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Thermal infrared (TIR) images acquired from Unmanned Aircraft Vehicles (UAV) are gaining scientific interest in
a wide variety of fields. However, the reconstruction of three-dimensional (3D) point clouds utilizing consumer-
grade TIR images presents multiple drawbacks as a consequence of low-resolution and induced aberrations.
Consequently, these problems may lead photogrammetric techniques, such as Structure from Motion (SfM), to
generate poor results. This work proposes the use of RGB point clouds estimated from SfM as the input for
building thermal point clouds. For that purpose, RGB and thermal imagery are registered using the Enhanced
Correlation Coefficient (ECC) algorithm after removing acquisition errors, thus allowing us to project TIR images
into an RGB point cloud. Furthermore, we consider several methods to provide accurate thermal values for each
3D point. First, the occlusion problem is solved through two different approaches, so that points that are not
visible from a viewing angle do not erroneously receive values from foreground objects. Then, we propose a
flexible method to aggregate multiple thermal values considering the dispersion from such aggregation to the
image samples. Therefore, it minimizes error measurements. A naive classification algorithm is then applied to
the thermal point clouds as a case study for evaluating the temperature of vegetation and ground points. As a
result, our approach builds thermal point clouds with up to 798,69% more point density than results from other
commercial solutions. Moreover, it minimizes the build time by using parallel computing for time-consuming

tasks. Despite obtaining larger point clouds, we report up to 96,73% less processing time per 3D point.

1. Introduction

Infrared Radiation (IR) provides valuable information to detect and
describe objects in a scene, while thermal cameras utilize passive sensors
to measure the radiation in a small portion of the IR spectrum (Thermal
InfraRed (TIR) band). Three spectral ranges are typically used for ther-
mography: short-wave (0.9-1.7 pm), mid-wave (3-5 pm) and long-wave
(8-14 pm) (Vollmer and Mollmann, 2017; Gade and Moeslund, 2014).
Thermal remote sensing presents a wide range of applications, although
they can differ significantly for the three conventional wavebands. For
instance, thermography has been previously used for quality control and
monitoring in industrial environments (Alfredo Osornio-Rios et al.,
2019; Vollmer and Mollmann, 2017), as well as for medical analysis
(Lorinczy, 2017), building inspection (Jarzabek-Rychard et al., 2020;
Kylili et al., 2014), agriculture and animal applications (McManus et al.,
2016; Tsouros et al., 2019), geological monitoring (Grechi et al., 2021),
fire detection (Gade and Moeslund, 2014), etc.

Regarding the surveying platform, TIR imaging was originally
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focused on satellite and manned vehicles due to their military use. In the
last years, inexpensive and lightweight thermal cameras have spread
their use to scientific and civilian environments (Vollmer and Mollmann,
2017; Sledz et al., 2018) and thus have found applications in other
fields. However, the resolution of TIR images is low. For instance, 640 x
480 and 640 x 512 pixels are frequent resolutions for consumer-grade
products. Consequently, the maximum height is restricted when small
spatial resolutions are required, e.g. below 10 cm (Vollmer and
Mollmann, 2017). As a result, the use of Unmanned Aerial Vehicles
(UAV) provides an alternative for satellite remote sensing when
surveying small areas, as their flight altitude is more flexible and thus
allows to provide information with higher resolution (Ribeiro-Gomes
et al., 2017). Furthermore, UAVs are more economically feasible and
easier to operate than other aerial vehicles (Tsouros et al., 2019).

The acquisition of high-resolution images provides an opportunity to
estimate three-dimensional (3D) models from the surveyed scene, such
as point clouds or digital surface models (DSM). Data for 3D modeling
can either be provided by laser sensors, such as LiDAR (Yandun Narvaez
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et al., 2017), or derived from imagery processed by photogrammetry
algorithms, for instance, Structure from Motion (SfM) (Jiang et al.,
2020) and Multi-View Stereo (MVS) (Furukawa and Hernandez, 2015).
Previous studies show the benefits of three-dimensional models for
assessing and monitoring a scene in a wide variety of fields, even for
thermal imagery. Classification algorithms for 3D points clouds are
frequent in Precision Agriculture (PA); (Comba et al., 2018) detects
vineyards and vine-rows from 3D multispectral point clouds, while
(Jurado-Rodriguez et al., 2020b) is focused on the detection of vineyard
trunks from RGB point clouds. The characterization and evaluation of
natural environments have also been extensively studied (Jurado-
Rodriguez et al., 2020a; Webster et al., 2018). Furthermore, 3D
modeling is being introduced to other research areas (Grechi et al.,
2021).

However, photogrammetry algorithms rely on image data for key-
points detection. Therefore, estimating 3D point clouds from low-
resolution thermal imagery is a challenging task. First, TIR images suf-
fer from stronger noise in comparison with RGB images (Sledz et al.,
2018), as well as aberration-induced blurring causing the spreading of
the object radiance. As opposed to ideal optical imaging, the radiation of
an object field is observed by neighboring detector elements (Vollmer
and Mollmann, 2017). In these conditions, the number of extracted tie
points in TIR images is smaller, and thus the resulting 3D point clouds
are much sparser and less accurate (Jarzabek-Rychard et al., 2020;
Hoegner et al., 2016a; Ham and Golparvar-Fard, 2013a; Westfeld et al.,
2015), although the outcome seems to be more stable when further
calibration is considered (Ribeiro-Gomes et al., 2017). On the other
hand, the optimization of camera orientation parameters and reduction
of alignment errors can be achieved through the use of Ground Control
Points (GCP) (Sanz-Ablanedo et al., 2018). Nevertheless, identifying
GCPs on TIR images represents a challenge in fields with non-uniform
materials (Javadnejad et al., 2020).

The fusion of multiple imagery resources is also recurrent in many
thermography applications. Most works combine RGB point clouds with
TIR imagery (Javadnejad et al., 2020; Jarzabek-Rychard et al., 2020;
Grechi et al., 2021; Webster et al., 2018; Hou et al., 2021; Ham and
Golparvar-Fard, 2013b), while multispectral imagery is seldom merged
with previous data sources (Comba et al., 2019; Jurado-Rodriguez et al.,
2020a). The most frequent workflow reconstructs RGB and thermal
points clouds separately and then aligns both of them through the
optimization algorithm of Iterative Closest Point (ICP) (Webster et al.,
2018; Grechi et al., 2021; Ham and Golparvar-Fard, 2013b). Therefore,
it is assumed that both point clouds are correctly estimated and present
similar shapes. Few studies work in 2D space and project the results into
3D point clouds (Javadnejad et al., 2020; Hou et al., 2021; Hoegner
et al.,, 2016b). (Hou et al., 2021) generates sparse thermal point clouds
based solely on feature points, while (Javadnejad et al., 2020) produces
point clouds with higher density through the fusion of RGB and TIR
images. (Hoegner et al., 2016b) also evaluates the registration of RGB
and TIR images through edge detection and the projection to an RGB
point cloud. However, previous studies rely on external software and do
not represent automatic solutions. As a consequence, the proposed
methodologies are rarely optimized. Furthermore, conventional
methods for image registration, such as edge detection, are not appro-
priate for blurred and noisy images.

Registration of TIR data and Mobile Laser Scanning (MLS) is also
frequent in the literature, either including RGB images (Hoegner et al.,
2018) or not (Zhu et al., 2021). These systems are geometrically cali-
brated through the 3D boresight and lever-arm transformations
(Hoegner et al., 2018; Javadnejad et al., 2020) to describe the relative
differences between the laser scanner system and the camera coordinate
system. In addition, (Hoegner et al., 2018) distributes several control
points on the acquired environment to calibrate the imaging sensor
system, while (Zhu et al., 2021) utilizes feature extraction for TIR im-
ages and point clouds and tries to match pairs of key-points manually.
Therefore, the described methodologies work under controlled
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environments and can be labeled as semi-automatic methods.

Moreover, ICP based works present more accurate results on their
color distribution as MVS is an optimization problem constrained by a
photo-consistency function (Furukawa and Hernandez, 2015). Never-
theless, the inverse projection frequently ignores the occlusion problem,
as occurs in (Javadnejad et al., 2020), where a 3D point can be projected
into a viable pixel that, in fact, represents another object. In such a case,
final colors are computed as an aggregation of feasible intensity values.
(Jurado-Rodriguez et al., 2020a) manages the occlusion problem by
estimating a triangle mesh from the k-nearest neighbors. Although it
works on planar surfaces, canopy reconstruction is much more complex
and constitutes a research field by itself.

We propose an automatic methodology that overcomes the described
drawbacks of reconstructing thermal point clouds. The complete work-
flow is developed from scratch, enabling any further processing and
optimization through hardware capabilities, e.g. using the Graphics
Processing Unit (GPU). Firstly, a point cloud is reconstructed through
SfM-MVS and high-resolution RGB imagery. Consequently, large and
dense point clouds are used as the input of this approach. Then, coac-
quired RGB and TIR images are registered. The projection of a 3D point
cloud into image space is finally performed considering a viable
geometrical description of the scene. Furthermore, we evaluate the use
of multiple aggregation functions to minimize the distance from
aggregated values (3D point cloud) to image samples. As a result, we
acquire a dense thermal point cloud that preserves image details. In
addition, we solely need to manage a unique point cloud and thus GCPs
are marked only once over RGB images, where they are undoubtedly
visible.

