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Multiple types of images provide useful information about a crop, but image fusion is still a challenge in Precision
Agriculture (PA). We describe a framework which manages a multi-layer registration model of heterogeneous
images obtained by an unmanned aerial vehicle (UAV) by proposing pair-to-pair steps through a registration
method invariant to intensity differences, allowing us to connect different aerial images with significant dif-
ferences. Correction of deformed images is treated as a first step to end up with our registration algorithms. These

methods conform the base of more advanced systems that combine 2D and spatial information, therefore it
represents the link of several types of images. The evaluation shows the flexibility of our framework when
dealing with different requirements. Effectiveness of the Enhanced Correlation Coefficient method is proved and
thus shown as a suitable method for the registration of heterogeneous images.

1. Introduction

Precision agriculture ensures the development of accurate farming
management practices. Through these activities, crop yield is maxi-
mised, and environmental impact is reduced by optimising the usage of
pesticides and fertilisers (Pablo et al., 2014). The monitoring of crops
maintains control of many indicators, such as the state of health, the
amount of water and fertilisers, and possible infections (Zhang and
Kovacs, 2012).

Remote sensing techniques have been used for decades as a part of
PA practices for crop and soil monitoring. It was recently enhanced by
the reduction in price of sensors (RGB, multispectral, hyperspectral,
thermal). The development of Unmanned Aerial vehicles (UAV) is also
playing a key role in PA monitoring (Tang et al., 2020). The outcome of
computations based on several sources of information frequently con-
sists of orthomosaic maps, vegetation indices or point clouds.

Regarding UAV-based multispectral and hyperspectral imaging,
their applications in PA cover the detection of diseases, classification of
weeds, and estimation of water, biomass or chlorophyll (Lu et al., 2020).
These optical Remote Sensing (RS) methods are known to be slower at
differentiating properties such as stress levels unless visual symptoms
are noticeable. On the other hand, surface temperature obtains more
accurate results on stress levels and faster results (Khanal et al., 2017).
Even though the application of thermal imaging has been limited, it is
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considered as a promising tool in PA. The combination of both types of
information yields a more complete view of a crop. For instance,
complementarity of multispectral or hyperspectral data with thermal
data helps to discriminate infected areas from healthy and low leaf areas
through vegetation indices such as NDVI (Normalised Difference Vege-
tation Index) (Maes and Steppe, 2019). This complementarity is also
extended for RGB images, which are mostly used for weed and logging
detection.

By combining images from up to four sensors (RGB, multispectral,
hyperspectral and thermal) we can cover most of the applications of
UAV remote sensing. Registration of sensor data is a common topic in
PA, even for multi-temporal applications. Moreover, 3D information is
frequently combined with sensor imagery. Most of the works found
merge at most two types of UAV-based information. Regarding RGB and
multispectral imaging, (Garcia et al., 2020) estimates corn grain yield
from vegetation indices, plant density and canopy cover using multi-
spectral and RGB images along with a neural network model. Some
applications rely on ground control points (GCP) and computing of
separate orthomosaic maps to estimate nitrogen accumulation (Zheng
et al., 2018). Other works decompose RGB images and apply wavelet
transformations which end up affecting their colour information (Bar-
rero and Perdomo, 2018). Additionally, several studies manage to map
RGB point clouds with spectral information (Jurado et al., 2020)
through the registration of high-resolution RGB and multispectral
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Fig. 1. Overview of the framework methodology as well as the multi-layer model composed of RGB, multispectral and thermal imagery.

imagery, along with photogrammetry.

Multispectral images do not lack differences either, as they are
retrieved by separate sensors which do not share viewing angles or
perspective centres. Some works can be found in this research area,
either using multispectral or hyperspectral imagery. (Shen et al., 2014)
introduces an image-matching solution based on a descriptor that es-
tablishes dense pixel correspondence in input images. (Jhan et al., 2016)
relies on image metadata to fix the misalignment, while (Jhan et al.,
2017) also uses parameter estimating methods such as Random Sample
Consensus (RANSAC) to minimize the error induced by calibration un-
certainty. Finally, (Hakim et al., 2018) combines image-matching and
metadata approaches in a supervised model.

Registration of RGB and thermal imagery is not a trivial task either
(Bavirisetti and Dhuli, 2015). In this scope, most of the PA works
frequently avoid merging them. (Liu et al., 2018; Tucci et al., 2019)
relies on ground control points and external software, such as Pix4D-
mapper or Photoscan Agisoft. Then, a registration process is exchanged
for an overlapping of orthomosaic maps. Development of specific plat-
forms which integrates thermal and RGB modules is also well suited to
monitor a crop, as the differences between images are previously known
and constant (Osroosh et al., 2018). Literature related to RGB and
thermal registration shows that there exist studies which combine
multispectral, temperature and RGB information, but they are mainly
focused on the extraction of separate orthomosaic maps. Thus, the
registration algorithm lacks scientific interest as it is already solved by
professional software (Santini et al., 2019; Matese and Di Gennaro,
2018).

