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ABSTRACT

This work describes an efficient approach for generating large
3D thermal point clouds considering the occlusion of camera
viewpoints. For that purpose, RGB and thermal imagery are
first corrected and fused with an intensity correlation-based
algorithm. Then, absolute temperature values are obtained
from the normalized data. Finally, thermal imagery is mapped
on the point cloud using the Graphics Processing Unit (GPU)
hardware. The proposed occlusion-aware mapping algorithm
is massively parallelized using OpenGL’s compute shaders.
Our solution allows generating dense thermal point clouds
in a lower response time compared with other notable soft-
ware solutions (e.g., Agisoft Metashape or Pix4Dmapper) that
yield results with a significantly lower point density.

Index Terms— Thermography, 3D point cloud, GPGPU,
Occlusion, UAV, Thermal Mapping, 3D reconstruction

1. INTRODUCTION

Thermography or Infrared (IR) thermal imaging is one of
the main data sources concerning Remote Sensing (RS). Al-
though visual cameras have been a standard imaging tool,
thermal devices avoid some of their main drawbacks. These
sensors are based on passive sensing technology, and there-
fore, they do not rely on external energy sources. Hence,
thermal cameras allow describing a surface through its tem-
perature. Thermal measurements can be acquired from air-
borne and satellite platforms, though their spatial and tem-
poral resolution is less adequate for fine-grained monitoring
tasks. Thus, Unmanned Aerial Vehicles (UAV) emerge as
an appropriate platform due to their lower altitude, together
with low-cost and lightweight thermal devices. However,
consumer-grade thermal devices are less prohibitive at the
expense of lower resolution and more sensor defects, such as
some noise sources causing thermal results to appear blurred
and smoothed out.

A fundamental problem in RS is the generation of 3D en-
vironments to assess image features on 3D geometry, mainly
presented as point clouds. Regarding thermography, the de-
scribed defects harden the reconstruction of 3D models. As
a result, this problem has been previously addressed in the
literature using multiple approaches. Photogrammetric tech-
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niques such as Structure from Motion (SfM) represent a base-
line for modeling 3D thermal point clouds, as this proce-
dure is part of some relevant software applications. How-
ever, the acquired information depends on the surface emis-
sivity, and thus the identification of keypoints can lead to erro-
neous reconstructions [1, 2]. Furthermore, photogrammetric
approaches are prone to errors when images show repetitive
patterns and uniform textures [3].

Instead of solely using thermal imagery, previous studies
investigated the generation of 3D point clouds with an alterna-
tive data source for projecting thermal imagery, mainly RGB
imagery due to its higher resolution. This approach allows
generating much more dense thermal point clouds. However,
these methods need either calibrating both sensors or identify-
ing features to fuse both data sources. To accurately capture
common keypoints, multiple features descriptors have been
proposed, such as Sobel, Canny and Hough transformations,
as well as improvements of Scale-Invariant Feature Trans-
form (SIFT) and Speeded Up Robust Features (SURF) oper-
ators [4]. However, some feature descriptors highlight edges
and corners barely recognizable in natural environments. Un-
like previous descriptors, the Enhanced Correlation Coeffi-
cient (ECC) consists of an optimization problem whose ob-
jective function is the image correlation [1]. Finally, 2.5D
point clouds have also been addressed by combining thermal
orthomosaics and 3D RGB point clouds.

Beyond the challenges of the procedure itself, build-
ing a 3D model is a time-consuming task, even for popu-
lar software taking advantage of CUDA-compatible GPUs.
Recently, large point clouds with millions of points have
been processed in modern GPUs for real-time rendering [5],
whereas occlusion has barely been addressed in point clouds
[6]. It can be approached by estimating a triangle mesh from
k-nearest neighbors (KNN), although it is not suitable for
complex scenarios, whereas the semantic segmentation of
the point cloud also helps detecting occlusion. In this work,
z-buffers are proposed to handle occlusion for the mapping
process, frequently implemented as a sequential algorithm.
Hence, the main contribution of this work is the estimation of
large, occlusion-aware, 3D thermographic point clouds using
a massively parallel approach to accelerate the mapping pro-
cess. The core is an accurate registration of RGB and thermal
images described in recent work [1].
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Fig. 1. a) RGB point cloud and b) its corresponding thermal reconstruction. Viewpoints of RGB images are also depicted above
both point clouds. The thermal point cloud is colored according to a color-ramp applied to the temperature.