Consequently, the main contribution of this work is the generation of
large and dense thermal point clouds by mapping 3D points into 2D TIR
images along with occlusion tests. Furthermore, we use the GPU hard-
ware to solve time-consuming tasks in a reduced response time, out-
performing currently available approaches for generating thermal point
clouds. Hence, the presented method is a disruptive solution based on
GPU computing for the generation of thermal 3D point clouds in order to
help a better understanding of thermal distribution in real-world envi-
ronments. The complete procedure of our mapping methodology is
shown in Fig. 1.

This paper is structured as follows. The data acquisition method is
first described as an introduction to our technologies. Second, we
describe the details of our solution to construct 3D environments with
RGB and thermal information. Then, we present the study area and
assess our implementation through dispersion measures and frequency
tests to prove the preservation of 2D color information in Section 3. The
performance and results of our method are also evaluated with respect to
commercial solutions. The outcomes of the conducted tests as well as the
conclusions of this work are summarised in Section 4.

2. Materials and methods
2.1. Data acquisition

UAV imagery was acquired from a dual payload device stabilized by
a gimbal (DJI Zenmuse XT2, Fig. 2). The RGB camera provides high-
resolution images (CMOS sensor with 12 MP), whereas the thermal
sensor captures images of lower resolution (Table 1). Regarding the
sensor radiometric calibration, most metadata parameters are pre-
calibrated by the manufacturer, while a few values can be configured
through in-situ measurements to improve temperature estimations.
Hence, the environmental temperature is measured and set as the
background temperature to replace the default value. Flat Field
Correction (FCC) is also performed before the flight to enhance image
quality. Nevertheless, a detailed evaluation of the calibration accuracy is
out of the scope of this work since our method is focused on the fusion of
RGB and thermal data in 3D point clouds. The thermal sensor is
configured to represent TIR results by means of a grayscale palette.
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Fig. 1. Summary of the procedure of this work. SfM-MVS and image registration stages build isolated results, and therefore, can be performed in parallel, whereas
fusion of 3D and 2D information depends on previous stages. Thermal data is assigned to 3D points by considering the point cloud occlusion and selecting an
appropriate aggregation operator to reduce the error from image samples to the outcome. The visualization of the resulting point cloud is improved by highlighting
outlier values. Furthermore, we describe a naive segmentation algorithm to characterize vegetation through its temperature.

Table 1
Specifications of imaging sensors.
Sensor
Attributes RGB Thermal Infrared
Resolution 4000 x 3000 pixels 640 x 512 pixels

Focal Length 8 mm 19 mm

File Format JPG RJPG

FOV 57.12° x 42.44° 32° x 26°
GSD 0,6885 cm/pixel 4,57242 cm/pixel

Visible light and thermal sensors are mounted on a quadcopter drone
(DJI Matrice 210 model). Despite both types of images are acquired
synchronously, there exists a delay between both frames. Furthermore,
drone movement and distance of sensors generate a more complex
description of such misalignment. As a reference, Fig. 3 depicts the area
covered by two co-acquired RGB and thermal images.

The UAV flight was performed in November 2019, whereas the
mission was planned and executed using DroneDeploy (California, CA,
USA) in a remote control device. The flight time was set to 19 min with a
fixed altitude of 45 m (695 m above sea level) from take-off position. The
planned UAV path defines a Boustrophedon path, i.e. back and forth

80

b)

a)

Fig. 3. Coacquired images from the dual device. a) RGB image, b) ther-
mal image.

parallel lines. The view direction was configured as nadir, with a frontal
overlap of 90% and a side overlap of 85%. Overlap values were
increased to avoid issues as a consequence of elevation changes. As a
result, a total of 820 images were acquired, i.e. 410 images for each
sensor. Moreover, the network of GCPs was established prior to the UAV
flight by distributing them on the edges as well as inside the study area
(Martinez-Carricondo et al., 2018). In addition, GCPs are sparsely placed
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on points with significant height variations, given the non-uniform plot
elevation.

2.2. Point cloud estimation

RGB point clouds are acquired by combining high-resolution RGB
images through methods that estimate three-dimensional structures
from sequences of images. However, this procedure does not represent a
challenge, as multiple libraries and software solutions provide imple-
mentations for methods such as SfM-MVS (Structure from Motion/Multi-
View Stereo) (Webster et al., 2018). This technique is based on finding
features that can be recognized on multiple images, so that they can be
aligned. The recognition of key-points allows estimating external and
internal camera parameters, enabling the calibration of the whole set of
images. Key-points also represent an initial approximation of the point
cloud through a sparse reconstruction. Both sparse point cloud and
estimated camera parameters can be further optimized through bundle
adjustment and the marking of GCPs in a real-world coordinate system,
e.g. UTM.

A dense point cloud is finally calculated through MVS algorithm. The
density and storage size of the result depends on the image resolution.
Hence, this is an adjustable parameter that is later used by those
methodologies dealing with the occlusion problem in the point cloud.

Table 2 shows the nomenclature of the parameters used throughout
this work, some of them calculated through the feature recognition
process of SfM-MVS. Others are previously known from the device
specifications (e.g. sensor width). Even though the resolution is variable
during SfM-MVS procedure, these values are calculated from the initial
size.

RGB images are suitable for estimating 3D structures due to their
high resolution and color space. However, reconstructing a point cloud
from thermal images is not trivial as their resolution is low and they are
frequently noisy (Sledz et al., 2018). The aforementioned problems
harden the extraction of key-points due to the inconsistency of their
color space. Consequently, point clouds calculated from these images
may contain noticeable errors, e.g. empty areas that could not be
reconstructed. In addition, the stage of bundle adjustment of SfM-MVS
can not be optimized accurately through the marking of Ground Con-
trol Points (GCP) due to an inadequate color consistency for human
operators. As a result, a naive solution based on aligning both point
clouds through an algorithm such as ICP can be hard to manage using

Table 2
Parameters obtained both from RGB and thermal camera calibration, as a pre-
processing stage for SfM algorithm, and from image metadata.

Parameter Definition

Image size (Winage, Nimage) Original size of images.
Principal point (cy,cy)

Focal length (fy,f,)

Intersection of principal axis and image plane.

Distance in pixels from the center of projection and

the image plane.

Width and height of sensor Size in millimeters of both dimensions.
Wsensor Psensor)

Omega, Phi, Kappa (@, ¢, «) Rotation between image coordinate system and

world system.

Camera position (tjcar) Camera position in point cloud system.

World offset (tyorig) Offset between local coordinate system and UTM
system.
Calculated from previous parameters:
fe 0
0 f ¢
0 0 1
Compositionof R(®)-R(¢)-R(k).
Distortion-free projection of a pinhole model:
K-[R| — Rtigcar ]-
Distortion mostly visible on straight lines.

Camera matrix (K)

Rotation matrix (R)
Projection matrix (P)

Radial distortion (k;, k2, k3)
Tangential distortion (p1,p2) Misalignment of device lens with respect to the

image plane.
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erroneous TIR point clouds with low point density.

2.3. Thermal image processing

This section operates with thermal images to correct them and
extract derived information. Results can be calculated once and stored to
reduce response time for the following executions of our software
solution.

2.3.1. Geometric calibration

The projection of estimated points on the image plane works under
ideal images. However, radial distortion is observed when using lenses
with small field of view. Such aberration can be corrected through the
camera matrix, K, and both radial and tangential distortion coefficients,
(k1,k2,p1,P2,ks). Such factors are not provided as image metadata, and
therefore are determined as part of the bundle adjustment of SfM by
considering the image data.

The dominant value for radial distortion coefficients is k;. This value
is smaller than zero for thermal images, i.e. they present a pincushion
distortion where lines bow inwards. Consequently, correcting such
distortion generates images with blank values as long as the original
dimensions are preserved. Therefore the minimum area with non-null
color information must be calculated to crop every image. As a result,
corrected thermal images end up with lower resolution than expected.
Fig. 4 compares three stages of the correction procedure.

Corrected images are calculated through Eq. 1 (Mallon and Whelan,
2004) by solving the problem of inverse distortion correction, where
undistorted images are created from a distorted image (de Villiers et al.,
2008). Consequently, each undistorted pixel is guaranteed to be mapped
with a distorted pixel.

e L e i ) O )

[x,y,z] - f;c ’ f;} ’ = [X7Y7 ]

P=2 47 (@3]

xo= X(14+kr*+krt +kr®) +2pxy 3)
+p2(r2+222)

vo= ¥ (L+kr? + ko + ki) +p (7 +25) 4)

+2pyx-y

Note that the pair (xy, y,) describes a non-distorted point in the
corrected image, while ideal images are generated in the opposite
manner. We need to determine for each pixel, defined by integer co-
ordinates, the distorted pixel to use. Eq. 5 defines the inverse procedure
to determine x,4,yq € R. Consequently, an interpolation function such as
the bilinear function is applied in this procedure.