We can conclude that PA is an active research area which involves
many groups, mainly focused on the search of new applications and the
development of algorithms which extract useful information from a
crop. Most of them are not developed from scratch and they are also fed
with data which has been previously processed by other software solu-
tions. Although accuracy and fine-grain details are relevant for PA ap-
plications, many of the cited articles rely on the overlapping of multiple
orthomosaic maps, extracted from the fusion of a large number of im-
ages. Also, these solutions depend on software capacity to generate an
orthomosaic map from any type of image. Moreover, some of the
methods found in the literature need ground control points to guide the
registration process. Thus, a fully automatic registration algorithm
which does not rely on previous solutions is highly suitable for PA ap-
plications involving multiple data sources.

In this article, we present an automatic framework to register several
types of UAV-based images that do not need to be preprocessed. Crops
are not registered using overlapped orthomosaic maps but through the
registration of pairs of images, as shown in Fig. 1. The solution takes
advantage of an algorithm invariant to photometric distortions that is
well suited to register heterogeneous images. Therefore, our framework
works with low-level implementations that correct and register the
original UAV-based images. Finally, we propose a naive application that
uses the result of a registration process.

2. Material and methods

This section describes UAV sensors, acquired datasets, and methods
developed for fusing images from multiple sources. The methodology is
based on three main stages: (1) registration of multispectral images, (2)
registration of multispectral and RGB imagery and (3) registration of
thermal and RGB imagery. Once the framework is fully described, an
application is presented through the registration of multispectral
images.

2.1. Study area and data acquisition

Our method takes input data from the monitoring of an olive plan-
tation, which is located in Jaén, a southern region of Spain. The study
area covers two hectares of olive trees where the proposed methodology
has been tested and optimised. Fig. 2 presents a general overview of the
study area.

In this research, four datasets have been acquired using multiple
UAV-based sensors in different stages of the olive cycle. The first two
datasets contain multispectral images which capture the reflected light
in visible and near-infrared ranges. On the other hand, third and fourth
datasets include high-resolution RGB imagery and thermal images
which are widely used to assess both healthy and under stress olive trees.
The third dataset also includes multispectral images. Multispectral, RGB

Study area

398631 398805

4212888
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Fig. 2. An overview of the study area. Coordinates are given in UTM (Universal
Transverse Mercator) coordinate system.
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Table 1
Wavelength range for each multispectral band retrieved by a
Parrot Sequoia device.

Multispectral band Wavelength (nm)

Green (GRE) [530,570]
Red (RED) [640,680]
Red-edge (REG) [730,740]
Near-infrared (NIR) [770,810]

and thermal images have been captured with a frontal overlap of 90%
and a side overlap of 80%, and the flight height is set as 30 meters.
Missions have been planned using DroneDeploy (California, United
States of America) in a portable device considering a single-grid
configuration.

Regarding acquisition technology, a multispectral sensor (Parrot
Sequoia) and a thermal sensor (DJI Zenmuse XT2) are mounted on board
of a drone. The multispectral device captures four spectral bands
(Table 1) with a focal length of 4 mm. These wide-angle lenses can cover
alarge area of terrain to capture more plants in a single image. However,
these images present high geometric distortions following a fisheye
model. The four spectral bands are shown in Fig. 3.

The fifth lens of the multispectral device takes RGB photos (15.9
megapixels) with a focal length of 4.9 mm. This RGB sensor is mounted
with a rolling shutter and the quality of resulting images is low due to
vibrations associated with the drone flight and the rolling shutter effect.
Consequently, these images are not used in this work. Regarding the
thermal sensor, it is characterised by two lenses which capture thermal
and high-resolution RGB images. The thermal lens has a focal length of
19 mm, which avoids previous deformations and obtains rectilinear
images. The second lens has a focal length of 8 mm and it also retrieves
high-resolution RGB images. A summary of image dimensions and focal
length sizes with which they are taken is shown in Table 2.

2.2. Image correction

The wide-angle lens of many of our sensors allows us to cover a large
area of terrain but also causes a high visual deformation known as
fisheye distortion (Fig. 4). The correction process is illustrated using
multispectral images as input data, but it can be applied to the rest of
images which present the fisheye distortion. This effect is mostly visible
on the corners of an image, where objects take a circular shape. The
correction algorithm consists of a transformation matrix which is used to
create a new image with the same size, where its pixels pyy take the
colour of p;; from the original image. i,j are not necessarily integer
values; in fact, i,j € R.

This relation can also be presented in terms of angles (Fig. 5). A lens
forms an angle a between its optical axis and a segment that goes from
the source point of the lens, c,, to any point py,. Both segments share
their origin (c,), which is known as the optical point. This angle is
modified once the image is corrected. § turns into @, and p;; is translated
to pyy. (i,j) # (x,y), but it remains on the segment that goes from the
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Table 2
Dimensions in pixels and size of focal length for each type of image.

Sensor Dimensions (px) Focal length (mm)
Multispectral 1280 x 960 4

Multispectral (RGB) 4608 x 3456 4.9

Thermal 640 x 512 19 mm

Thermal (RGB) 4000 x 3000 8

Fig. 4. (a) Original image with fisheye distortion, (b) Corrected image.

