calculated. 
Nevertheless, global RMSE and MAE are also reported in Table 6. 
Equations of RMSE and MAE are adapted to our set of points as follows 
(Eqs. 18, 19): 

RMSE =
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∑si

j=1

(
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√
√
√
√
√
√

(18)  

MAE =

∑p

i=1

∑si

j=1

⃒
⃒Sj − Ai

⃒
⃒

∑p

i=1
si

(19)  

The average standard deviation of samples for each 3D point is also 
calculated as expressed in Eq. 20, provided that it does not consider the 
aggregated value, i.e. it does not vary for different penalty functions. 

σavg =

∑p

i=1

∑si

j=1

⃒
⃒
⃒Sj −

{
Si0 ,…,Sisi − 1

}⃒
⃒
⃒

si

p
(20) 

By the definitions of penalty functions P1 and P2 (see Table 6), we can 
observe that averaged RMSE and MAE are biased towards both func
tions. Nevertheless, penalty functions were included to minimize error 
measurements. Indeed, the bias exists and shows that penalty functions 
reduce the distance from the aggregated value to a set of image samples. 

Moreover, methods which take into account the occlusion are ex
pected to yield better results for averaged measures, as the number of 
samples for each 3D point decreases. However, global RMSE and MAE 
worsen the results of our penalty-based methods since the minimization 
was applied for si, instead of the overall number of samples, 

∑p
i=1si. 

Nevertheless, aggregated thermal data must be optimized for each point. 
In that sense, the best value for averaged RMSE is achieved by Occlu
sion-P2, whereas Occlusion-P1 lowers the dispersion measured by the 
averaged MAE. In any case, the penalty-based methodologies improves 
the results of the first aggregation row, i.e. approaches with the arith
metic mean as a single aggregation. Penalty function P1 minimizes the 
absolute error (MAEavg), while penalty functions P2 and P3 penalize 
higher variations and thus minimizes RMSEavg. 

Results of aggregating thermal data can also be assessed by 
computing the distance between histograms of 2D and 3D points. 
Despite the significant dispersion of image samples, we evaluate if 
penalty functions produces variations on distance measures. For that 
purpose, we consider three conventional criteria to compare histograms, 
such as Pearson Correlation Coefficient (Eq. 21), Hellinger distance (Eq. 

Table 5 
Performance comparison of the proposed methods. The reported values are 
averaged over five different executions. r1 and r2 correspond to a search radius 
of 20 m and 30 m respectively. The best results for each measure are highlighted 
in bold. Mapped images shows the number of thermal images that were suc
cessfully mapped into the point cloud. For our method, it shows the number of 
registered RGB-thermal pairs. For commercial software, images are excluded 
whether their parameters cannot be estimated or no features are detected.   

Algorithm 

Attributes Naive 
Mapping (r1)  

Depth Buffer 
Mapping (r1)  

Occlusion 
Mapping (r1)  

Pix4Dmapper 

Number of 
points 

82.743.078 
points 

79.511.469 
points 

74.181.776 
points 

9.782.277 
points 

Area 1,9973 ha 1,9973 ha 1,9973 ha 1,9942 ha 
Point 

density 
4.143 

points/m2 
3.981 points/ 

m2 
3.714 points/ 

m2 
461 points/ 

m2 

Response 
time 

3 m 36,54s 7 m 12,18s 4 m 27,83s 13 m 4,4s 

Response 
time per 
point 

2,617 μs 5,435 μs 3,61 μs 80,185 μs 

Mapped 
images 

368 of 410 368 of 410 368 of 410 371 of 410  

Attributes Naive 
Mapping (r2)  

Depth Buffer 
Mapping (r2)  

Occlusion 
Mapping (r2)  

Agisoft 
Metashape 

Number of 
points 

82.767.436 
points 

79.511.469 
points 

74.213.254 
points 

18.045.885 
points 

Area 1,9991 ha 1,9991 ha 1,9991 ha 1,7202 ha 
Point 

density 
4.140 points/ 

m2 
3.981 points/ 

m2 
3.712 points/ 

m2 
1.102 points/ 

m2 

Response 
time 

7 m 31,01s 12 m 4,38s 9 m 24,92s 3 m 48,31s 

Response 
time per 
point 

5,449 μs 5,435 μs 7,61 μs 12,113 μs 

Mapped 
images 

368 of 410 368 of 410 368 of 410 326 of 410  

Table 6 
Measurement of distance from aggregated thermal data, stored at (x,y,z), to 2D thermal samples visible from such point. Blocked samples are omitted by occlusion 
methods. Errors are computed using intensity values that range from 0 to 1.    