5]

Fig. 4. Comparison of a) free of distortion thermal image with blank values
preserving the original size, b) distorted thermal image and c) free of distortion
thermal image with reduced size.
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[xaya, 1] = [X + e, 3 + ¢, 1] )
=K [27 v 1 ]T
2.3.2. Temperature computation
Thermal images show a normalized representation of temperature
captured on the scene. Though, absolute values are not known from
color data. However, automatic computation of temperature can be
performed through radiometric file formats, e.g. RJIPG. Thermal cam-
eras record the radiation emitted from an object surface, either it comes
from the object itself or surrounding objects. However, it is affected by
several environmental parameters, such as the air humidity, the air
temperature and the background temperature (beyond the object
reflectivity and emissivity, as well as the distance between the surface
and the camera) (DJI, 2018). Therefore, each manufacturer models the
transmissivity of the atmosphere through a theoretical or empirical law,
using some constant values embedded in the image metadata (Teza and
Pesci, 2019). Consequently, we need to extract several parameters from
the embedded data, including the emissivity, atmospheric temperature,
reflected apparent temperature, infrared window temperature, infrared
window transmission, relative humidity, Planck’s constants (Pri1,Pg2,Po,
Pr, Pgp) and atmospheric transmission constants (ao, a1, Sy, f1, X).
Nevertheless, most of them are calibrated by the manufacturer. Hence,
temperature T is given by Eq. 6:

Planckg

T =
Planckg,
In (Planckkz (radiance+Plancko) + PlaanF )

©

where radiance is given by Planck’s Law for every pixel. We refer the
reader to (Minkina and Dudzik, 2009; Teza and Pesci, 2019) for further
details.

Absolute temperature values for every image are calculated once and
stored to be processed by our solution. Fig. 5 shows the thermal
boundaries of an image. Temperature values have also been normalized
and presented through a mapping function defined by a linear interpo-
lation and the texture on the right of Fig. 5.

2.4. RGB image processing

Previous distortion concepts can also be applied in this step. RGB
images present geometric distortions since they are captured by a wide-
angle lens. However, their distortion model produces the barrel effect
instead of the pincushion defect. In consequence, the dominant radial
distortion k; is greater than zero, although the image can be corrected by
using Egs. 1 and 5 as shown previously. Both tangential and radial co-
efficients are extracted from the first stage of SfM-MVS as well.

Fig. 6 compares an RGB image with barrel distortion, where lines are
bowed outwards, and the corrected result. As opposed to the pincushion

24.359 °C

14.305 °C

Fig. 5. TIR image coloured with a mapping function. Absolute values can be
observed through the represented maximum and minimum values.
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a)

Fig. 6. Comparison of a) distorted RGB image and b) RGB image
without distortion.

effect, reversing this distortion produces images of the same resolution,
although the captured area is not completely preserved.

2.5. RGB and thermal image registration

The fusion of RGB point clouds with thermal data can be performed
through image registration. This solution avoids errors derived from the
estimation of thermal point clouds. Furthermore, our solution manages a
single 3D point cloud where processing tasks are carried out (e.g.
georeferencing through multiple GCPs). For this purpose, 3D RGB points
need to be projected into the RGB image plane, where this fusion occurs.
This transformation is defined as follows (Eq. 7, 8):

[x,y,z]" = Plx,yz] )

1, .
[y 1= Sy T ®)
provided that [x,y,z] is expressed in the local coordinate system where
both the point cloud and the cameras are defined. Otherwise, if defined
in a global coordinate system such as UTM:

[x,y,z] = [xglobahyglobahZglobal]l — toria ©)
Consequently, each 3D point is associated with two values, x”.y” € R, for
each image of the dataset. Note that t,,,4 is defined as an arbitrary shift
of real-world points to avoid working with large values. The same
reasoning applies to local positions of cameras (tjp.q)-

On the other hand, the registration of RGB and thermal imagery has
been previously achieved with the Enhanced Correlation Coefficient
(ECQC) algorithm (Lopez et al., 2021; Evangelidis and Psarakis, 2008) so
that the misalignment of two images is expressed through a trans-
formation matrix, H;, of variable complexity. Hence, H; is the result of an
optimization problem whose objective function is provided by a corre-
lation coefficient for both template and input image. In our solution, H;
is defined as a homography matrix of size 3x3, which is proved enough
to describe perspective differences between images.

The procedure for applying ECC to RGB and TIR images starts by
cropping each RGB image. However, the homography matrix H; also
includes a rotation for some pairs of images due to capture delays and
platform movement. Consequently, the area to be cropped is expressed

as an approximate rectangle centered at (%, %) that guarantees to

cover TIR images under most of the valid rotations. Therefore, RGB
images are defined as source images, while TIR images are transformed
to align both of them. The computed homography matrix allows pro-
jecting thermal images into cropped RGB images, whereas the inverse
matrix enables the backward projection.

In summary, Egs. 7 and 8 allow to project 3D RGB points to RGB
images, while C;-H; projects 2D RGB points into a TIR image plane,
provided that C; is a composite matrix (Eq. 10) that defines the inverse
cropping transformation, so that RGB pixels are projected into thermal
images. However, note that projected points may not be within the
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rectangle defined by the size of undistorted TIR images. Nevertheless,
the inverse homography matrix H; leads to an ideal rectangle, and thus
the ’point in polygon’ test is carried out by four Boolean operations
instead of more complex solutions (Feito et al., 1995).

— * * —
Ci = Terop™Sratio™ T —centernon =

Wihermal,
1 0 —
2 r 00
= O 1 hthe;’mal“ . 0 ry 0
0 0 1
0 0 1
WRGB,
1 0 —
2
hrea, | =
o 5 10)
00 1
1
r 0 5\ ~ 7xWras, + Wihermal,
= 1
0 r 5 — ryhres, + Munermal,

0 0 1

(nn) = (2ac)
T, Iy | = )

: Wthermalu hthermalu
where (crop,, crop,) are the dimensions of the cropped area, (Wnermal,
hnerma) are the dimensions of undistorted thermal images and u
subscript refers to the index of an undistorted image. Fig. 7 shows the
result of the registration methodology, where the warped quadrilateral
shape is also represented.

Composite matrices C; are calculated once and stored in binary files
since this process is time-consuming. Due to the complexity of the
alignment methodology, there may exist pairs of images that can not be
registered as intensity highly differs between both types of images. In
such a case, the ECC algorithm fails to converge or the resulting quad-
rilateral shape highly differs from an ideal rectangle. Both erroneous
scenarios can be easily observed, although the second detection relies on
a strict threshold based on minimum/maximum angles degrees enclosed
by the rectangle shape. However, those 3D points visible on discarded
images more than likely appear in multiple images as the drone flight

Fig. 7. A result from the registration of RGB and thermal images. The thermal
image is overlapped within the RGB image and displayed with transparency
(@ = 0.7). The bottom image presents the final quadrilateral shape.
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mission is planned so that most areas are covered by five images at least.
Table 3 shows the percentage of thermal images which can be matched
to RGB images for our dataset as well as the number of 3D points that
were not visible from any registered thermal image. Note that the field
of view is wider for our RGB device, therefore edge points are also dis-
carded as they are not visible from any thermal image. Consequently, it
is observed that all the unregistered points are also labeled as points not
visible from any viewpoint (edge points). For larger point clouds, the
number of edge points grows unevenly with respect to the rest of the
scenario. Hence, the percentage of unregistered and edge points
decreases.

2.6. Thermal image mapping

Merging RGB point clouds and TIR data involves the previously
described projections. First, we implement a naive approach without
any consideration about occlusion or visibility. As a result, 3D points are
considered to be visible from a viewpoint as long as they are mapped to
2D points with valid thermal data.

Each thermal image presents two layers, both for relative tempera-
ture (original format) and absolute values (extracted in previous sec-
tions). Egs. (7)—(9) allow projecting each 3D point into the RGB image
plane. Points are considered not visible from a viewpoint and thus dis-
carded whether their projected coordinates present values smaller than
zero or larger than the dimensions of RGB images. In addition, the TIR
registration within RGB images imposes another discard condition due
to its smaller observed area.

From 2D coordinates (Xermat,Yehermar € R) within TIR images, we can
sample values through a bilinear interpolation in which surrounding
pixels to Xermal, Yihermar @lso affect the outcome through weight factors
given by their distance. The resulting values also contribute to an ag-
gregation function that combines information from different TIR images
for a 3D point, e.g. the arithmetic mean.