-

Fig. 5. Representation of fisheye distortion parameters in a multispectral
image. The surface of the corrected image is drawn as a deformed red-bordered
shape. The relation between a pixel from the corrected image, pxy, and a po-
sition from the original image, (i,j), is also presented.

principal point, cp, to pxy. A triangle-similarity can be easily observed in
Fig. 5. Pulling the image corners would be an appropriate example for
illustrating the correction process. Thus, a smaller translation is applied
to those points which are closer to c,.

The correction process can be performed through two functions, f(x)
and f(y), which return the values i and j respectively. Therefore, the
angle a between the optical axis and a segment c,pyy can be defined as
shown in the Eq. 1, where a simple trigonometrical operation is applied.

Fig. 3. Multispectral bands of a single capture. (a) Green, (b) Near-infrared, (c) Red, (d) Red-edge.
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Fig. 6. Pattern obtained when multiple pixels from the first image are mapped
into the same position of the resulting image, leaving pixels with null values.

Fig. 7. Effect of image ghosting when overlapping multispectral images using
the alpha channel.

Finally, the angle a is normalised in [0, 1]:

=) +0-¢) 2
1 \/ Px Py - 1N
= —*tan” ' (— M
( ; )= ! ()
Up to four distortion coefficients (k;,kz,ks3,k4) can be retrieved from
the image metadata. These coefficients can be used to compute the angle
S between the optical axis and the segment c,p;; (Eq. 2).

2,
a = —"tan
n

p=hk+hk*a+k*a +k*a @

Therefore, we obtain a new image with the same size, where p,,
takes the colour of a position p;; computed using previous equations.
This process guarantees that every pixel of the corrected image receives
a colour. Otherwise, the inverse mapping (from p;; to p.,) leaves null
values, as two pixels from the original image can be mapped to the same
position x,y € N (Fig. 6). As a solution, a pixel p;; would need to modify
multiple pixels from the resulting image, where its contribution is given
by the distance to pixel centres. However, the process here described
only requires a writing operation and multiple reads from neighbour
pixels.

The last step of this method computes the colour for each pixel py, as
it is mapped to a real position, i,j € R. Hence, a bilinear interpolation
algorithm is used to solve this problem.

2.3. Registration of multispectral imagery

Four spectral bands are captured from our multispectral device
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(Green (GRE), Red (RED), Red Edge (REG) and Near Infrared (NIR)). All
observed bands are shown in Fig. 3. Even though these images are taken
from the same device, there are significant differences between them,
which are mostly visible through an overlapped composition (Fig. 7):

a. There exists a translation since they have been taken by different
lenses of the multispectral sensor. Each lens has a static position
along the device.

b. Each image has its own optical axis and therefore, its own principal
point. The optimal scenario considers that axes are parallel and as a
result, a translation solves the misalignment since we know their
physical distance. However, the metadata of multispectral imagery
shows non-parallel axes through the definition of a camera ring (Rig
Relatives and Rig Index attributes), i.e., a set of cameras which are
connected and defined by geometric constraints. The origin of the
ring is one of the lenses (master), defined by a position Ty, and its
rotation in the world, Ry, and rest of lenses (secondary cameras)
defines their position, T, and rotation, R, with respect to the master
lens.

c. Each lens takes a photo with different timestamps. The time differ-
ence can be up to a few milliseconds. Consequently, this delay in-
volves both rotation and translation transformations considering the
drone movement.

Registration of multispectral imagery can be performed through
metadata, but it relies on calibration and accuracy of the sensor. Some of
the previously cited articles use this approach and try to avoid errors
with parameter estimating algorithms. The approach here proposed
does not rely on image metadata but only on the colour information.
Traditional image-matching approaches, such as SIFT (Scale-invariant
feature transform), are not suitable for spectral bands or heterogeneous
images (e.g. RGB and thermal images), as the colour of a material may
not be constant over different images. Although there exists derived
solutions from SIFT method to work under photometric differences
(Park et al., 2008), they do not seem as robust as the algorithm which is
next presented.

Further than SIFT, other image-matching algorithms are invariant to
photometric distortions. One of them is Enhanced Correlation Coeffi-
cient (ECC) (Evangelidis and Psarakis, 2008). This is a highly suitable
algorithm for many reasons. First, it uses up to four motion models:
translation, euclidean, affine and homography, from lower to higher
computational complexity. Therefore, the motion model can be selected
by considering which transformations are the minimum the misalign-
ment responds to, i.e., translation, rotation and scale. Even with the
most complex motion model, the algorithm remains linear (O(n)).
Furthermore, it is possible to select how fine-grained the process is
through a precision factor.

Although homography is the safest motion model to register a pair of
images, a euclidean model is proved to be enough for the registration of
multispectral bands. Also, algorithmic complexity is reduced, as the
matrix size is 2x3 instead of 3x3. As described in a previous paragraph,
differences between bands can be expressed by means of translation
(physical distance), rotation (drone movement) and scaling (due to
different perspective views). Translation is the most visible difference,
while rotation and scale allow to reach a more accurate registration.

Despite the desirable behaviour of ECC for registering heterogeneous
images, the algorithm can be improved by first registering those images
which are more similar in terms of intensity. Therefore, we consider a
hierarchical process that guarantees success in the registration of mul-
tispectral bands. The outcome is given by four images of the same size
which do not suffer from the image ghosting effect when overlapped.