2. METHODOLOGY

This section briefly describes the mapping methodology,
based on previous work [1], and the proposed parallel occlu-
sion detection on the GPU.

2.1. Fusion of thermal and RGB imagery

Registering visible and thermal data poses multiple chal-
lenges regarding imaging defects and differences for each
camera viewpoint [1]. Firstly, RGB images show a barrel
effect due to their wide-angle lens. As opposed to visible im-
agery, thermal data presents a pincushion distortion because
of its small field of view. However, distortion can be removed
through the camera matrix, K, radial and tangential distortion
coefficients (k1, k2, p1,p2, ks). Such correction is achieved
by performing an inverse transformation, i.e., pixels from the
undistorted image compute the corresponding position from
the original image, thus avoiding unfilled values in the result.

Once corrected, both images are fused using the ECC al-
gorithm. For that purpose, images are processed by pairs and
linked to a homography matrix returned by ECC. This trans-
formation matrix yields a local maximum correlation for the
intensity in both images. Therefore, we use a method robust
to non-linear intensity variations between thermal and visible
imagery, instead of correlating the extracted image features.
To apply the ECC algorithm, RGB images are cropped and
downscaled to thermal resolution, and thus the resulting com-
posite matrix C; allows to project RGB pixels into the thermal
image plane. However, note that some points may be out of
boundaries.

2.2. Computation of temperature

Although we aim to query absolute temperature values,
grayscale thermal data represents a normalized value from
the temperature acquired on the surveyed scene. The pro-
jection of normalized data to absolute values depends on
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several environmental parameters and factors defined by the
own manufacturer, most of them defined in the embedded
metadata. In this work, the temperature is computed using
the formulae suitable for most FLIR devices [7].

2.3. Thermal image mapping

Besides generating 3D thermal point clouds, this work aims
to provide dense point clouds with visible and thermal data.
Thus, this section parts from an accurate RGB point cloud
previously generated through SfM with high density. From
this point cloud and the calibration of RGB cameras, a projec-
tion matrix P; can be estimated as K - [R| — Rtjocq] for each
camera, where K represents the RGB camera matrix, calcu-
lated with the focal length and principal point coordinates, R
is the rotation matrix derived from yaw, roll and pitch angles,
and ;.. 1s the camera position in the local coordinate sys-
tem of the point cloud. Consequently, P; allows projecting
3D points into RGB imagery, whereas C; outputs the corre-
sponding thermal coordinates.

2.4. Occlusion

The projection, as described, omits the occlusion problem.
Hence, thermal samples from foreground surfaces could be
attached to background surfaces (see Figure 2). Several ap-
proaches have been proposed to deal with occlusion, mainly
split into volumetric and 2D. The main drawbacks of volu-
metric methods are given by time-consuming spatial searches
and the selection of volumetric shapes to capture spatial oc-
clusion. On the other hand, 2D-based approaches use the
well-known z-buffer to map each pixel with one 3D point at
most. This process is even integrated with GPU-based ren-
dering pipelines to draw a scene. However, general-purpose
shaders can solve the occlusion problem with lower response
time [6].
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2.4.1. z-buffer modeling

Compute shaders are general-purpose shaders for GPGPU
(general-purpose computing on graphics processing units)
programming that can be used for tasks not related to ren-
dering. However, it is also convenient to speed up simple
rendering tasks, as it omits unnecessary pipeline stages [5].
As opposed to the rendering pipeline, z-buffers are not self-
contained in this shader stage and, therefore, must be im-
plemented through a Shader Storage Buffer Object (SSBO).
These buffers present a limited capacity, whereas their data
transfer is also time-consuming, either CPU — GPU or
vice-versa. Another main challenge of building a z-buffer is
given by the concurrent access to buffer indices, which can
be avoided using atomic blocks. Consequently, values can be
modeled as integers of 64 bits (uint 64_t), storing the min-
imum distance observed and the corresponding 3D point’s
index, where the most significant bits correspond to the dis-
tance. Thus, a minimum atomic operator (atomicMin)
selects the nearest distance while carrying the point index.
Through this encoding, we can handle large point clouds
of up to 232 points. Regarding distance encoding, GLSL
allows transforming floating-point values into unsigned in-
tegers (floatBitsToUint) that can be shifted 32 bits to
occupy the most significant bits.