The main challenge during this step is the search of candidate points
for each image. Regular grids can manage such search whether the set of
points is distributed uniformly along the scenario, which is not assumed
in our solution. Hence, an adaptive data structure is implemented to
speed up the search. The point cloud is managed with an octree opti-
mized for searching neighbors within a radius (Behley et al., 2015). A
radius search is selected over a box search since the previously described
methods to correct geometric distortions also apply interpolation func-
tions. Therefore, the color of image edge points is considered to be less
reliable. As a consequence, this radius represents a new condition that
may also discard edge points, although this restriction can be avoided
using a large radius. This data structure organizes the 3D RGB points
instead of the array of image viewpoints, otherwise, an efficient search
would not be needed due to the relatively low number of images. Note
that the search radius is more intuitive when defined at ground level,
and therefore it is always expressed relative to the ground point (x,

Table 3

a) Percentage of pairs of RGB-thermal images that were successfully registered.
b) Percentage of points which were not visible from any thermal image for two
point clouds with different size. Edge points represent those points that are not
visible even when the complete image dataset is successfully registered. A radius
r of 80 m was utilized during the search of candidate points to avoid omitting
visible values.

a) Two-dimensional space

Number of pairs Resolution Registration success

410 640 x 512 pixels 89,7561%

b) Three-dimensional space

Number of points Unregistered Edge points
19.161.076 18,8952% 18,8952%
98.016.324 15,5823% 15,5823%
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aabbener, , ), where x and z depends on the local position of the image
viewpoint and aabbcener, is the y coordinate for the center of the axis-
aligned bounding box (AABB) of the environment. Fig. 8 renders this
data structure as a set of spheres (optimized octree) and as a set of
bounding boxes (the conventional representation of an octree).

Fig. 9 shows a top view of the reconstructed thermal point cloud.
Close-up images emphasize the preservation of details which are visible
on thermal images, such as rocks or paths.

2.7. Occlusion problem

The previous approach presents a comprehensible methodology for
reconstructing a thermal point cloud, although it is not geometrically
accurate. The color of occluded points can not be estimated by consid-
ering the data of foreground objects. Previous studies have used ray-
casting along with voxelization to solve this problem (Vidas et al.,
2015). However, this solution lacks accuracy and flexibility as octrees
are mainly constructed with top-down methodologies, i.e. the size of a
voxel is determined by the subsequent subdivisions of the point cloud
bounding box (AABB) and the octree level.

Here we propose multiple solutions to produce a more color-realistic
point cloud. Then, the outcomes are compared to visualize their fidelity
with respect to our image data-set.

2.7.1. Visibility test

Images represent a discrete domain from where the SfM-MVS algo-
rithm can estimate at least one 3D point from an RGB pixel. For each
image we can build a depth buffer (or z-buffer) of the same size as the
resolution used during the SfM estimation. Nevertheless, we can in-
crease the size of the depth buffer whether we consider sub-pixel ap-
proaches of SfM. This procedure saves the closest point to the current
viewpoint if multiple 3D points are mapped to a pixel. Therefore, the
depth (2) determines if a point is visible. Depth buffers can be repre-
sented as a sparse matrix instead of a matrix of fixed size to reduce
memory usage, mainly for high resolutions. This sparse matrix is
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30.7°C

11.5°C

Fig. 9. Top view of a thermal point cloud captured by a nadir camera. Absolute
temperature values are normalized and mapped to the upper texture. The
search radius was fixed to 30 m.

implemented as a hash map that stores pairs of values; their key is given
by the access index of a 2D point and the value is the nearest point for
such position. The depth buffer can be rendered as shown in Fig. 10,
where a circular pattern is visible as a result of the search algorithm. The
workflow for determining visible points is presented in Algorithm 1.

Algorithm 1. Visibility test to accurately map thermal images into an
RGB point cloud.

Input RGB point cloud: P

Input RGB images: ¢

Input RGB resolution during SfM-MVS procedure: (Wsy, hsm)

Input Search radius: R
Output Array of normalized and absolute thermal values
1: for Every image c; captured from the position p,, do
2: Create a new buffer of size (wspy, hgay) With dxy = co provided that 0<x < wgpy
and 0<y < hgpy.
Retrieve candidate points within the radius R through the point cloud octree
for Every three-dimensional candidate point p; do
Calculate 2D TIR point (x,y) (Egs. 7, 8)
if (x,y) in TIR polygon then

(continued on next page)

Fig. 8. Rendering of a) an octree whose nodes are spheres, optimized for
searches within a radius and b) a basic octree whose nodes are boxes.

a) b)

Fig. 10. Depth buffer of a camera during a visibility test carried out with a
radius of size a) 20 m, b) 30 m.



A. Lopez et al.

(continued)
7: if distance(p,,,pj) < dy, then
8: Add point to depth buffer and update the minimum distance found at d
9: end if
10: end if
11: end for
12:  for Every point p; stored in depth buffer do
13: Retrieve and accumulate the normalized and absolute thermal values from c;
for p;
14:  end for
15: end for

16: Compute final values for each point of P as an arithmetic mean

2.7.2. Occlusion test

Occlusion tests can be ideally managed through a ray-casting
implementation as long as the target structure is presented as a trian-
gle mesh (Jurado-Rodriguez et al., 2020a). However, estimating the
mesh from a point cloud is a challenging task. Multiple algorithms are
found in the bibliography; some require the normal for each point, while
others are robust enough to work without surface orientation, e.g.
Advancing Front reconstruction (Cohen-Steiner and Da, 2004).
Furthermore, surface reconstructions are commonly based on time-
consuming algorithms that rely on multiple parameters non-consistent
along different point clouds, e.g. a search radius. In addition, the out-
comes are not accurate for the cumbersome problem of reconstructing
vegetation models (Zhang et al., 2014; Gong et al., 2018). Fig. 11 shows
the result of Advancing Front surface reconstruction for a subset of RGB
points. Faces are oriented considering that the viewpoint is above the

scene. Hence, faces are flipped if ﬁ~(v/—\p) > Z, provided that 7 is the
surface normal, v is an image viewpoint and p is a 3D point over the
triangle mesh surface. A schematic representation of our occlusion
methodology is depicted in Fig. 12.

However, points can be occluded by others if they have a volume.
This assumption allows solving this problem through ray-casting,
though solving the occlusion problem for millions of points is a time-
consuming task. Some data structures can discard large parts of the
scene with each advancing step, such as a Bounding Volume Hierarchy
(BVH), a tree structure where each primitive of the scene is bounded by
an AABB, while surrounding AABBs are merged up to the tree root.
Regarding the tree quality, better cluster separations lower the trace
time as they allow discarding larger parts of the scene, thus reducing the
number of steps needed to traverse the scene.

In this work, point volumes are modeled as spheres to provide an
efficient alternative to viewpoint oriented boxes. Otherwise, the quality
of the BVH worsens due to self-intersecting geometry (AABBs from a
BVH are axis-aligned instead of object-oriented), whereas the intersec-
tion test of an oriented bounding-box (OBB) with a ray is slightly more

Fig. 11. Triangle mesh estimated for a subset of our point cloud through
Advancing Front algorithm. Reconstruction of vegetation is clearly erroneous in
comparison with the ground.
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Fig. 12. Representation of an occlusion test for two points expressed as
spherical volumes. a) Point where the ray impacts first (p;), occluding the point
P2, b).

complex. The sphere radius depends on the relative height from a point
to an image viewpoint (Fig. 12), and it is calculated as defined in Eq. 11.

Wensorheight  hsensor-height
feWimage

i _GSD

R=—"= 2 2

an
with GSD being the Ground Sample Distance, i.e., the size of a pixel
when target is at an altitude of height. R is defined in meters per pixel,
although wyensor and f are defined in millimeters.

Note that spherical volumes vary for each 3D point and image
viewpoint, and therefore BVH trees need to be built for every subset of
candidate points. However, we implement their construction on GPU
hardware to speed up the procedure through the methodology defined in
(Meister and Bittner, 2018). This work proposes a spatial ordering of
primitives using their Morton codes (30 bits that represent xyz co-
ordinates) and merging nodes by searching efficiently the nearest
neighbour (which also happens to be near within the ordered buffer). On
the other hand, the ray-casting problem is also solved on GPU using the
BVH data structure. For that purpose, we generate a ray for each 3D
point. Occluded points receive a collision linked to a different volume,
whereas visible points find themselves as the nearest volume to the
viewpoint (Fig. 12). A schematic workflow for this methodology is
presented in Algorithm 2.

This algorithm generates point clouds where their thermal values are
less likely to be calculated from as many images as the naive approach.
Furthermore, we avoid contributions from images where points are not
visible, although it also tends to discard more points as some pairs of
images are not registered successfully.

Algorithm 2. Occlusion test to determine temperature values of
sphere-shaped RGB points with adaptive radius.