ECC yields a motion model, i.e. a matrix, which can be used to
transform an image. We can multiply several motion models and apply
the result to reach a hierarchical alignment. However, the results
contain areas with null values after a transformation. Once again, we can
use motion models and apply those matrices to image corners in order to
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Table 3
Normalised correlation coefficient between original pairs of multispectral im-

ages. This table is also intended to support comparisons with the final results of
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our methods.
Dataset 1 Dataset 2 Dataset 4
Bands p p p Avg.
GRE-NIR 0.9182 0.9175 0.9308 0.9221
GRE-RED 0.9438 0.9488 0.9516 0.9480
GRE-REG 0.9433 0.9464 0.9567 0.9488
NIR-RED 0.8904 0.8978 0.9438 0.9106
NIR-REG 0.9514 0.9629 0.9630 0.9591
RED-REG 0.9028 0.9222 0.9405 0.9218

retrieve the part of the image to be discarded. Furthermore, the di-
mensions of the transformed images might be different, so the minimum
non-null area needs to be computed. The final area is defined as follows
(Egs. (3)-(6)), where M; is the composite transformation for a multi-
spectral band:

min, = max,¥i € [0,3]{M;*[0,0,1]",

3
M*[0,h — 1,1]", min, }Vi € [0,3] ©)

min, = max,{M;*[0,0, I}T, @
M:*[w —1,0,1]", min, Vi € [0,3]

max, = min {M;*[w —1,0,1]", ®)
M*[w — 1,k — 1,1]7, max, }Vi € [0,3]

max, = min, {M*0,h — 1,1]", ©

M#*w —1,h— 1,1]", max,}Vi € [0,3]

The pairs of images to be registered are selected by using any tech-
nique which analyses image similarity, such as normalised correlation
coefficient (CC). This method calculates a value p € [0, 1] which repre-
sents the similarity between two grayscale images, f(x,y), f (x,y). As
intensity values highly differ between bands, CC is used as a measure to
guide the process, instead of an exact similarity value. Therefore, we can
compute CC between the six pairs of images. For sake of simplicity, GRE
image is considered as the master image, just as our device model does
with the camera ring.

Three multispectral datasets are evaluated in Table 3 to calculate the
average CC between any pair of multispectral bands. As a result, RED
and REG are very similar to the master image, while NIR band needs a
composite matrix to get registered with GRE image. For that purpose,
REG band is aligned with GRE, and its matrix is used to register NIR with
GRE. The hierarchy of multispectral registration is defined as shown in
Fig. 9.

The minimum area cannot be computed just from lower left and

Original images (a) RGB preprocessing (b)

Reduce size
Blur

Input

Master

Fig. 9. Hierarchy of multispectral images when registering. NIR band needs 2
steps to get the result.

upper right corners, [0, 0] and [w —1,h —1], since M; includes a rotation, i.
e., it is not enough to check two non-adjacent corners.

2.4. Registration of multispectral and RGB images

This section aims to describe the steps which are needed to register
RGB images and the previously corrected multispectral captures. The
main contribution of RGB imagery to a multi-layer model is the addition
of GPS information, beyond any application which was shown in the
Introduction. Even though this data is not necessary for our framework,
we need to highlight the relevance of this registration step. as the final
multi-layer model is georeferenced through this process.

Multispectral and RGB images are not taken from the same device,
thus the differences between both types are logically more relevant.
Both images are also taken with different timestamps as the devices are
not synchronised. Therefore, the time difference may scale to seconds.
Also, RGB images are taken from a device with a longer focal length, but
it still shows a visual distortion.

The images to be registered are selected by their temporal distance, i.
e., for each multispectral capture (composed of four images) we search
for the RGB image whose timestamp is closer. This behaviour guarantees
our framework registers overlapping images.

As occurred with previous registrations, the ECC algorithm is well
suited for this scenario, where images of different intensities are
compared. Nevertheless, we need to decide which multispectral band
needs to be registered with RGB images. In this case, GRE spectral image
is the most appropriate image in terms of intensity (Table 5). However,
this decision is also supported by the algorithm efficiency as GRE does

Registration (d)

ai3
a23

Overlap |
ass |

Fig. 8. Registration methodology for RGB and multispectral images. Blur size was exaggerated for visualisation purposes.



A. Lopez et al.

Original images (a)
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Thermal

Gaussian blur
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Thermal image (c) Registration (d)

(@ b ¢
s d e f

Apply M;
Overlap

Fig. 10. Overview of the registration process for RGB and thermal images. Green channel of RGB images was emphasized to improve the understanding of

this scheme.

RGB Multispectral RGB

Multispectral

Fig. 11. Registration of multispectral and RGB images. The unregistered im-
ages are shown below the results.

not need to be registered with other image previously. Furthermore, no
transformations are needed on that image but a fisheye correction.