The z-buffer is initially filled with oo; thus, a null point in-
dex is given by 232 — 1. Once computed, it can be downscaled
to half its size by extracting indices and discarding distance
information, thereby reducing the size and response time of
data transfers from GPU to CPU.

2.4.2. Point cloud ordering

The objective of altering the point order in memory is to eval-
uate its impact on the performance of the proposed occlusion
method. Initially, points present an unknown order after being
processed by an external software tool. Thus, two different
layouts are proposed here. First, points can be randomly shuf-
fled, thereby eliminating data locality. Then, we can group
points with similar mapping results in close buffer indices by
computing the Z-order curve (also known as Morton curve).
By ordering the 3D point cloud, points discarded or visible
from a viewpoint are clustered throughout the sorted buffer,
while also grouping the updates of the GPU buffer. To sort
the point cloud, we implement the Radix Sort algorithm on
the GPU.

2.4.3. Depth buffer representation

As a result of the limited resolution of thermal imagery, their
pixels represent a wide area. Therefore, the depth buffer
should adopt higher dimensions for generating large point
clouds. Otherwise, a significant amount of 3D points would
be discarded by projecting them to the same pixel from a
camera viewpoint. Accordingly, thermal dimensions can be

Fig. 2. Occlusion overview, where the left model is occluding
the right mesh in a pixel. a) RGB image, b) thermal image
and c) z-buffer of the corresponding thermal image.

divided by a factor, d, thereby generating cells of length é.
An optimal value of d must be set so that the occlusion is
correctly detected and the algorithm does not significantly
increase its response time.

3. EXPERIMENTAL RESULTS

In this section, we aim to compare the proposed methodology
with other notable software solutions for building thermal
point clouds, such as Pix4Dmapper or Agisoft Metashape,
using their highest quality reconstruction. We focus our
tests on the response time and the point cloud size, although
thermal reconstructions from these solutions also present
some geometrical errors. The evaluation was performed on
a PC with Intel Core i7-7700 3.6 GHz, 16 GB RAM, GTX
1070 GPU (Pascal architecture) and Windows 10 OS. The
proposed methodology is implemented in C++ along with
OpenGL (Open Graphics Library) for rendering and mas-
sively parallel computing tasks. Besides GPU computing,
some methods on the CPU side are also parallelized using the
multiprocessing OpenMP framework.

As a case study, we evaluated the performance in a dataset
with RGB and thermal images acquired by the dual-device
DIJI Zenmuse XT2, consisting of 410 image pairs from an
olive orchard. The reconstructed RGB point cloud, used as
a reference for the proposed method, consists of 98M points.
Different depth buffer resolutions (d = 1 and d = 10) are also
assessed. Regarding point cloud ordering, points are initially
shuffled to show the benefits of spatial sorting. The results
shown here are averaged over four executions. The prepro-
cessing stage includes the registration of thermal and RGB
images for the proposed method.

As depicted in Figure 3, the best configuration of our
method outperforms other commercial solutions in terms of
both response time and point cloud size. Agisoft Metashape
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Fig. 3. Evaluation of the proposed method. a) Reconstruction using a depth buffer with a dimension resize factor of d = 1,
whereas b) uses d = 10. Top row shows the response time per stage, while bottom charts report the resulting point cloud size.

also presents a competitive performance, although the point
cloud with maximum quality solely consists of 18M points.
On the other hand, the baseline of our method is an RGB point
cloud with 98M points. With d = 10, we achieve a thermal
point cloud with 84M points, whereas the response time is
similar to the CUDA-based approach of Agisoft Metashape.

4. CONCLUSIONS

Current state-of-art solutions to build thermal point clouds are
limited by thermal resolution or present intricate approaches
for fusing visible and thermal imagery. In addition to map-
ping, occlusion also poses a challenge regarding reconstruc-
tion efficiency. Using the ECC algorithm, images are rapidly
registered regardless of the observed environment. To avoid
a high response time, GPU hardware can be used to speed up
the processing pipeline. Furthermore, the OpenGL API and
its new extensions reduce the program complexity. As ob-
served, time-consuming 3D reconstructions can be completed
in a few minutes at most for complementary data sources,
such as thermal or multispectral imagery, while outperform-
ing commercial software in terms of point cloud size.
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