Input RGB point cloud: P
Input RGB images: ¢
Input Search radius: R
Output Array of normalized and absolute thermal values
1: for Every image c; captured from the position p,, do
2: Retrieve candidate points within the radius R through the point cloud octree
3:  Build a new BVH with the array of candidate points
4: Sort candidate points expressed as Morton codes and build BVH leaves
5. Join leaf and intermediate nodes while root is not reached
6: for Every three-dimensional candidate point p; do
7 Throw a ray towards pj and find the first intersected volume

(continued on next page)
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(continued)
8: if Intersected volume = volumey, then
9: Calculate 2D TIR point (x,y) (Egs. 7, 8)
10: if (x,y) in TIR polygon then
11: Retrieve and accumulate the normalized and absolute thermal values
from ¢; for p;
12: end if
13: end if
14: end for
15: end for

16: Compute final values for each point of P as an arithmetic mean

2.8. Visualization

This section describes a method for improving the visualization of
thermal data. (Javadnejad et al., 2020) proposes a linear interpolation
between RGB and TIR data, where RGB colors are converted to grayscale
and temperature values are mapped to an RGB value through a color-
ramp function. The weight, w(t), is computed as the distance of each
temperature sample, t, to the mean, tpeqn, so that w(t) = 1 omits RGB
colors. Although it accentuates cold and hot regions (w(t)«<1), inter-
mediate values are also merged with grayscale colors. Therefore, the
representation of non-anomalous temperature values distorts the color
distribution of the RGB point cloud and does not help to identify
anomalies.

We detect outlier values through the conventional numeric outlier
method. For that purpose, thermal values were sorted in GPU to retrieve
first and third quartiles, Q; and Q3, as well as the interquartile range
(IQR <Q3 —Q1). Values under Q; —k(IQR) and above Q3 + k(IQR),
where k>0, are considered to be anomalous temperature values and thus
they take w(t)«1. The visualization of intermediate values is computed
as proposed in (Javadnejad et al., 2020). However, RGB colors are not
converted to grayscale nor we utilize a linear interpolation. Instead, we
use a Hermite interpolation that emphasizes values of t close to t,;; and
tmax-

Eq. 12 shows the procedure for computing the proposed enhanced
visualization. Note that y allows us to modify the brightness of RGB
colors, where 0<y<1. Fig. 13 depicts the use of y to darken irrelevant
regions. On the other hand, {(t) represents a color mapping function that
is also parameterized by the temperature. In this work, {(t) is given by
the texture depicted at the left part of Fig. 13.

/

r r
gl =H|wlt||¢|t]| +y|1-H|w|¢ g
b/
1 tmin$t < Q1 — k(IQR)
mean 71 IQR)<I<S
tean — tuin S 12)
wlt]| =
t— tmean
T e < 1SQ3 +K(IQR)
1 03 + k(IQR) < t < tygy

w(t) w(t) =1
w(r)® (3—2w(t)) otherwise

()

2.9. Aggregation of image samples

3D points are mapped to several images; hence, we have many
thermal measurements for each point. However, the acquired TIR ra-
diation changes in relation to the viewing angle, expressed through
azimuth, ¢, and zenith angle, §, given that ¢ € [0,360] and 6 € [0,180].
Any real surface emits radiation non uniformly in its hemisphere unless
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Fig. 13. Visualization of the study area using multiple configurations. a)
Visualization proposed by (Javadnejad et al., 2020), while b), ¢) and d) show
our modified procedure. b) y = 0.8,k =0.8,c)y =0.8,k =0.5,d)y =.0.5;k =
0.5.

it is considered to be a Lambertian emitter (Vollmer and Mollmann,
2017). Furthermore, objects emit more radiation when § = 0, i.e., the
viewing direction is normal to its surface. Fig. 14 depicts 19 TIR radia-
tion samples acquired for the same 3D point with respect to the Lam-
bertian behaviour, both of them scaled by a factor of .

Although the arithmetic mean has been previously assumed as the
standard aggregation for any number of samples (Javadnejad et al.,
2020), here we propose a procedure with multiple aggregation functions
that can be either used separately or combined. When combined, their
outputs are compared to a set of inputs to select the aggregation that
minimizes the outcome of a penalty function (Bustince et al., 2017b;
Bustince et al., 2017a). Consequently, the penalty function determines
the similarity of each aggregation output to a set of TIR radiation
samples.

The fusion of information by means of penalty functions has been

Fig. 14. Representation of a point cloud with 19 TIR radiation samples
observed from different viewpoints for the same surface point. Sampled emis-
sion values are compared to a Lambertian radiator (semisphere).
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gaining interest in scientific research. However, it has hardly been
explored in the field of computer graphics (Paternain et al., 2012).
Furthermore, the correct implementation of this procedure allows to
omit penalty functions when needed and exchange the arithmetic mean
for another suitable operator. Note that TIR radiation samples are ac-
quired from different points of view; hence, these values are consistent
by themselves. Therefore, a function that selects one value is also valid,
e.g. maximum or minimum operators as well as any behaviour that es-
tablishes a preference for a viewing angle.

Briefly, a function is called an n-ary aggregation function f : [0,1]"—
[0,1] if it is monotone increasing and satisfies the boundary conditions
(Eq. 13).

Vie{l,...,n}, if x<y=>
:f(xl,...,x,,)Sf(xl,...,x,-,l,y,x,-ﬂ,...
f(xmina ---7-xmin) = Xmin
S (Xmaxs ++vs Xmax) = Xmax

2 Xn)

13)

Furthermore, it is an averaging aggregation function if it is bounded by
the minimum and maximum input (Eq. 14).

.,X,,} (14)

min{xy, ..., %, }<fF(x1, .oy X0 ) <max{xy, ..
Hence, the local penalty function is expressed as the function P : R2->R
that satisfies the conditions defined in Eq. 15, given that y is the
aggregated value. Consequently, the penalty based function is summa-
rized as > ; P(x;,y), where the objective is to retrieve the aggregation

that minimizes the value of P,g(x)«argmin,P(x,).

P(x,y) =0 Vx;=y
P(x;,y) >0 Vx; #y
P(x;,)2P(x,y) if |5 — ¥ > |5 — )

(15)

However, our environment simplifies these expressions as n = 1 neither
we require the use of (r,g,b) tuples. Normalized and absolute TIR ra-
diation are represented with one value. Therefore, we simply need to
define a set of aggregation and penalty functions, like the operators
which are following enumerated.

i) Minimum: f(x) = argmin;x;
ii) Maximum: f(x) = argmin;x;

n
— Zx;lx‘

n

v/ [T

-1
v) Harmonic mean: f (x) = n(Z" 1)

iii) Arithmetic mean: f (x)

iv) Geometric mean: f(x) =
i=1%;

whereas penalty functions are less intricate as their objective is to
measure the error between the inputs and the aggregated value, y. The
following list presents three penalty functions (Paternain et al., 2012)
here considered for the minimization problem. Note that we have
omitted to include weighted aggregation operators, such as OWA

Table 4
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(Ordered Weighted Averaging) (Zhou et al., 2010), or parameterized
aggregations, for example, Bonferroni mean (Yager, 2009), as they
imply more computational complexity. OWA operator requires sorting
the samples, while parametric operators require adjusting variables to
minimize the penalty function.

D) P1(x,y) = Ixi — Y]
i) P2(x.y) = (xi — )
iii) Ps(xi.y) = |x; —y°

Accordingly, the dissimilarity of new results and input samples is
clearly reduced by minimizing an error function. We have measured the
frequency of choosing each aggregation for different penalty functions.
Table 4 shows the selection ratio of three proposed local penalty func-
tions, P(x;,y), against five aggregation operators. As shown in Fig. 14,
thermal values are not evenly distributed along a given range, and
therefore the arithmetic mean is not always the preferred solution.
However, maximum and minimum operators are seldom utilized; their
highest frequency is observed for those procedures that discard occluded
points and thus aggregate fewer values.

From the results, we can observe that the arithmetic mean is the most
used aggregation, although the geometric and harmonic mean are also
widely utilized. maximum and minimum are rarely selected, but their use
is significantly increased for occlusion-based methods, where the num-
ber of samples is reduced. However, for optimization purposes, we could
reduce the number of operators by discarding uncommon aggregations.

2.10. Thermal characterization of vegetation

Analyzing the temperature of object surfaces often implies seg-
menting the environment, so that target structures can be further stud-
ied. Our datasets characterize a natural environment whose main
components are soil and trees and thus we only need to isolate and
discard ground points. Regarding the classification procedure, we pro-
pose a geometric approach based on the surface orientation of a point
cloud.

Consequently, normal vectors are first computed. The normal esti-
mation is performed with different algorithms, so we can later compare
their results and execution time. The first algorithm is implemented on
GPU through a KNN (k-nearest neighbors) search that finds those sur-
rounding points that contribute to the normal estimation. KNN search is
optimized with an approach previously used while constructing a BVH
(Meister and Bittner, 2018). Points are spatially ordered along a z-curve;
first, they are expressed as Morton codes, i.e. 30 bits codes (3D), and
then they are sorted with the Radix Sort algorithm. This solution has
been previously explored on high-performance works (Connor and
Kumar, 2010; Jakob and Guthe, 2021) due to its multiple benefits. First,
points to be accessed for each index are reduced to 2r, where r is the
search radius. Access time to memory is also reduced through spatial
locality as 3D multidimensional arrays are transformed into sorted 1D
arrays. Furthermore, the complete search methodology is highly

Comparison of frequency of choosing an aggregation operator using three different penalty functions for each proposed mapping method. Frequency is normalized in
[0,1], therefore the sum of a row is equal to 1. The first and second choice of each configuration are highlighted in bold.