RGB imagery typically have higher resolution than multispectral
images, thus RGB images are resized to match the size of the second
type. However, the ECC algorithm can be applied at a sub-pixel level and
parameters can be selected to compute a fine-grain registration.
Although this configuration is slower, a faster convergence is obtained
by applying a previous gaussian blur filter in both images. The complete
process is shown in Fig. 8, where the algorithm parameters and their
values are given by a blur mask of size 3, a high number of iterations,
N =400, and a precision factor P of 17°. The values of these parameters
are further discussed in a later chapter. Fig. 11 presents a result of this
registration process.

2.5. Thermal and RGB registration

Registration of thermal and RGB imagery is the last step to complete
the proposed multi-layer model, where RGB images are used as a link
between multispectral and thermal imagery. This scenario avoids some
of the previous problems, as both types of images are taken by the same
device. Therefore, it is not necessary to find the image which is more
close in time, since it is already known.

However, there exists a noticeable difference in focal length sizes as
well as the consequent visual deformations. RGB lens captures a wider
area of terrain, but it also involves a fisheye distortion. Although both
images are taken from the same device, the aspect factor between focal
lengths is not enough to calculate which part of the RGB image is visible

Fig. 12. Registration of RGB and thermal images: (a) using an RGB area bigger
than thermal image (b) using an RGB area smaller than thermal image.

Fig. 13. Registration of images with objects not related to a crop.

in a thermal image, since other parameters such as sensor width also
affect the result. There also exists a translation related to the physical
distance between lenses, as well as a rotation derived from a small dis-
tance in milliseconds between captures, even though they are
synchronized.

A thermal image is not located at the centre of an RGB image neither
we know with certainty which part of the image do they both share.
However, the affine motion model of the ECC algorithm includes
translation, rotation and scale transformations. Translation and rotation
are supposed to fix the differences between RGB and thermal imagery,
while scale allows to search for an appropriate size where both images
get an accurate overlapping.

At least two approaches can be used to register a pair of RGB-thermal
images: (a) select a bigger area of RGB which fully covers the thermal
image (the visual result includes null values) or (b) select a smaller area
which does not necessarily cover the thermal image, improving the
result in terms of graphic visualization (Fig. 12). In any case, the result of
this process is a matrix M; that allows to register both images. Therefore,
these two approaches (shown in Fig. 12) obtain the same off-screen
result. The complete process is shown in Fig. 10.

Regarding the dimensions of images, RGB is scaled down to thermal
size, while precision and number of iterations are adjusted to provide a
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NIR, RED (a) Subtraction (b) Preprocessing (c)

filter
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Extraction of contours (d)

Contour retrieval Removal of small areas
’ -

ot T e N

Removal of clipped contours

Fig. 14. Overview of the processing of multispectral images to distinguish vegetation of interest from crop soil.

good sub-pixel level registration. Consequently, execution time also
decreases. Some results of this step are shown in Fig. 13. Further than a
crop, the registration algorithm is tested against images which include
objects not related to a crop, where it also returns good results.

2.6. Segmentation of individual trees

This framework allows to register multiple heterogeneous images,
thus it can be used to extract RGB, multispectral and temperature in-
formation from a crop. It can also be tracked over time to retrieve the
same information at several time frames. This section aims to provide an
example of a tracking application where trees are identified through
multispectral information. Points inside the extracted contours, which
are known to belong to vegetation, can be further analysed to extract
indices such as NDVI.

After registering previous multi-source datasets, a new method is
proposed to identify individual trees. In this way, meaningful data for
each crop can be obtained from all studied layers (multispectral, thermal
and RGB). For this purpose, multispectral images are highly suitable for
the recognition of individual trees, as the reflectance function for
vegetation, f(6), presents some peaks where the reflectance distance is
maximised. This contrast allows to differentiate soil and canopy.
Although we do not have access to the complete spectrum of f(6), there
exists (at least) relative maximum and minimum points which are visible
at some of our four spectral bands.

In this case, NIR and RED include relative maximum and minimum
reflectance values for vegetation, respectively. An assumption to be
considered here is that soil reflectance keeps constant across multi-
spectral images or difference is low enough to be filtered. Therefore, the
operation NIR - RED returns the result shown in Fig. 14.

Beyond an operation of image subtraction, the following steps are
also proposed:

1. Gaussian blur filter, to smooth the colour and remove noise.

2. Image thresholding, so we retrieve the structure of trees which are
visible in the scene.

3. Extraction of the hierarchy of contours. Contours within another are
not of interest, thus they must be discarded. Neither are of interest
those small contours which are mostly related to low vegetation or
any other object placed in a crop. Finally, the contours which are not
completely visible in the image are also discarded. They can be
identified using their position (close to image boundaries) and fully
horizontal or vertical edges.

Therefore, the identification of individuals trees can be adjusted
through the size of a blur mask (constant across images), the maximum
area to be discarded (calculated with the image size) and a threshold
value high enough to avoid merging tree contours (depends on reflec-
tance function). Despite this method yields accurate contours, most of
them contain hundreds of points. Nevertheless, this level of detail could
not be necessary when storing this data in a database. Using this
approach, contours can be simplified into convex hulls with an algo-
rithm such as the Sklansky method (Sklansky, 1982) or into fixed-length
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Fig. 16. Entity-Relationship model of a database for crown-tracking.

polygons (e.g. a hexagon) (Figure 15).