Measure 

Penalty function Mapping algorithm Average σ  Average RMSE RMSE Average MAE MAE 

No penalty Naive 0,052 0,054 0,052 0,045 0,024 
Visibility 0,049 0,050 0,055 0,042 0,027 
Occlusion 0,039 0,042 0,054 0,042 0,054  

P1 : |d(xi, y)| Naive 0,052 0,054 0,053 0,044 0,024 
Visibility 0,049 0,051 0,055 0,041 0,027 
Occlusion 0,039 0,042 0,055 0,035 0,034  

P2 : d(xi, y)2  Naive 0,052 0,053 0,052 0,044 0,024 
Visibility 0,049 0,050 0,054 0,042 0,027 
Occlusion 0,039 0,041 0,053 0,036 0,035  

P3 : |d(xi, y)|3  Naive 0,052 0,054 0.052 0,045 0,024 
Visibility 0,049 0,050 0,054 0,043 0,027 
Occlusion 0,039 0,041 0.053 0,037 0,035  
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22) and Intersection distance (Eq. 23) (Cha, 2007). We will refer to them 
as dpearson, dhellinger and dintersection for sake of simplicity. dpearson coefficient 
ranges from − 1 to 1, with 1 being a perfect correlation. Zero implies 
there exist no linear correlation and − 1 indicates a perfect negative 
correlation. On the other hand, dhellinger measures the similarity of two 
probability functions, where 1 implies that both distributions are 
orthogonal. The expression of Eq. 22 is simplified if histograms h1 and h2 
are defined as density functions in [0, 1] (hnorm1i

, hnorm2i
). Finally, the 

intersection, dintersection, is another widely used form of similarity for 
probability distributions. It returns 1 when hnorm1i 

and hnorm2i 
are 

completely overlapped. 

d
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where n is the number of bins of the histograms h1 and h2, both of the 
same size. 

Fig. 20 shows the template histogram for the naive approach as well 
as the histograms calculated from two mapping procedures (without 

penalty function and using P3). The rest of approaches present minor 
changes with respect to this figure and thus are omitted. Therefore, these 
slight variations are detailed through the aforementioned similarity 
measures in Fig. 20. It must be noted that dhellinger is transformed into 
1 − dhellinger, so that the three measures can be rendered in the same 
range. According to the reported results, occlusion-based methods are 
considered to be more similar to their baseline histogram, specially for 
the occlusion test. Furthermore, the penalty function P1, which com
putes the dispersion as |xi − y|, improves the baseline result for every 
approach. 

3.4. Analysis of thermal point cloud 

We have retrieved the temperature for ground and vegetation points 
once they are recognized. Fig. 21 represents the values of each class from 

Fig. 20. Intensity distribution for image samples considered while building the thermal point cloud, as well as the distributions recovered after applying two 
mapping method (naive (no penalty) and naive (penalty-based, P3)). The density functions of other approaches are omitted as they present similar results by visual 
inspection. Finally, the similarity measurements between histograms are reported for each configuration, where minor changes in the distribution are accentuated. 
For sake of simplicity, Hellinger distance is expressed as 1 − d, so that the three measures can be rendered through the same chart. Hence, the value 1 implies that 
both histograms are equal (h1i = h2i , ∀i ∈ [0, n)), while 0 indicates complete dissimilarity (h1i = 1 − h2i , ∀i ∈ [0, n)). 

Fig. 21. Frequency function of thermal radiation for three-dimensional ground 
and vegetation points. 
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a point cloud of nearly 100 million of points. Accumulated values are 
presented as a density function based on the point cloud size. Although 
Fig. 9 shows that vegetation presents overall less emission of thermal 
radiation, both temperature data-sets are far from being disjoint. It is 
worth noting that vegetation class also includes dry weeds, which were 
classified as anomalous hot regions. On the other hand, ground points 
also cover regions shadowed by trees. However, the local maxima of 
both thermal distributions clearly yield a relevant value for our two 
categories. Most thermal values range from 12 ◦C to 23 ◦C; anomalous 
hot regions are detected in vegetation and metal surfaces, whereas cold 
regions are present at isolated tree and ground points. 

3.5. Visualization of the point cloud 

To provide better insight into the reconstructed surface, we have 
rendered the three-dimensional point cloud provided by our solution, as 
well as the outcome of commercial software. Fig. 22 depicts three re
sults, where the first point cloud is computed through the naive 
approach by averaging image samples. Agisoft Metashape and Pix4D
mapper results are obtained while measuring their response time. It is 
worth noting that Pix4Dmapper utilizes a different grayscale distribu
tion, as the software is capable of extracting absolute thermal values 
from the image dataset. Therefore, such values are normalized consid
ering tmin and tmax. 

As shown in Fig. 22, the result of Pix4Dmapper presents empty re
gions which correspond to images that were not aligned since relevant 
key-points were not found. Furthermore, canopies are poorly estimated 
as they seem much noisier than in the RGB reconstruction, which is 
known to be correct. Accordingly, trees present higher elevation than in 
our solution, computed through the RGB point cloud. 