Aggregation functions

Penalty Function Mapping algorithm Arithmetic mean Geometric mean Harmonic mean Maximum Minimum
g :argmin, Shlxi =yl Naive Mapping 0,64699 0,07563 0,23348 0,02530 0,01858
Depth Buffer Mapping 0,65672 0,06017 0,21589 0,03815 0,02905
Occlusion Mapping 0,67193 0,03362 0,17048 0,07004 0,05392
g : argmin, S (x ,y)z Naive Mapping 0,67787 0,15036 0,14783 0,01312 0,01080
Depth Buffer Mapping 0,66193 0,13732 0,16330 0,02067 0,01676
Occlusion Mapping 0,63223 0,10407 0,19052 0,03972 0,03344
gs : argmin, S — y? Naive Mapping 0,57092 0,14996 0,25392 0,01412 0,01106
Depth Buffer Mapping 0,56471 0,13513 0,26142 0,02171 0,01701
Occlusion Mapping 0,57647 0,09821 0,25101 0,04057 0,03371
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parallelizable, so we have developed it on GPU and thus our normal
estimation is solved in a few minutes at most for large point clouds.

Once neighbors are retrieved, normal vectors are estimated as an
average vector from multiple cross products between those vectors that
go from a neighbour to the main point. This basic solution is expected to
calculate wrong normal vectors as it does not tolerate noisy
neighbourhoods.

The second solution maintains the core of our previous proposal,
where a KNN search is performed on GPU. However, we implement an
algorithm more robust against noise through a plane fitting methodol-
ogy. Principal Component Analysis (PCA) allows retrieving the plane
that better represents a subset of points (Nurunnabi et al., 2014; Sanchez
et al.,, 2020) through eigenvector decomposition (see Fig. 16). As a
result, the calculated normal vectors fit better the expected surface
(Fig. 15). The complete algorithm is implemented on GPU as well.

Other libraries are also integrated in our solution to compare their
results and performance against our proposed algorithm. Both CPU and
multi-core CPU normal estimations from Point Cloud Library (PCL) are
integrated. Fig. 17 shows a comparison of the response time of four
normal estimation algorithms. The noisy estimation provides a baseline
time for a GPU implementation, whereas SVD implements an optimized
approach also in GPU. As observed in Fig. 17, our solution scales better
with larger point clouds, while it presents a similar response time to
multi-core PCL implementation for small point clouds. Therefore, the
proposed method is more convenient whether we consider the
increasing size of point clouds.

The dot product of the calculated normal vectors, i, and Y-axis al-
lows to retrieve feasible ground points by defining a threshold, fi.
Consequently, the complexity of subsequent stages is also reduced. Our
methodology is based on the principle of LiDAR returns, where the last
impacts are more likely to represent soil points. As a result, the last
intersection of each ray is labeled as ground and the canopy is filtered
out. The classification of soil and vegetation is approached by assigning
volumes to points, as proposed previously. These volumes are here
approximated through spheres of radius R = 2 (Eq. 11). However,
there may be detection errors, as slightly higher elevation points may
prevent the detection of surrounding ground points. We avoid most false
negatives by defining a tolerance radius, given by k-GSD. k is ideally
expressed as 1, i.e. k-GSD is equal to the diameter of spheres.

The method is implemented in GPU so that each point is managed by
a different thread. The dot product is first computed to determine the
candidate points. Then, n rays are traced from p; +(0, y, 0) to p;, provided
that n is the number of candidate points and y allows to place the ray
origin above the boundaries of the point cloud. Both stages are depicted
in Fig. 18. Regarding the use of this procedure for different vegetation
fields instead of olive groves, the proposed method is robust enough for
detecting feasible ground points. Furthermore, the principle followed to
distinguish soil points from the rest of the scenario works for most
vegetation environments, as it relies on the detection of the last return of
a set of traced rays. However, the method is parameterized through a

n
)
3 J
J J
J
)
J

J

Fig. 15. Schematic representation of normal estimation by detecting the plane
that better represents a group of points.
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normal vector threshold and a factor, k, to scale the sphere radius,
allowing us to adapt the algorithm to different terrain slopes and point
cloud densities.

3. Results and discussion

We have evaluated our solution with three scenes of the study area
which is following described (depicted in Fig. 19). Furthermore, each
scene presents two versions of different point density, depending on the
resolution of RGB images during SfM-MVS. Consequently, our input RGB
point clouds range from 98 million points to barely 300 thousand points.
As reference results, we use point clouds generated by commercial
software, e.g. Pix4D or Agisoft Metashape. The quality of the output is
measured through three key factors: point density, algorithm perfor-
mance and similarity of color distribution. We aim to prove the benefits
of our solution in comparison with popular software when recon-
structing three-dimensional thermal point clouds.

Results from external software were computed using configurations
that provided the highest level of detail, both for aligning photos and
generating the dense point cloud. Other secondary options not labeled
with their accuracy were tested to select the value that guaranteed better
results. However, the stage of bundle adjustment was not optimized
through the definition of GCPs, as they cannot be marked accurately on
TIR images due to the radiance spreading phenomenon. Regarding the
stochasticity of SfM-MVS, it is observed that both Pix4Dmapper and
Agisoft Metashape software produce non-deterministic outcomes.
Consequently, their performance is shown as an arithmetic mean of five
results.

All measurements were performed on a PC with Intel Core i7-7700
3.6 GHz, 16 GB RAM, GTX 1070 GPU with 8 GB RAM (Pascal archi-
tecture) and Windows 10 OS. The proposed methodology is imple-
mented in C++ along with OpenGL (Open Graphics Library) for
rendering. Therefore, parallel algorithms are developed in GLSL
(OpenGL Shading Language) through general-purpose compute shaders.
Dense RGB point clouds and estimated camera parameters are first
computed from Pix4D software and used as the input of our solution.

3.1. Study area

The effectiveness of our proposed methodology was evaluated with
UAV imagery captured from a plot located in Mancha Real, Spain, in the
region of Jaén. The study area is depicted in Fig. 19 along with the
network of GCPs, as well as the geographical demarcation of the region.
The surveyed area covers a surface of about 17000 m? of an olive grove,
although reconstructed areas show a larger area due to the FOV of our
sensors. GCPs utilized for the dense RGB point cloud are depicted within
the plot. The terrain is characterized by an elevation ranging from 552 m
to 572 m. Therefore, our algorithm is exposed to a complex environ-
ment, where coacquired images do not present recurrent alignment
matrices, partially as a result of non-uniform elevation of the area.
Furthermore, some regions of the olive orchard are affected by the
pathogen Xylella fastidiosa, whose symptoms can be revealed through
thermal imagery (Zarco-Tejada et al., 2018). Although this study is not
focused on the detection task, it proves the relevance of estimating
properly a thermal point cloud.

3.2. Thermal point cloud reconstruction and performance

To evaluate the performance of our methodology, we built an RGB
point cloud with SfM-MVS using the RGB images of our study area with
their original resolution. Therefore, images are not downscaled and
averaged. It is a time-consuming task but also guarantees that nearly 100
million points are estimated. Consequently, this point cloud is the input
of the described procedure, whereas the comparatives with external
software are based solely on thermal images, as some works proposed
previously. Furthermore, we evaluate our three solutions: naive (no
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a) RGB point cloud

c) Noisy estimation

b) Our method

d) PCL estimation

Fig. 16. Comparison of normal estimation results for a point cloud of reduced size. Normal vectors are up-scaled, therefore they are not normalized. Color cor-
responds to the vector (x,2,y) of each normal. Our method and PCL produces similar outcomes, while ours is optimized for dense point clouds.

PCA (GPU) M Noisy est. (GPU)
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Fig. 17. Response time in seconds for normal estimation algorithms. Both PCL implementations belong to an external library. Results are calculated as an arithmetic

mean of five response time samples for each algorithm.

occlusion is considered), depth-buffer (also called visibility test
throughout this manuscript) and occlusion (geometrical approach on
GPU).

For our methods, we use two different search radius r: r; = 20 m and
r, =30 m, centered at y = w for every image viewpoint,
provided that aabbma, and aabbny, are the y coordinate of both
maximum and minimum points of the point cloud AABB. The visibility
test is configured so that the size of a depth buffer is equal to the size of
the original RGB images, i.e. 4000 x 3000 pixels. BVHs of the occlusion
test were constructed using 30-bit Morton codes, ordered through the
Radix Sort algorithm, along with a radius of 50 neighbors for collapsing
the subtrees. The results are summarized in Table 5. Areas are measured
by computing the convex hull that wraps a point cloud through Delau-
nay triangulation (Shewchuk, 2002), minus the area of internal poly-
gons. The reported response times are retrieved using the arithmetic
mean as a fixed aggregation function.