Finally, contours can be saved in a geospatial database (Fig. 16).
Each tree is identified by a centre of mass computed from the retrieved
polygon. Although this point may not be inside the polygon, it represents
a unique identifier for a tree. Also, this point may be translated over
time, therefore a distance threshold is needed, which in many geospatial
databases is already implemented by the own system.

The mass centre points and their UTM coordinates are stored in a
geospatial database. Here we propose a database model which allows us
to track trees over time to analyze their growth speed and changes in
their shape. Also, these trees are wrapped in a crop entity. Fig. 16 pre-
sents a basic approach that could be extended with additional infor-
mation, such as the health state of a tree or the amount of water.

3. Validation

Our framework is evaluated with four datasets which were previ-
ously described. Several tests are considered by modifying number of
iterations and precision factor of the ECC algorithm. The purpose is not
only to demonstrate the accuracy of our algorithms but also to show
different configurations which can be more appropriate to certain ap-
plications (real-time vs deferred analysis).

Measurements were performed on a PC with Intel Core i7.6700 3.4
GHz, 16 GB RAM, NVIDIA GTX 1070 with 8 GB RAM and Windows 10
OS. The implementation of the Enhanced Correlation Coefficient algo-
rithm is provided by the image processing library OpenCV. The appli-
cation has been developed in C++ within a graphical interface built
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Fig. 17. Example of a complete registration process for multispectral, thermal and RGB imagery.

with the Qt framework.

The accuracy of the registration process is measured through a
normalised correlation coefficient (CC) defined by Eq. 7. CC is a coef-
ficient p € [0, 1] that measures the linear relation between two images I
and T, source and template. Although this value gives us a valid esti-
mation, it is not an exact measurement of the alignment accuracy, since
it considers the intensity difference between both images.

The images to be compared are selected randomly from our four
datasets. The number of images from each one depends on the dataset
size. Furthermore, not all of them contains all the types of images that
our multi-layer model contains.

Sy TE Y ) x4+ x,y+y)
12 ' "2
Vg TP T+ v +5)

Up to three parameters are tested, as they all affect response time and
registration accuracy:

C=

)

e Precision to converge. Values near zero. The closer it gets to zero, the
harder is for the algorithm to converge.

e Number of iterations. A high amount of iterations might not improve
the result since the algorithm can converge earlier. Thus, it needs to
be adjusted.

e Size of images. Smaller dimensions do not necessarily obtain worse
results since ECC can work at a sub-pixel level. In that case, execution
time also decreases as the linear search involves a smaller number of
pixels.

4. Results and discussion

Multispectral registration. Four tests are executed to prove the
accuracy of the registration methodology using the four multispectral
bands. The correlation coefficient for unregistered images is presented
in Table 3 to show the improvement of our four tests from the first
scenario. In the case of multispectral images, their size is small (1280 x
960) in comparison with RGB images (4000 x 3000), therefore they do
not need to be reduced for optimisation purposes. Test; uses parameters
which can be near the optimal configuration, despite the execution time
is relatively high. Table 6 shows that for images that present other ob-
jects the correlation coefficient drops dramatically due to differences in
colour intensity (although by visual inspection images are well aligned).
Testy is run to prove that the execution time can be reduced in exchange
for a decrease in the correlation coefficient. Tests tries to get an inter-
mediate configuration which reaches high values of CC in a reduced
execution time. Test4 proves what occurs when image size is reduced (by
three in this case): the CC value increases while the execution time
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decreases. However, by visual inspection Test4 returns worse results.

RGB and multispectral registration. Table 7 shows the results of
three tests in terms of CC and execution time. As the differences between
images are now higher, the execution time increases dramatically. Testy
reaches an optimal state with a reduced time, while Test; gets the same
result with an increased build time. This scenario proves the conver-
gence of the ECC algorithm; a safer approach would pick good enough
values despite the execution time. However, real-time approaches can
take a greater risk using values which reduce the execution time and still
return good results (either they are optimal results or not). Both tests use
images with a size equal to multispectral dimensions divided by two.
This size allows to remove some details and improve the registration
process (although a small blur filter is still needed). Tests uses the
original multispectral size and RGB images are scaled to such size. It
returns worse results than previous tests since the number of iterations
and precision are reduced to avoid high execution times.

Thermal and RGB registration. Up to three tests are executed with
the same parameters as before (Table 5). In contrast with previous tests,
the size reduction does not have a great impact since thermal images do
not present well-defined contours. CC values are also expected to be
lower than in previous tests as the results include null values due to the
selection of a bigger area of RGB image. Therefore, Test; and Tests show
what occurs when both images are fitted into thermal image dimensions
divided by two. Both reach the best correlation coefficient found, while
Tests proves again the convergence of ECC as it yields the same results
than Test; in a lower time. Test, uses the original size of thermal images
and obtains almost the same CC average at the cost of a slightly higher
build time. In contrast with multispectral registration case, Test; and
Tests use smaller sizes but do not return visually incorrect alignments. In
conclusion, using the original size is not needed in this case.