Regarding the result of Agisoft Metashape, it presents a wide number 
of relevant errors. First, canopies are badly estimated, to the extent that 
they are represented as planar surfaces. Moreover, a significant part of 

the study area is placed several meters below the rest of the environ
ment. The incorrect reconstruction also leads to noticeable outlier points 
within the point cloud, although they could be easily filtered out in most 
cases. Finally, sparsity is also visible for both point clouds, although it is 
more significant for the Pix4Dmapper result, as reported in Table 3. 

Finally, we aim to show the preservation of details acquired in 
thermal images through Fig. 23. Correction of distortion, as well as ac
curate projection and aggregation methods, allow us to build a thermal 
point cloud whose 3D structure is given by an RGB point cloud, whereas 
no blurring or distortion effect is present. 

4. Conclusions and future work 

In this work, we described a flexible and automatic algorithm for 
building dense thermal point clouds. The method receives a dense RGB 
point cloud as well as a set of RGB and thermal images as input. Coac
quired images are then registered so that thermal images can be pro
jected into the RGB point cloud. We also managed to extract 
temperature values using image metadata and explored the problem of 
occlusion with two algorithms oriented as 2D and 3D approaches. 
Hence, we avoid aggregating thermal data from foreground points to 
background objects. In addition, these methods outperformed com
mercial software in most of the measured features. The naive CPU 
approach presented the best overall response time, while the normalized 
response time was much more competitive for the three methods. 
Furthermore, the methodology was developed as an accelerated 
approach to benefit from hardware capabilities. Accordingly, the normal 
estimation, as well as the most time-consuming algorithms, were 
developed using GPU. As a result, the reported processing time per 3D 
point decreased by 78,39% with respect to Agisoft Metashape for 
building thermal point clouds, though we handle a larger number of 
points. 

In addition, we explored a new algorithm for visualizing thermal 

Fig. 22. a) Original RGB point cloud, retrieved with the original resolution, b) thermal point cloud computed using the naive approach, c, d) erroneous Agisoft and 
Pix4D results, respectively, where their errors are also highlighted. 
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points. With it, anomalies were clearly visible. Values close to the outlier 
boundary were highlighted, whereas intermediate values were mainly 
represented as RGB points. Although the main objective of this work was 
to estimate a thermal point cloud, we also provided a methodology to 
classify and remove ground points, thus focusing on points that are 
known to belong to vegetation for our study area. 

Moreover, we proposed an innovative solution to aggregate multiple 
values in the remote sensing field. As an alternative for the arithmetic 
mean, we utilized multiple aggregation operators and each point could 
select the operator that minimized an error measure. However, the 
framework was developed so that this procedure could be switched to a 
single-aggregation approach. Furthermore, we depicted the thermal 
emission of a point and discussed whether the use of aggregation op
erators was needed. Finally, we utilized dispersion and histogram dis
tance measures to assess the impact of applying penalty functions. The 
conducted tests showed that penalty functions clearly reduced the 
measured error and improved the similarity between the baseline and 
estimated histogram. However, penalty functions are conceived to 
minimize a specific error measure and thus any of the described penalty 
functions are suitable to reduce the distance to TIR radiation samples. 

The described methodology is appropriate when SfM-MVS fails due 
to a lack of key-points, as occurred in our dataset. The density of the 
estimated point clouds also suggests that this solution would be appro
priate for applications where sparsity is a significant drawback. Due to 
its software capabilities, it is also recommended to minimize the 
response time as well as for extracting reliable thermal data. 

In future work, we would like to conduct a deeper study of the in-situ 
radiometric calibration, thus allowing us to develop a reliable multi- 
temporal system based on reconstructed thermal point clouds. Addi
tionally, the registration of RGB and thermal images can be improved to 
increase the point density of the result. We could also provide even more 
competitive solutions by developing the complete workflow in GPU. 
Finally, we aim to carry out further studies about the occlusion problem 
by comparing several parallel-computing frameworks, and even take 
advantage of rendering procedures (for instance, the depth buffer step of 
a rendering pipeline). Regarding the applications of thermal data, we 
would also like to apply the generated results to control a crop, e.g. by 
monitoring the presence of pathogens and comparing the detection ca
pabilities with respect to thermal point clouds of lower quality and point 
density. 

The full source code is available at https://github.com/AlfonsoLRz/ 
RGBThermalFusion. 
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Ribeiro-Gomes, K., Hernández-López, D., Ortega, J.F., Ballesteros, R., Poblete, T., 
Moreno, M.A., 2017. Uncooled thermal camera calibration and optimization of the 

photogrammetry process for uav applications in agriculture. Sensors 17. https://doi. 
org/10.3390/s17102173. 

Sanchez, J., Denis, F., Coeurjolly, D., Dupont, F., Trassoudaine, L., Checchin, P., 2020. 
Robust normal vector estimation in 3d point clouds through iterative principal 
component analysis. ISPRS J. Photogramm. Remote Sens. 163, 18–35. https://doi. 
org/10.1016/j.isprsjprs.2020.02.018. 

Sanz-Ablanedo, E., Chandler, J.H., Rodríguez-Pérez, J.R., Ordóñez, C., 2018. Accuracy of 
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