Number of points. From the results, we can see that our thermal
point clouds have the largest number of points. Although the number of
points by itself does not reflect the quality of the result, these points are
expected to be more precise as they are reconstructed from images of
higher resolution (RGB) supported by GCPs. On the other hand, point
clouds reconstructed solely from thermal data pose several challenges in

89

terms of point density and spatial covering due to the feature extraction
phase (Hoegner et al., 2016a; Westfeld et al., 2015; Ham and Golparvar-
Fard, 2013a), as reported both in Table 5 and Fig. 22. We lose nearly 16
million points on the naive approach, which are not visible in any
thermal image, though the increase of the number of points for r, with
respect to Agisoft Metashape and Pix4Dmapper results are 358,64% and
746,09% respectively. Occlusion-based approaches build point clouds of
lesser size as some points are considered to be occluded when consid-
ering a radius equivalent to GSD, although they greatly improve the
result of external software. Note that using the radius r, barely enhances
the size retrieved for r;, while the response time has significantly
increased. Therefore, ry is preferable to rs.

Area and point density. Our algorithms cover the plot more uni-
formly than the compared methods. Agisoft Metashape fails at some
boundary regions, while Pix4Dmapper generates areas indeed very
similar to our methods but also presents gaps (see Fig. 22). Additionally,
the larger number of points provides an advantage when computing the
point density of our solutions. Consequently, the highest point density,
given by the naive approach, increases the density by 275,95% and
798,69% from Agisoft Metashape and Pix4Dmapper respectively. As a
reference, Webster et al. (2018) manages thermal point clouds of density
776 points/m2, while (Javadnejad et al., 2020) works with thermal
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Fig. 18. Classification of ground points with k = 1 and a normal threshold of 0,7. a) First step of our methodology; candidate points are displayed as green points.
a.1) Valid candidate point (a<f), a.2) Point discarded for further processing (o > /). The angles that both normal and boundary vectors form with respect to the Y-
axis are defined as a and f respectively. b) Evaluation of ray-casting for each candidate point. Note that less points are rendered with green color at this stage.
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Fig. 19. An overview of the study area. a) Location of the surveyed area in the region of Jaén. b) Study area as a portion of an olive grove. Coordinates are given in

WGS84 (EPSG:4326).

datasets of 270 points/rn2 (0,36 ha and 95 images), 336 points/rn2 (2,38
ha and 101 images) and 5.429 points/m2 (0,35 ha and 165 images). As
observed, point density can be improved by increasing the number of
coacquired images.

Absolute and normalized response time. The naive approach is
the fastest mapping algorithm, whereas occlusion-based methods are
also quite competitive, despite the fact that Pix4Dmapper and Agisoft
Metashape methods benefit from the use of CUDA-compatible GPUs. As
previously described, the naive and depth buffer mapping algorithms
are developed as sequential approaches, while occlusion mapping uti-
lizes GPU for solving the occlusion problem. The naive approach offers a
minor improvement for the overall response time in comparison with
Agisoft Metashape, while normalized response time outperforms com-
mercial software (78,39% and 96,73% less processing time per point
with respect to Agisoft Metashape and Pix4Dmapper, respectively).
Results of occlusion mapping for r; are also remarkable as it builds
different BVHs for every image, each one integrating up to 6 million
points (r, peaks on 14,5 million points).
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3.3. Aggregation of thermal data

The proposed methodologies were evaluated in order to prove their
accuracy when assigning thermal values to 3D points. However, this
chapter is significant whether we assume separate thermal values must
be aggregated, despite the fact that they are acquired from different
viewing angles. As proposed previously, aggregation functions may be
replaced by operators which select the most appropriate value, e.g.
assigning priorities based on the viewing angle.

The improvement of applying penalty functions is assessed by
measuring the deviation of aggregated values from the observed values
in the dataset. For that purpose, we compute the deviation of our ther-
mal point cloud through the Root Mean-Square Deviation (RMSE), Mean
Absolute Error (MAE) and standard deviation. However, penalty func-
tions are applied as local optimizers, where the result of an aggregation
is chosen as the value that minimizes a distance function (given by the
penalty function). This suggests that global measurements are not
appropriate for this problem. Average RMSE and MAE (Egs. 16, 17) are
two alternative criteria mainly adopted for unbalanced sets of few items.
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Table 5

Performance comparison of the proposed methods. The reported values are
averaged over five different executions. r; and ry correspond to a search radius
of 20 m and 30 m respectively. The best results for each measure are highlighted
in bold. Mapped images shows the number of thermal images that were suc-
cessfully mapped into the point cloud. For our method, it shows the number of
registered RGB-thermal pairs. For commercial software, images are excluded
whether their parameters cannot be estimated or no features are detected.

Algorithm
Attributes Naive Depth Buffer Occlusion Pix4Dmapper
Mapping () ~ Mapping (1) ~ Mapping (1)

Number of 82.743.078 79.511.469 74.181.776 9.782.277
points points points points points
Area 1,9973 ha 1,9973 ha 1,9973 ha 1,9942 ha
Point 4.143 3.981 points/ 3.714 points/ 461 points/

density points/m? m? m? m?
Response 3 m 36,54s 7 m 12,18s 4 m 27,83s 13 m 4,4s
time
Response 2,617 us 5,435 us 3,61 us 80,185 us
time per
point
Mapped 368 of 410 368 of 410 368 of 410 371 of 410
images
Attributes Naive Depth Buffer Occlusion Agisoft
Mapping (r2) Mapping (r2) Mapping (r2) Metashape
Number of 82.767.436 79.511.469 74.213.254 18.045.885
points points points points points
Area 1,9991 ha 1,9991 ha 1,9991 ha 1,7202 ha
Point 4.140 points/ 3.981 points/ 3.712 points/ 1.102 points/
density m? m? m? m?
Response 7 m 31,01s 12 m 4,38s 9 m 24,92s 3 m 48,31s
time
Response 5,449 us 5,435 us 7,61 us 12,113 us
time per
point
Mapped 368 of 410 368 of 410 368 of 410 326 of 410
images

However, it allows quantifying the quality of the adjusted thermal data
in terms of distance to image samples.

(16)

MAE,y, =

a7

Table 6
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where s; is the number of samples (S;) from where A; was calculated.
Nevertheless, global RMSE and MAE are also reported in Table 6.
Equations of RMSE and MAE are adapted to our set of points as follows
(Egs. 18, 19):

18

19

The average standard deviation of samples for each 3D point is also
calculated as expressed in Eq. 20, provided that it does not consider the
aggregated value, i.e. it does not vary for different penalty functions.

s
i

s,f{s,o Sk

>

=1

M=

Si

(20)
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By the definitions of penalty functions P; and P, (see Table 6), we can
observe that averaged RMSE and MAE are biased towards both func-
tions. Nevertheless, penalty functions were included to minimize error
measurements. Indeed, the bias exists and shows that penalty functions
reduce the distance from the aggregated value to a set of image samples.

Moreover, methods which take into account the occlusion are ex-
pected to yield better results for averaged measures, as the number of
samples for each 3D point decreases. However, global RMSE and MAE
worsen the results of our penalty-based methods since the minimization
was applied for s;, instead of the overall number of samples, > % s;.
Nevertheless, aggregated thermal data must be optimized for each point.
In that sense, the best value for averaged RMSE is achieved by Occlu-
sion-P,, whereas Occlusion-P; lowers the dispersion measured by the
averaged MAE. In any case, the penalty-based methodologies improves
the results of the first aggregation row, i.e. approaches with the arith-
metic mean as a single aggregation. Penalty function P; minimizes the
absolute error (MAE,,), while penalty functions P, and P; penalize
higher variations and thus minimizes RMSE ;.

Results of aggregating thermal data can also be assessed by
computing the distance between histograms of 2D and 3D points.
Despite the significant dispersion of image samples, we evaluate if
penalty functions produces variations on distance measures. For that
purpose, we consider three conventional criteria to compare histograms,
such as Pearson Correlation Coefficient (Eq. 21), Hellinger distance (Eq.

Measurement of distance from aggregated thermal data, stored at (x,y,z), to 2D thermal samples visible from such point. Blocked samples are omitted by occlusion

methods. Errors are computed using intensity values that range from O to 1.