Regarding the whole framework, a graphic result is shown in Fig. 17,
where multispectral, thermal and RGB images are registered to illustrate
the multi-layer model. The RGB image is aligned with the GRE image,
which was previously registered with its own multispectral bands. Also,
the thermal image is aligned with the RGB image. GRE band is used as a
link only for multispectral imagery, while RGB image acts as a link for
both multispectral and thermal imagery.

5. Conclusions

We described a framework for registering heterogeneous UAV-based
images into a multi-layer model. We have also exploited the ECC

Table 4
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algorithm to show that it is a suitable algorithm to register images which
highly differ on their intensity values. The process here described shows
that heterogeneous images can be registered to integrate a homogeneous
model with a few steps. Through a case study, we have also proposed a
method to detect individual trees in multispectral images. This method
could be further used to enable multi-temporal tracking of trees (growth
speed, health state, etc).

From this work, we aim to create an orthomosaic map which includes
multispectral, RGB and temperature data. For such task, we need to rely
on accurate geolocation data, mostly provided by RGB images or even
the UAV. Also, this multi-layer model can be extended with further
multispectral information (hyperspectral), or even it could be translated
to 3D space by registering all this data with a point cloud (e.g. generated
by photogrammetry).

In the case of aerial images, the differences between images are
typically smaller than in terrestrial images, even though we have needed
affine motion models to merge images. Therefore, the computation
process with terrestrial images is more time-consuming and requires
more iterations. From this framework, we could develop an adaptive
process which starts from a reduced size and advances to the original
size. With a reduced size, we can obtain an approximate transformation
in a lower execution time. This approximate transformation could be
applied so that the distance between images in their original size is
clearly reduced, and so is the complexity of the matching algorithm with
greater dimensions.
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Appendix A

Tables 4-7.

Normalised correlation coefficient retrieved from some multispectral captures in their default state.

Base correlation

Multispectral p(GRE-RED) p(GRE-NIR) p(GRE-REG)
Dataset 1: Image; 0.8954 0.8777 0.9306
Dataset 1: Imagey 0.9777 0.9381 0.9618
Dataset 1: Imageg 0.9756 0.9520 0.9727
Dataset 2: Imagesg 0.9265 0.8918 0.9316
Dataset 2: Imagesg 0.9146 0.8878 0.9242
Dataset 2: Imagess 0.9777 0.9381 0.9618
Dataset 2: Imagesy 0.9286 0.9100 0.9371
Dataset 3: Imagess 0.9578 0.9453 0.9739
Dataset 3: Image;o; 0.9602 0.9537 0.9686
Dataset 3: Image; 3¢ 0.9755 0.9612 0.9692
Dataset 3: Imageyg 0.9707 0.9504 0.9672
Dataset 3: Image;42 0.9728 0.9375 0.9656
Dataset 3: Image;44 0.9731 0.9316 0.9622
Dataset 3: Imageg 0.9669 0.9545 0.9714
Dataset 3: Image;4; 0.9732 0.9551 0.9744
Average 0.9564 0.9323 0.9581
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Table 5

Normalised correlation coefficient and execution time retrieved from the registration of a random subset of RGB and thermal images. o Test 1. Image dimensions:
thermal,e/ 2. Maximum iterations: 300. Precision: 17%° e Test 2. Image dimensions: thermal. Maximum iterations: 100. Precision: 1-2° e Test 3. Image dimensions:
thermalg,e/ 2. Maximum iterations: 60. Precision: 1~2°,

Test 1 Test 2 Test 3

RGB-thermal pair p Total time (ms) p Total time (ms) p Total time (ms)
Dataset 3: Imageszgs 0.9756 2779 0.9771 3204 0.9756 1419
Dataset 3: Imagegze 0.9728 2834 0.9745 3320 0.9728 1389
Dataset 3: Image;26 0.9728 2951 0.9741 3211 0.9728 1411
Dataset 3: Imagegyg 0.9756 2761 0.9770 3341 0.9756 1401
Dataset 3: Imagee7 0.9416 2731 0.9385 3134 0.9417 1381
Dataset 3: Imagegss 0.9511 2789 0.9494 3137 0.9511 1404
Dataset 3: Imageoges 0.9444 2881 0.9425 3177 0.9444 1403
Dataset 3: Image,;s 0.9396 2946 0.9358 3257 0.9396 1390
Dataset 4: Imagegao 0.9674 2791 0.9690 3200 0.9674 1396
Dataset 4: Imagessy 0.9786 2790 0.9803 3267 0.9786 1402
Dataset 4: Imageos 0.9266 2716 0.9265 3187 0.9266 1400
Dataset 4: Imageeoy 0.9511 2794 0.9502 3236 0.9511 1382
Average 0.9581 2813.58 0.9579 3222.58 0.9581 1398.16

Table 6

Normalised correlation coefficient and execution time retrieved from the registration of a random subset of multispectral captures which have been corrected and
registered. e Test 1. Maximum iterations: 30. Precision: 1 ~10 ¢ Test 2. Maximum iterations: 15. Precision: 12 e Test 3. Maximum iterations: 15. Precision: 1710 e Test 4.
Maximum iterations: 150. Precision: 17,

Test 1 Test 2
Multispectral p(GRE-RED) p(GRE-NIR) p(GRE-REG) Total time (ms) p(GRE-RED) p(GRE-NIR) p(GRE-REG) Total time (ms)
D1: Image; 0.9545 0.9186 0.9403 3627 0.9545 0.9181 0.9395 1128
D1: Imagey 0.9888 0.9473 0.9681 3576 0.9814 0.9473 0.9681 950
D1: Images 0.9861 0.9591 0.9772 3622 0.9817 0.9591 0.9767 1079
D2: Imageys 0.9654 0.9107 0.9368 3580 0.9654 0.9107 0.9368 1282
D2: Imagesg 0.9546 0.9088 0.9321 3607 0.9547 0.9088 0.9321 1224
D2: Imagess 0.9888 0.9473 0.9681 3573 0.9814 0.9473 0.9681 955
D2: Images; 0.9628 0.9265 0.9461 3569 0.9463 0.9265 0.9460 1100
D3: Imagess 0.9973 0.9654 0.9785 3543 0.9973 0.9645 0.9766 1090
D3: Image;o7 0.9973 0.9621 0.9776 3558 0.9973 0.9621 0.9776 1356
D3: Image; 36 0.9973 0.9677 0.9767 3577 0.9781 0.9623 0.9760 581
D3: Image;s 0.9957 0.9640 0.9731 3575 0.9956 0.9615 0.9696 1353
D3: Imagei 42 0.9962 0.9632 0.9749 3567 0.9772 0.9632 0.9748 989
D3: Image;44 0.9964 0.9580 0.9715 3586 0.9781 0.9580 0.9715 994
D3: Imageg 0.9967 0.9713 0.9810 3585 0.9967 0.9713 0.9810 1471
D3: Image41 0.9966 0.9746 0.9791 3518 0.9967 0.9713 0.9810 1110
Average 0.9849 0.9496 0.9654 3577.53 0.9788 0.9488 0.965 1110.8
Test 3 Test 4
Multispectral p(GRE-RED) p(GRE-NIR) p(GRE-REG) Total time (ms) p(GRE-RED) p(GRE-NIR) p(GRE-REG) Total time (ms)
D1: Image; 0.9545 0.9186 0.9403 1933 0.9540 0.9181 0.9394 1797
D1: Imagey 0.9866 0.9474 0.9682 1900 0.9883 0.9473 0.9665 1780
D1: Imageg 0.9838 0.9592 0.9772 1927 0.9849 0.9610 0.9767 1818
D2: Imagesg 0.9654 0.9107 0.9367 1884 0.9651 0.9113 0.9368 1746
D2: Imagesg 0.9546 0.9088 0.9321 1994 0.9651 0.9113 0.9368 1774
D2: Imagess 0.9866 0.9474 0.9682 1921 0.9883 0.9473 0.9665 1760
D2: Images; 0.9628 0.9265 0.9461 1895 0.9618 0.9266 0.9455 1774
D3: Imagess 0.9973 0.9654 0.9785 1905 0.9972 0.9659 0.9778 1805
D3: Image; o7 0.9973 0.9621 0.9776 1920 0.9970 0.9618 0.9762 1788
D3: Image; 3¢ 0.9966 0.9645 0.9766 1900 0.9969 0.9671 0.9752 1761
D3: Imageys 0.9957 0.9640 0.9731 1903 0.9948 0.9633 0.9714 1798
D3: Image; 42 0.9941 0.9632 0.9749 1909 0.9961 0.9632 0.9740 1773
D3: Image; 44 0.9909 0.9580 0.9715 1898 0.9963 0.9580 0.9702 1774
D3: Imagey 0.9967 0.9713 0.9810 1911 0.9964 0.9713 0.9806 1789
D3: Image; 43 0.9966 0.9746 0.9791 1873 0.9965 0.9750 0.9786 1789
Average 0.9839 0.9493 0.9654 1904.86 0.9852 0.9499 0.9648 1781.73
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Table 7
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Normalised correlation coefficient and execution time retrieved from the registration of a random subset of multispectral and RGB images. e Test 1. Image dimensions:
multispectralgj,e/ 2. Maximum iterations: 400. Precision: 1790 o Test 2. Image dimensions: multispectralg,/ 2. Maximum iterations: 150. Precision: 1730 ¢ Test 3.

Image dimensions: multispectralg;,e. Maximum iterations: 100. Precision: 1720,
Test 1 Test 2 Test 3
Multispectral RGB p Total time (ms) p Total time (ms) p Total time (ms)
D4: Image, D4: Imageq; 6 0.9683 8090 0.9683 2810 0.9569 7405
D4: Image; 45 D4: Imageq; g 0.9664 7882 0.9664 2839 0.9408 7022
D4: Imagei42 D4: Imagegos 0.9711 7506 0.9711 2757 0.9453 7058
D4: Image; 37 D4: Imageggs 0.9761 7221 0.9761 2718 0.9747 7448
D4: Image; 44 D4: Imageqoe 0.9690 7266 0.9690 2724 0.9680 7087
Average 0.9701 7593 0.9701 2769.6 0.9571 7204

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jag.2020.102274.
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