Measure
Penalty function Mapping algorithm Average ¢ Average RMSE RMSE Average MAE MAE
No penalty Naive 0,052 0,054 0,052 0,045 0,024
Visibility 0,049 0,050 0,055 0,042 0,027
Occlusion 0,039 0,042 0,054 0,042 0,054
Py |d(xi.y)| Naive 0,052 0,054 0,053 0,044 0,024
Visibility 0,049 0,051 0,055 0,041 0,027
Occlusion 0,039 0,042 0,055 0,035 0,034
P, : d(x;,y)? Naive 0,052 0,053 0,052 0,044 0,024
Visibility 0,049 0,050 0,054 0,042 0,027
Occlusion 0,039 0,041 0,053 0,036 0,035
P : |d(x, ) Naive 0,052 0,054 0.052 0,045 0,024
Visibility 0,049 0,050 0,054 0,043 0,027
Occlusion 0,039 0,041 0.053 0,037 0,035
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22) and Intersection distance (Eq. 23) (Cha, 2007). We will refer to them
as dpearson; dhellinger aNA dingersection for sake of simplicity. dpearson coefficient
ranges from —1 to 1, with 1 being a perfect correlation. Zero implies
there exist no linear correlation and —1 indicates a perfect negative
correlation. On the other hand, dpejingr measures the similarity of two
probability functions, where 1 implies that both distributions are
orthogonal. The expression of Eq. 22 is simplified if histograms h; and hy
are defined as density functions in [0, 1] (hnomli,hno,’,,,zi). Finally, the
intersection, dintersections iS another widely used form of similarity for
probability distributions. It returns 1 when hm,,mli and h,w,mzi are
completely overlapped.

n

S5 (%)
d| hihy | = —== — . @D
hy, —h hy, — I
2 (i =1) 3 (i ~e)
1 .
d| hhy | =41 - —= b,
hy 2”2 i=1
n (22)
= 1- hrmrrm hnarmz
(23)

d(hl,h2> =" min (hl‘,h2i>
i=1

where n is the number of bins of the histograms h; and hs, both of the
same size.

Fig. 20 shows the template histogram for the naive approach as well
as the histograms calculated from two mapping procedures (without

Tmagery samples

Naive (No penalty)
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penalty function and using P3). The rest of approaches present minor
changes with respect to this figure and thus are omitted. Therefore, these
slight variations are detailed through the aforementioned similarity
measures in Fig. 20. It must be noted that dpejjingr is transformed into
1 —dpellinger, SO that the three measures can be rendered in the same
range. According to the reported results, occlusion-based methods are
considered to be more similar to their baseline histogram, specially for
the occlusion test. Furthermore, the penalty function P;, which com-
putes the dispersion as |x; — y|, improves the baseline result for every
approach.

3.4. Analysis of thermal point cloud

We have retrieved the temperature for ground and vegetation points
once they are recognized. Fig. 21 represents the values of each class from

10-2 F Ground M Vegetation

Frequency
.

20 30

Temperature (°C)

10 15 25

Fig. 21. Frequency function of thermal radiation for three-dimensional ground
and vegetation points.
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Fig. 20. Intensity distribution for image samples considered while building the thermal point cloud, as well as the distributions recovered after applying two
mapping method (naive (no penalty) and naive (penalty-based, P3)). The density functions of other approaches are omitted as they present similar results by visual
inspection. Finally, the similarity measurements between histograms are reported for each configuration, where minor changes in the distribution are accentuated.
For sake of simplicity, Hellinger distance is expressed as 1 —d, so that the three measures can be rendered through the same chart. Hence, the value 1 implies that
both histograms are equal (h;, = hy,,Vi € [0,n)), while 0 indicates complete dissimilarity (h;, = 1 —hy,, Vi € [0,n)).
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a point cloud of nearly 100 million of points. Accumulated values are
presented as a density function based on the point cloud size. Although
Fig. 9 shows that vegetation presents overall less emission of thermal
radiation, both temperature data-sets are far from being disjoint. It is
worth noting that vegetation class also includes dry weeds, which were
classified as anomalous hot regions. On the other hand, ground points
also cover regions shadowed by trees. However, the local maxima of
both thermal distributions clearly yield a relevant value for our two
categories. Most thermal values range from 12 °C to 23 °C; anomalous
hot regions are detected in vegetation and metal surfaces, whereas cold
regions are present at isolated tree and ground points.

3.5. Visualization of the point cloud

To provide better insight into the reconstructed surface, we have
rendered the three-dimensional point cloud provided by our solution, as
well as the outcome of commercial software. Fig. 22 depicts three re-
sults, where the first point cloud is computed through the naive
approach by averaging image samples. Agisoft Metashape and Pix4D-
mapper results are obtained while measuring their response time. It is
worth noting that Pix4Dmapper utilizes a different grayscale distribu-
tion, as the software is capable of extracting absolute thermal values
from the image dataset. Therefore, such values are normalized consid-
ering tmin and tyay.

As shown in Fig. 22, the result of Pix4Dmapper presents empty re-
gions which correspond to images that were not aligned since relevant
key-points were not found. Furthermore, canopies are poorly estimated
as they seem much noisier than in the RGB reconstruction, which is
known to be correct. Accordingly, trees present higher elevation than in
our solution, computed through the RGB point cloud.

Regarding the result of Agisoft Metashape, it presents a wide number
of relevant errors. First, canopies are badly estimated, to the extent that
they are represented as planar surfaces. Moreover, a significant part of
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the study area is placed several meters below the rest of the environ-
ment. The incorrect reconstruction also leads to noticeable outlier points
within the point cloud, although they could be easily filtered out in most
cases. Finally, sparsity is also visible for both point clouds, although it is
more significant for the Pix4Dmapper result, as reported in Table 3.

Finally, we aim to show the preservation of details acquired in
thermal images through Fig. 23. Correction of distortion, as well as ac-
curate projection and aggregation methods, allow us to build a thermal
point cloud whose 3D structure is given by an RGB point cloud, whereas
no blurring or distortion effect is present.

4. Conclusions and future work

In this work, we described a flexible and automatic algorithm for
building dense thermal point clouds. The method receives a dense RGB
point cloud as well as a set of RGB and thermal images as input. Coac-
quired images are then registered so that thermal images can be pro-
jected into the RGB point cloud. We also managed to extract
temperature values using image metadata and explored the problem of
occlusion with two algorithms oriented as 2D and 3D approaches.
Hence, we avoid aggregating thermal data from foreground points to
background objects. In addition, these methods outperformed com-
mercial software in most of the measured features. The naive CPU
approach presented the best overall response time, while the normalized
response time was much more competitive for the three methods.
Furthermore, the methodology was developed as an accelerated
approach to benefit from hardware capabilities. Accordingly, the normal
estimation, as well as the most time-consuming algorithms, were
developed using GPU. As a result, the reported processing time per 3D
point decreased by 78,39% with respect to Agisoft Metashape for
building thermal point clouds, though we handle a larger number of
points.

In addition, we explored a new algorithm for visualizing thermal

a) RGB point cloud

Planar surface

b) Our solution

Wrong elevation

¢) Agisoft Metashape

Outliers

d) Pix4Dmapper

Fig. 22. a) Original RGB point cloud, retrieved with the original resolution, b) thermal point cloud computed using the naive approach, c, d) erroneous Agisoft and

Pix4D results, respectively, where their errors are also highlighted.
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Fig. 23. Close-up representation of a thermal point cloud of nearly 20 million points. As observed, the details of thermal images are preserved and no blurring effects

are visible.

points. With it, anomalies were clearly visible. Values close to the outlier
boundary were highlighted, whereas intermediate values were mainly
represented as RGB points. Although the main objective of this work was
to estimate a thermal point cloud, we also provided a methodology to
classify and remove ground points, thus focusing on points that are
known to belong to vegetation for our study area.

Moreover, we proposed an innovative solution to aggregate multiple
values in the remote sensing field. As an alternative for the arithmetic
mean, we utilized multiple aggregation operators and each point could
select the operator that minimized an error measure. However, the
framework was developed so that this procedure could be switched to a
single-aggregation approach. Furthermore, we depicted the thermal
emission of a point and discussed whether the use of aggregation op-
erators was needed. Finally, we utilized dispersion and histogram dis-
tance measures to assess the impact of applying penalty functions. The
conducted tests showed that penalty functions clearly reduced the
measured error and improved the similarity between the baseline and
estimated histogram. However, penalty functions are conceived to
minimize a specific error measure and thus any of the described penalty
functions are suitable to reduce the distance to TIR radiation samples.

The described methodology is appropriate when SfM-MVS fails due
to a lack of key-points, as occurred in our dataset. The density of the
estimated point clouds also suggests that this solution would be appro-
priate for applications where sparsity is a significant drawback. Due to
its software capabilities, it is also recommended to minimize the
response time as well as for extracting reliable thermal data.

In future work, we would like to conduct a deeper study of the in-situ
radiometric calibration, thus allowing us to develop a reliable multi-
temporal system based on reconstructed thermal point clouds. Addi-
tionally, the registration of RGB and thermal images can be improved to
increase the point density of the result. We could also provide even more
competitive solutions by developing the complete workflow in GPU.
Finally, we aim to carry out further studies about the occlusion problem
by comparing several parallel-computing frameworks, and even take
advantage of rendering procedures (for instance, the depth buffer step of
a rendering pipeline). Regarding the applications of thermal data, we
would also like to apply the generated results to control a crop, e.g. by
monitoring the presence of pathogens and comparing the detection ca-
pabilities with respect to thermal point clouds of lower quality and point
density.

The full source code is available at https://github.com/AlfonsoLRz/
RGBThermalFusion.
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